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Whole-exome sequencing identifies protein-
coding variants associated with brain iron in
29,828 individuals

Weikang Gong 1,2,8 , Yan Fu3,8, Bang-Sheng Wu1,8, Jingnan Du 4,8, Liu Yang1,
Ya-Ru Zhang1, Shi-Dong Chen1, JuJiao Kang 5,6, Ying Mao 1, Qiang Dong 1,
Lan Tan3, Jianfeng Feng 5,6,7, Wei Cheng 1,5,6 & Jin-Tai Yu 1

Iron plays a fundamental role inmultiple brain disorders. However, the genetic
underpinnings of brain iron and its implications for these disorders are still
lacking. Here, we conduct an exome-wide association analysis of brain iron,
measured by quantitative susceptibility mapping technique, across 26 brain
regions among 26,789 UK Biobank participants. We find 36 genes linked to
brain iron, with 29 not being previously reported, and 16 of them can be
replicated in an independent dataset with 3,039 subjects. Many of these genes
are involved in iron transport and homeostasis, such as FTH1 andMLX. Several
genes, while not previously connected to brain iron, are associated with iron-
related brain disorders like Parkinson’s (STAB1, KCNA10), Alzheimer’s
(SHANK1), and depression (GFAP). Mendelian randomization analysis reveals
six causal relationships from regional brain iron to brain disorders, such as
from the hippocampus to depression and from the substantia nigra to Par-
kinson’s. These insights advance our understanding of the genetic architecture
of brain iron and offer potential therapeutic targets for brain disorders.

Iron is crucial for numerous physiological processes, including neu-
rotransmitter synthesis, myelin formation, DNA synthesis and mito-
chondrial functions, and it profoundly influences neurodevelopment,
cognition, and brain outcomes1,2. Our brain maintains a precise reg-
ulation of iron homeostasis. Any disturbance in this intricate balance,
whether through iron overload or deficiency, may result in the emer-
gence of brain disorders3. For example, iron accumulation might
facilitate neuronal cell death in some neurodegenerative diseases,
such as Alzheimer’s disease (AD)4. In addition, the substantia nigra
often has excess iron in Parkinson’s disease (PD), which possibly

promotes oxidative stress and neuronal damage5. Moreover, cerebral
iron deficiency, linked to alterations in hippocampal glucocorticoid
receptor signaling, has been implicated in inducing depression6. Given
iron’s important role in brain development and its connection to
multiple brain disorders, understanding the genetic architecture of
brain iron accumulation can provide insights into brain development
and the underlying mechanisms of these disorders, allowing for
designing better diagnostic and therapeutic strategies.

Quantitative susceptibility mapping (QSM) is an emerging
technique that enables the non-invasive measurement of brain iron
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levels with high spatial resolution and sensitivity7. Built upon
susceptibility-weighted MRI (swMRI), QSM has been demonstrated
to be more sensitive to reflect tissue iron contents both phenoty-
pically and genetically than other swMRI-derived measures, such as
T2*, and has shown higher robustness to acquisition noises and
increased reproducibility8. A high positive correlation between
brain iron level and QSM has been established from postmortem
studies9. Previous studies also showed that brain iron has a high
heritability in multiple regions, such as the putamen, substantia
nigra, and pallidum8. While genome-wide association studies
(GWAS) have found several loci associated with brain iron, these
findings remain constrained to a few brain regions and common
genetic variations (minor allele frequency > 1%)8. Additionally, many
loci identified by GWAS map to noncoding regions of the genome,
posing challenges in exploring the underlying mechanism. To
overcome these limitations, a powerful technique, whole-exome
sequencing (WES)10, can be used to identify protein-coding variants
that are associated with brain iron. A large-scale exome-wide asso-
ciation analysis on multiple brain regions can uncover the intricate
genetic architecture of brain iron accumulation and potentially
highlight neural pathways crucial to iron-related brain disorders.

In this study, we conducted the most extensive exome-wide
association study (EWAS) of brain iron accumulation to date.
Leveraging genetic, brain imaging and phenotypic data from 26,789
subjects in the UK Biobank dataset, we systemically identified
protein-coding variants associated with brain iron and studied the
relationships between iron-related genes and brain disorders and
phenotypes. Specifically, this study has four major goals. Firstly, we
will identify rare and common genes that are associated with
brain iron accumulation across multiple brain regions covering
subcortical and cerebellar structures. Secondly, we aim to explore
the biological functions of the identified genes, such as the biolo-
gical pathways in which they are enriched in. Thirdly, we aim
to explore the relationships between brain iron-related genes and
disorders, including whether regional brain iron accumulation has
causal relationships to multiple brain disorders. Finally, we used
phenome-wide association study (PheWAS) to identify genetic
associations of brain iron-related genes with a broad set of pheno-
typic variables.

Results
An overview of data and analysis pipeline
Our study primarily used brain imaging and phenotypic and genetic
data from the UK Biobank, including 26 regional QSM features
extracted from the swMRI data, exome-sequencing data, and diverse
phenotypes for phenome-wide association studies. In the primary
analysis of EWAS, we included a total of 29,828 individuals of white
British ethnicity without illness conditions of brain cancer, stroke, or
dementia, aged between 40 and 69, with ~52% of them being females.
Among them, 26,789 of them are in the discovery set and the
remaining 3039 are in the replication set (see the “Methods” section). A
summary of the demographic information is provided in Table 1. A
total of 18,800 rare genes and 41,790 common variants were analyzed
in this study (see the “Methods” section).

A comprehensive visualization of our analysis pipeline is provided
in Fig. 1. The study was initiated with the discovery of EWAS
(N = 26,789) to identify genetic variants correlated with brain iron as
measured by QSM techniques. (Fig. 1a and b). Validation and replica-
tion studies (N = 3039) were conducted to verify the robustness of our
findings (Fig. 1c). Further, we examined the functionality and organi-
zation of the identified genes (Fig. 1d) and performed Mendelian ran-
domization (MR) analysis to investigate the potential causal
relationship between brain iron and multiple brain disorders (Fig. 1e).
Lastly, a PheWAS was conducted to explore a broad set of brain iron-
phenotype associations (Fig. 1e).

Rare protein-coding variants associated with brain iron
We conducted an exome-wide association study on 26,789 subjects to
identify rare variants associated with brain iron levels across 26 brain
regions. Out of the resulting associations, a total of 207 reached
exome-wide significance (Bonferroni corrected p<1:7 × 10�8, as
detailed in the “Methods” section), covering 24 out of the 26 investi-
gated brain regions (no associations were found for the left and right
amygdala) (Figs. 2a and 3, Supplementary Data 1). These identified
variants weremapped to 20 different protein-coding genes, with 18 of
them not being previously reported in GWAS, while 2 overlapped with
findings from a previous study8. The Manhattan plots and Q–Q plots
for each brain region can be found in Supplementary Fig. S1. We fur-
ther performed a replication study using 3039 subjects (see the
“Methods” section). From the previously mentioned 20 genes, 4 are
significant in both sets (p < 0.05), encompassing 24 gene-based asso-
ciations (Supplementary Data 2). This was notable considering the
number of genes to replicate is just one under the null hypothesis of no
associations.

We performed a power analysis of our WES analysis based on the
method of a previous study11. The range of variants’ effect sizes is from
0.03 to 0.08 based on an analysis of our WES results (the regression
coefficients and standard error)11. Therefore, given a sample size of
N = 29,828, the estimated power is from 39.7% to 100% for the smallest
effect to the largest to reach the significance level of uncorrected
p<1:7 × 10�8 (Supplementary Data 3).

Furthermore, leave-one-variants out (LOVO) analysis was con-
ducted for each of the significant associations to assess the sensitivity
of our findings to analytical approaches (see the “Methods” section).
The results showed that over 99.4% of the significant associations
involving the above 20 significant genes remained significant in the
LOVO analysis. This suggests that most significant associations arise
frommultiple contributing rare variants. There were a few exceptions.
For instance, the association between the thalamus and ULBP2 was
influenced by single variants. The LOVO findings are cataloged in
Supplementary Data 4. In addition, we conducted a conditional ana-
lysis to evaluate whether the identified rare variant signals were inde-
pendent of nearby common variants (see the “Methods” section). As a
result, all variants are significant, indicating that the rare variants

Table 1 | Demographic information of participants in this study

Discovery set Replication set

N 26,789 3039

Age (years; mean ± sd) 55.22 (7.43) 52.92(7.34)

Sex (female; percent) 14,041 (52.4) 1621 (53.3)

BMI 26.57 (4.17) 26.34 (4.14)

Educational qualification (%)

A levels 1520 (5.7) 172 (5.7)

College 12,061 (45.2) 1404 (46.3)

CSE 726 (2.7) 88 (2.9)

None of above 1830 (6.9) 138 (4.6)

NVQ 4142 (15.5) 529 (17.5)

O levels 2966 (11.1) 332 (11.0)

Other 3451 (12.9) 368 (12.1)

Smoking status (%)

Never 16,335 (61.1) 1938 (63.9)

Previous 8863 (33.1) 932 (30.7)

Current 1543 (5.8) 164 (5.4)

Drinking status (%)

Never 519 (1.9) 58 (1.9)

Previous 552 (2.1) 46 (1.5)

Current 25,712 (96.0) 2935 (96.6)
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signals are independent of the nearby common variants (Supplemen-
tary Data 5). Additionally, sex-specific EWAS were executed. We found
that 12 of the 20 rare genes are significant formales, and for females, 9
of the 20 rare genes are significant (p<1:7 × 10�8). (Supplemen-
tary Data 6).

Common protein-coding variants associated with brain iron
Expanding upon the above analyses, we performed an EWAS to iden-
tify common protein-coding variants associated with brain iron (see
the “Methods” section). In summary, 105 associations were discovered

that pass the genome-wide significance threshold (Bonferroni-cor-
rected p<4:6× 10�8, as detailed in the “Methods” section) (Figs. 2b, 3,
Supplementary Data 7). The identified variantsmap to 17 genes,with 11
of them not being previously reported8. It is worth noting that, as a
comparison to ref. 8, our analyses specifically focused on variants on
the exome regions and used a broader array of brain regions of
interest. Manhattan plots and Q–Q plots for each brain region are
shown in Supplementary Fig. S2.

As in the rare variants analysis, we performed a replication study.
Among the above 17 identified genes, 13 of them can still be found

Fig. 1 | A summary of the analysis pipeline of the current study. a The UK
Biobank data used in the current study, including quantitative susceptibility map-
ping (QSM) features derived from susceptibility-weighted MRI, whole-exome
sequencing data and phenotypic data. b Exome-wide association study (EWAS) of
brain iron with rare and common variants. c Validation study and replication ana-
lysis of EWAS. d Post EWAS analysis, including gene set enrichment analysis,

protein–protein interaction, tissue and single-cell expression, and e phenotype-
wide association study and Mendelian randomization analysis. swMRI
susceptibility-weighted MRI, QSM quantitative susceptibility mapping, MR Men-
delian randomization, IVW inverse variance weighted. This figure was partly gen-
erated using Servier Medical Art, provided by Servier, licensed under a Creative
Commons Attribution 4.0 unported license.
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significant (Supplementary Data 8, uncorrected p < 0.05). In expecta-
tion, the number of genes that can be replicated is one.

Brain iron-associated genes are significant in existing GWAS of
brain-related traits and diseases
We performed a literature search to explore how the 36 brain iron-
associated genes in our analysis overlap with existing GWAS findings.
We found that 3 genes are significant in AD GWAS, 4 genes are asso-
ciated with cognitive-related traits, 2 genes are associated with
depression-related traits, 1 gene is associated with PD, and 7 genes are
reported in bipolar disorder and schizophrenia GWAS. The full list of
our literature search results is shown in Supplementary Data 9.

Functional enrichment and biological validation of brain iron-
associated genes
Todive deeper into and verify thebiological attributes of the identified
genes, we conducted a functional enrichment analysis. Results
demonstrated that brain iron-related genes are robustly enriched in
iron-related functions. Notably, the pathway of intracellular iron ion
homeostasis showed the highest statistical significance (p= 3:5 × 10�12)
followed by iron ion homeostasis (p=3:4× 10�11) and transition metal
ion transport (p= 7:4× 10�11) (Fig. 4a, Supplementary Data 10). Fur-
thermore, the protein–protein map of these genes forms a dense
network associated with iron, including key genes in the SLC families
and FTH1 (visible as brown clusters in Fig.4b, Supplementary Data 11).

Fig. 2 | Exome-wide association analysis of rare and common protein-coding
genes with brain iron across 26 regions. a Significance levels of genes that are
mapped from rare variants. b Significance levels of genes that are mapped from
common variants. The p-values reported are two-sided and unadjusted. The x-axis
represents the brain regions analyzed in the current study (L and R represent left

and right brain regions), and the y-axis represents the� log10 p-valuesof each gene.
The gray dashed line is the exome-wide significance threshold, based on the
Bonferroni-corrected p <0.05. Genes in red are discovered by the current study,
and in black are previously reported. MAF minor allele frequency, R right, L left.
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We then tested whether the identified genes were differentially
expressed across various tissues, using the GTEx database (12). Nota-
bly, our genes exhibited significant differential expression in
brain tissues compared to others (Fig. 4c). Notably, these included
regions in our analysis, such as the substantia nigra, putamen,
and cerebellum (p<1:0× 10�4) (Fig. 4c, Supplementary Data 12).
Leveraging single-cell RNA sequencing data of the human brain, we
found that brain iron-associated genes showed higher expression
levels in both excitatory and inhibitory neurons (Fig. 4d). Removing
the top associated genes still kept most of the enriched pathways and
differential expressed genes significantly (Supplementary Fig. S3,
Supplementary Data 13 and 14). These analyses verify the biological
relevanceof ourfindings acrossboth rare and commonprotein-coding
variants.

Mendelian randomization analysis of regional brain iron and
brain disorders
Brain iron plays a crucial role in various brain disorders. To investigate
whether regional brain iron has causal relationships with brain dis-
orders, we conducted a two-sample Mendelian randomization (MR)
analysis. Four brain disorders were selected for this study: depression,
bipolar disorder, PD, and AD. Our primary focus was to understand the
influence of brain iron on these disorders. Therefore, regional brain
iron features were used as exposures, while the brain disorders were
used as outcomes in the MR analysis (see the “Methods” section).

Our investigation revealed 11 significant causal relationships for
the four candidate brain disorders (Table 2, Supplementary
Data 15 and 16): (1) from the subthalamic nucleus, accumbens and

thalamus to bipolar disorder (top p=3:6× 10�7, FDR = 2:2 × 10�5); (2)
from the caudate, substantia nigra, dentate and putamen to PD (top
p= 1:0× 10�4, FDR=0.0028); (3) from the hippocampus and sub-
thalamic nucleus to depression (top p= 7:6× 10�3, FDR =0.046).
Additionally, we also conducted a reverseMR analysis (fromdisease to
regional brain iron), revealing that the above significant associations
are not significant in this analysis (Supplementary Data 17), indicating
that the direction of causality was not biased by reverse causation. It is
worth noting that while previous studies have documented statistical
associations12–14, our results uncovered potential causal linkages from
the brain to diseases.

Several sensitivity analyses were also conducted to assess the
robustness of our results. MR results from alternative approaches are
shown in Supplementary Data 16 and 18. The MR-Egger intercept was
close to zero, and the pleiotropy test was not significant (Supple-
mentary Data 15 and 17), suggesting that there was no directional
pleiotropy in our analysis. In addition, we performed multivariate MR
to assess the independence of causal effects (see the “Methods” sec-
tion). The results revealed that the causal association between iron
levels in 26 brain regions and brain disorders was not significant
(Supplementary Data 19). This observation suggests that the causal
relationship between brain iron levels and brain disorders may not be
entirely independent across different brain regions.

PheWAS of brain iron-associated genes
Brain iron plays a pivotal role in numerous fundamental biological
processes. Conducting a PheWASenables us to attain a comprehensive
understanding of the diverse impacts of brain iron across the
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phenotypic landscape and enhances the validity of the findings of the
current study15–17.

The phenotypes considered in this analysis encompass cognition
metrics, neurological and psychiatric conditions, blood chemistry

measures, neuroimaging phenotypes, and plasma protein levels.
Among the assessed phenotypes, the most robust associations were
observed between brain iron-related genes and plasma proteins.
STAB1 is associated with multiple plasma protein, including, e.g. MME
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(p=6:7 × 10�13), ECE1 (p=4:0× 10�9), OMD (p=9:2 × 10�8), LTBP2
(p= 5:6× 10�6). TERT is associated with proteins EDA2R (p= 1:4× 10�6)
and FOLR3 (p= 5:7 × 10�6). SHANK1 is associated with protein NTRK2
(p=8:9× 10�6) (Fig. 5a). Genes mapped to common variants have
more significant levels of associations, as shown in Fig. 5b.

Our exploration of cognitive metrics and disease phenotypes
revealed five significant gene-phenotype associations, all mapped
to common variants (FDR-corrected p <0.05): SLC39A8 is associated
with fluid intelligence (p= 1:4× 10�10) and prospective memory
(p= 1:5 × 10�9); HFE is associated with multiple sclerosis
(p=2:2 × 10�6), fibrosis liver (p= 5:3× 10�9) and broader liver disease
(p=6:5 × 10�5); EHBP1 is associated with the fluid intelligence
(p=9:7 × 10�5); MLX is associated with migraine (p= 1:2 × 10�3)
(Fig. 5b). These associationswere especially noteworthy as these genes
ranked among the most significantly associated in our primary asso-
ciation analyses (Fig. 2b).

In other phenotypic variables thatwe analyzed, for genesmapped
to rare variants, RNASE12 is associated with the insulin-like growth
factor 1 (IGF-1, p= 1:0× 10�4). Common variants show stronger
phenotype-wide associations (Fig. 5b). For instance, the gene BEST1 is
associated with the ratio of omega-6 to omega-3 fatty acids
(p= 1:4× 10�38), as determined by nuclear magnetic resonance (NMR)
spectroscopy.

Discussion
In our large-scale EWAS of brain iron, we uncovered the genetic
underpinnings of brain iron accumulation using high-quality genetic
data and QSM from swMRI scans of 29,828 UK Biobank participants.
Our discovery of EWAS revealed 36 genes (N = 26,789), mapped from
either rare or common protein-coding variants, associated with brain
iron accumulation. Remarkably, 29 of these genes were not previously
reported. 16 of them can be replicated in an independent dataset with
3039 individuals. Our functional enrichment analysis revealed that the
identified genes are enriched in biological pathways involving ion
transport and homeostasis. MR analysis identified several interesting
causal relationships between regional brain iron accumulation to brain
disorders, such as from the substantia nigra to PD, and from the
accumbens nucleus to AD, and from the hippocampus to depression.
Furthermore, our phenotype-wide association study highlighted genes
like SLC39A8 and EHBP1’s associations with fluid intelligence and HFEs
linked to multiple sclerosis and liver-related diseases.

Our analyses revealed multiple rare genes that have been pre-
viously proposed as important contributors to the development of
brain disorders or related to iron transport and ferritin (Fig. 3a, b). For
example, the gene STAB1 has the overall highest significant level in our

EWAS and displayed replicated associations with multiple brain
regions, including those of the putamen, caudate, globus pallidus
externa and substantia nigra. It has previously been reported as a
candidate gene for bipolar disorder18 and cerebrovascular diseases19.
FTH1 is associated with the pallidum in our EWAS. This gene was clo-
sely linked to various brain disorders, as it is responsible for encoding
the heavy chain of ferritin20. Our rare variants analysis also identified
the transferrin gene (TF) that is associated with the hippocampus. This
gene was known to participate in iron transport. It exhibited an
interesting convergence of rare and common variant evidence.
KCNA10 is associated with globus pallidus interna, whose changes in
expression level were observed in PD patients21.

For common genes, owing to the involvement of a larger number
of candidate brain regions than the previous study8, we identified
several gene–brain associations(Fig. 3a, c). For example, HFE was
associated with the dentate nucleus and red nucleus, which has been
previously reported to lead to an increased risk of developing move-
ment disorders22. The geneMLX is associated with putamen. This gene
controls the transport and storage of ferrous iron23.

Importantly, our EWAS identified eight genes linked to the brain
iron levels of substantia nigra (SN): STAB1, TF, GPR61, TERT, SLC39A8,
SLC39A12 and HFE. These genes are linked to PD’s underlying
mechanisms. For instance, previous research has suggested that dys-
regulated STAB1 expression in microglia might play a role in the
pathogenesis of PD24. The gene SLC39A8, encoding a metal ion trans-
porter, has been linked to various conditions, including PD25. Inter-
estingly, our MR analyses further revealed significant causal
relationships between brain iron accumulation in the SN to PD. PD is
marked by motor impairments, stemming largely from the loss of
dopamine-producing neurons in the SN26. Dopamine, a pivotal neu-
rotransmitter, governs ourmotor functions and coordination. A deficit
in dopamine results in multiple movement challenges in PD patients,
such as tremors, stiffness, bradykinesia, and balance issues. Notably,
increased iron accumulation within the substantia nigra has been
observed inPDpatients, complementing ourMR results and indicating
a potential causal link between the SN andPD.Diving deeper into these
biological pathways could enrich our understanding of PD, potentially
leading to more targeted and effective therapeutic interventions27.

We identified four genes associated with the hippocampal iron
level: BEST1,HFE, TF, and GFAP. These genes may provide insights into
the connection between the hippocampus and depression. For
example, Astrocytes, characterized by their expression of GFAP, play
an important role in the central nervous system. They are abundant in
the hippocampus, a central component of the limbic system that has
long been theorized to play a role in depression’s neuropathology28.
Post-mortem studies have highlighted the involvement of cerebral
astrocytes immunoreactive to GFAP in the pathogenesis of
depression29,30. In addition, theHFE gene is primarily known for its role
in hereditary hemochromatosis, a genetic disorder that causes the
body to absorb too much iron. Mutations in the HFE gene can lead to
excessive iron accumulation. Notably, the brain’s uptake of blood iron
is important for the optimal synthesis of neurotransmitters such as
serotonin, dopamine, and noradrenaline. These neurotransmitters,
involved in regulating emotional behaviors, rely on neuron aromatic
hydroxylase, with iron acting as an important cofactor. Notably, nor-
adrenaline affects neuroplasticity through the brain-derived neuro-
trophic factor,which is important for the functioning of prefrontal and
hippocampal neurons implicated in depression31. Moreover, research
has also established a correlation between severe depression symp-
toms and high body iron levels32,33 as well as increased brain iron
levels14. Our MR analysis revealed a significant causal linkage between
the hippocampus and depression. In studies using mouse models,
cerebral iron deficiency, leading to the suppression of the hippo-
campal glucocorticoid receptor signaling pathway, has been impli-
cated in inducing depression6. A consistent observation among

Table 2 | Causal relationships identified by Mendelian ran-
domization analysis

Brain iron (exposure) Diseases
(outcome)

Beta p value FDR

Subthalamic nucleus (right) Bipolar 0.011 3.59E−07 2.15E−05

Accumbens (left) Bipolar 0.023 3.11E−05 9.33E−04

Substantia nigra (right) PD 0.010 1.45E−04 2.90E−03

Substantia nigra (left) PD 0.011 1.33E−03 1.92E−02

Caudate (right) PD 0.013 1.60E−03 1.92E−02

Dentate (right) PD 0.006 4.25E−03 4.25E−02

Putamen (left) PD 0.010 5.11E−03 4.34E−02

Thalamus (left) Bipolar 0.024 5.79E−03 4.34E−02

Putamen (right) PD 0.010 6.71E−03 4.47E−02

Subthalamic nucleus (right) Depression 0.003 7.67E−03 4.60E−02

Hippocampus (right) Depression 0.017 8.49E−03 4.63E−02

The iron in brain regions are the exposure variables and the brain disorders are the outcome
variables.
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depressed individuals is reduced hippocampal volume, correlating
with the length and recurrence of depressive episodes34,35. Further-
more, the hippocampus closely interacts with other brain regions
responsible for emotional and mood regulation, such as the amygdala
and prefrontal cortex. Any malfunction within these networks might
hamper emotional processing, thus amplifying the mood-related
symptoms synonymous with depression. Iron potentially holds
essential significance in the survival of hippocampus neurons, thereby
influencing the progression of depression.

Our findings also reveal several insights into the relationships
between brain iron accumulation and AD. We identified five genes

associated with the brain iron levels of the accumbens nucleus:
SHANK1, CST9L, HIGD1C and SLC39A8. Notably, the cognitive deficits
typical of AD often coincide with synaptic loss attributed to disrup-
tions in the postsynaptic density. Such disruptions are evidenced by a
marked reduction in SHANK1 protein levels36. Given the accumbens
nucleus’s role in dopamine regulation37, the research highlighted the
potential consequence of perturbed dopaminergic signaling in the
context of AD38. Furthermore, excess iron levels in neural tissues can
induce oxidative stress, known to adversely affect neural integrity and
functionality39. Such oxidative stress has been linked to disturbing
neurotransmission, particularly of dopamine, which in turn influences
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Fig. 5 | Phenome-wide association analysis of brain iron-associated genes.
aPhenome-wideassociations of genesmapped from rarevariants.bPhenome-wide
associations of genes mapped from common variants. Scatterplot showing asso-
ciations between brain iron-related genes and a wide range of phenotypes,
including 12 categories, listed at the bottom left of each figure. The y-axis indicates
the � log10 of the p-value for each association, and the x-axis represents different
phenotype categories. The p-values shown are two-sided and unadjusted for mul-
tiple testing. Linear regression models and SKAT-O tests were used for gene-based

analysis, and the model adjusted for age, gender, and top 10 ancestral principal
components. Red line in each figure is the FDR 0.05 correction threshold. CVD
cardiovascular disease, FEV1 forced expiratory volume in 1 s, FEV1_Best best mea-
sure of FEV1, FEV1_predperc predicted percentage of FEV1TP, total protein, HDLC
high-density lipoprotein cholesterol, LDLC low-density lipoprotein cholesterol,
WBC white blood cell count, Neu_c neutrophil count, PLT platelet count, HBA1C
glycated hemoglobin, PLR platelet-to-lymphocyte ratio, SII systemic immune-
inflammation index.
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the function of the accumbens nucleus40. In PheWAS, we also find that
SLC39A8 is associated with the cognition test scores (i.e., fluid intelli-
gence and prospective memory), which aligns with the known char-
acteristics of AD as a progressive neurodegenerative disorder
characterized by memory loss and cognitive deficits.

A major strength of our research lies in its pioneering use of the
most extensive WES analyses for brain iron accumulation to date. This
approachhas led us to identifymultiplegenes not previously reported,
further enriching our understanding of the genetic architecture
behind brain iron accumulation. The current study also has some
potential limitations. Our analysis predominantly encompasses parti-
cipants of European genetic ancestries and is constrained by the
available sample size for brain imaging data. Incorporating cortical
brain regions in our studymight have enhancedourfindings, offering a
more comprehensive understanding of the genetic structure and
associations concerning regional brain iron levels. In addition, a large
external validation dataset would be beneficial to verify the solidity of
our findings.

In conclusion, our investigation identified 36 genes associated
with brain iron accumulation across multiple brain regions. Many of
these genes are enriched in pathways related to iron transport and
homeostasis and are linked to iron-related brain disorders. Further-
more, our study also revealed several causal pathways from regional
brain iron accumulation to disorders such as PD, AD and depression.
These findings provided insights into the genetic architecture of brain
iron accumulation and uncovered the important relationships of brain
iron with several brain disorders and behavioral traits. We anticipate
that our findings will serve as a groundwork for future research, aiding
in the elucidation of how these genes impact brain iron levels and
contribute to the onset and progression of brain disorders.

Methods
Study population
TheUKBiobank (UKB) (https://www.ukbiobank.ac.uk/) is a population-
basedprospective cohort of ~500,000participants aged from40 to 69
yearsold at enrollment between 2006 and 201041, amongwhichwhole-
exome sequencing data are available for 454,787 participants. UKB
received ethical approval from the National Health Service National
Research Ethics Service (reference: 11/NW/0382) and all participants
provided written informed consent. This study was conducted under
application number 19542.

Brain imaging-derived phenotypes
We used an automated quantitative susceptibility mapping (QSM)
pipeline8, based on the susceptibility-weighted MRI (swMRI) data, to
measure the brain iron. We used swMRI data from 37,213 subjects in
the UK Biobank (release 2022). The detailed MRI data acquisition,
quality control, and QSM processing pipelines have been reported in
the original paper8. The individual space voxel-wise QSM maps are
downloaded and warped to the MNI152 standard space based on the
warp field maps. We extracted the median QSM values from 26 sub-
cortical and cerebellum structures as shown in Fig. 1. Among them, 16
of the 26 subcortical structures were defined based on the original
paper (the accumbens, amygdala, caudate, hippocampus, pallidum,
putamen, substantia nigra and thalamus, both left and right)8. The
corresponding field IDs for these imaging-derived phenotypes are lis-
ted in Supplementary Data 20. We further selected 10 additional
regions of interest (the red nucleus, subthalamic nucleus, globus pal-
lidus externa, globus pallidus interna and dentate, both left and right),
based on the segmentation masks of the multi-contrast PD25 atlas42

and the deep cerebellar nuclei probabilistic atlas43,44.

Exome sequencing and quality control
Whole-exome sequencing was conducted on 454,787 participants in the
Regeneron Genetics Center (RGC) and protocols were described in

detail elsewhere10. The OQFE WES pVCF files in GRCh38 human refer-
ence genome build45 were utilized in this study, and we performed
additional quality control similar to the previous study46. First, multi-
allelic sites were split into bi-allelic sites and all calls that have a low
genotype quality and extremely low/high genotype depth were set to
no-call. Variantswith call rate <90%,Hardy–Weinberg P-value < 10−15, and
in Ensembl low-complexity regions were excluded. Samples withdrawn
from the study, duplicates, with discordance between self-reported and
genetically inferred sex, samples whose Ti/Tv, Het/Hom, SNV/indel, and
number of singletons exceed 8 standard deviations from themeanwere
removed. We used King software to calculate the kinship coefficient
using the high-quality variants (MAF>0.1%, missingness <1%, HWE
P> 10−6 and two rounds of pruning using --indep-pairwise 200 100 0.1
and --indep-pairwise 200 100 0.05). Unrelated samples were defined
using the kinship coefficient threshold at 0.0884, indicating the 2nd
relatedness. To maximize the sample size, participants related to mul-
tiple other individuals were first iteratively removed until none
remained. Then, one of the remaining kinship pairs was removed at
random. In this study, samples were mainly restricted to White British
(filed 22006) and ancestry-specific principal components were calcu-
lated, which were used in the following analysis.

Variant annotation
SnpEff47 was used to annotate rare variants (MAF < 1%), and for those
annotated with multiple consequences, the most severe consequence
was kept for each gene transcript. Loss of function (LOF) was defined
for variants annotated as stop gained, start lost, splice donor, splice
acceptor, stop lost, or frameshift. Likely deleterious missense was
determined if variants were consistently predicted as deleteriousness
in SIFT48; PolyPhen2 HDIV and PolyPhen2 HVAR49; LRT50; and
MutationTaster51. As for common variants (MAF ≥ 1%), ANNOVAR52 was
utilized to annotate variants using refGene as a reference panel, and
those annotated as exonic, UTR3, or UTR5 were kept in the following
single-variant EWAS analysis.

Data partition
In this study, we partitioned the entire dataset into two subsets: a dis-
covery set and a replication set. This partitioning was based on the
availability of longitudinal swMRI scans for individual subjects. Two
independent association tests were conducted as follows: Discovery set:
This subset comprised baseline imaging data from 26,789 subjects who
did not have longitudinal swMRI scans available. Statistical significance
in the discovery set was determined using the genome-wide significance
threshold. Replication set: This subset consisted of repeated scan brain
imaging data from 3039 subjects. Statistical significance in the replica-
tion set was set at an uncorrected p-value threshold of <0.05, following
the approach utilized in a previous study53.

Exome-wide association analysis
EWAS was performed in the discovery and replication sets using unre-
lated British with both whole exome sequence (WES) and swMRI brain
imaging data available using a generalizedmixedmodel implemented in
SAIGE-GENE+ 54 A total of 18,800 variants were analyzed. Rare pLOF and
likely deleterious missense variants with MAF<0.01 were collapsed in
each gene, and the EWAS was calculated using the Burden test, SKAT,
and SKAT-O, adjusting for age, sex, and the first ten principal compo-
nents. We constructed six frequency-function collapsingmasks for each
gene in the gene-based collapsing test: for the frequency of variants,
includingMAF<0.01, <0.001, and <0.0001; for the function of variants,
pLOF and pLOF+ likely deleterious missense variants. For common
variants, a single-variant association analysis was performed, adjusting
for the same covariates as in the gene-based collapsing test. A sparse
genetic relationship matrix was constructed using the high-quality var-
iants with the recommended relative coefficient cutoff of 0.05. Bonfer-
roni correction was applied and the significance threshold was set to
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p<1:7 × 10�8. This is computed as 0.05/(18,800×3× 2 × 26), where
18,800 is the number of candidate rare genes, 3 is the number of minor
allele frequency cutoffs, 2 is the number of variants annotation groups,
and 26 is the number of brain regions.

Robustness of EWAS
To assess the robustness of the results and detect the variants driving
the association in the collapsing test, we further performed leave-one-
variant-out analysis. The variant maximized the p-value after removing
the collapsing test was identified as the driving variant. For the sig-
nificant gene–phenotype associations found in the gene-based EWAS,
conditional analyseswere further performed to evaluate the influence of
the nearby common loci (defined as independent index variants after
clumping (--clump-p1 1 × 10−5 --clump-r2 0.01), ±500kb of the identified
gene, MAF>0.5% in the UKB imputed data). For the significant
gene–phenotype associations, gene-based collapsing tests were reper-
formed to condition on nearby common variants signals. For single
variant EWAS, independent significant SNPs were further identified
(p<1:0× 10�5 and r2≤0.6 within a 1Mb window). Independent sig-
nificant SNPs were then clumped to obtain lead SNPs (r2≤0.1 within a
1Mb window). Genomic loci were defined by merging lead SNPs within
250kb. In addition, we performed subgroup analysis based on sex with
the same covariates adjusted except for the subgroup factor.

Common variants association analysis
For common exonic variants (MAF 1%), a single variant association
analysis was conducted among the unrelated Caucasian cohort using
SAIGE-GENE+ 54, adjusting age, gender, and ten principal components.
Lead SNPs were identified as independent significant SNPs whichmeet
significant thresholds and are independent of other significant SNPs
with r2 < 0.1 within a 1Mb window. The significance threshold was set
to 4:60× 10�8 (0.05/(41,790 × 26), Bonferroni correction for 41,790
exonic coding SNPs in 26 brain regions).

Tissue and pathway enrichment analysis
Tissue enrichment analysis was performed by the GENE2FUNC func-
tion in FUMA55 with all mapped genes in EWAS as input. Briefly, Dif-
ferentially Expressed Gene (DEG) sets were pre-calculated by
performing a two-sided t-test for any one type of tissue against all
other tissues of 54 tissue types based on data from the GTEx
database56. Then hypergeometric tests were used to test brain iron-
associatedgenes against eachof theDEGsets. For pathwayenrichment
analysis, hypergeometric tests were also performed to test if brain
iron-associated genes are overrepresented in any of the pre-defined
gene sets, covering Gene Ontology, Reactome, GWAScatalog, and
Immunologic signatures.

Single-nucleus RNA sequencing data source and analyses
We used single-nucleus RNA sequencing (snRNA-seq) data of human
brain vasculature obtained from a recent study conducted by Garcia
et al. on the Gene Expression Omnibus database with the accession ID:
GSE17373157. The clustering and annotation of the cell types were
conducted via the metadata file provided by the authors. We also
computed the gene set score of the brain iron-associated genes using
results from both single and gene-based EWAS, using AddModuleScore
function. The primary analysis and subsequent visualization were
conducted using the R package Seurat.

Protein–protein interaction network
Protein–protein interaction based on the significant gene set derived
from the single variant and gene-based EWAS results were investigated
using the human STRING database58. Interactions with a confidence
score of at least medium confidence were extracted and subsequently
visualized in Cytoscape59 (version 3.9.0). Proteins were further

clustered using the Markov clustering (MCL) algorithm to investigate
the functional clusters using the default settings60.

Phenome-wide association study
To explore broader phenome-wide associations and underlining
mechanisms for the brain iron-related genes or variants derived from
single and gene-based EWAS results, we investigated their associations
with additional phenotypes. We mainly focused on brain structures
(N = 220: thickness, surface area, volume for 68 cortical regions and
volume for 16 subcortical structures), biochemistry (N = 30), inflam-
matory (N = 11) markers, metabolomics (N = 249), and proteomics
(N = 1463). As for rare variants, gene-based linear mixed models in
SAIGE-GENE+were employed. And for commonvariants, single-variant
association analysis was performed using linear regression by PLINK
v2. Both models were adjusted for age, sex, and the first ten
genetic principal components.

Standard Siemens Skyra 3T running VD13A SP4 with a 32-channel
head coil was used to acquire the T1-weighted neuroimaging data with
a resolution of 1 × 1 × 1mm (Field 20252) (detailed acquisition protocol
can be found at https://biobank.ndph.ox.ac.uk/showcase/showcase/
docs/brain_mri.pdf). The cortical surface areas, volumes, and mean
thickness for 68 cortical regions were extracted based on FreeSurfer’s
surface templates using aparc atlas61.the volume for 16 subcortical
regions was estimated via FreeSurfer’s aseg tool62.

Biochemistry or inflammatorymarkers were obtained fromblood
count data (Category 100081) and blood biochemistry data (Category
17518) based on UK Biobank blood samples (detailed protocol can
be found at https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=
100080). Four blood cell count ratios were additionally calculated
for downstream analysis, including the neutrophils to lymphocytes
ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-
monocyte ratio (LMR), and the systemic immune-inflammation
index (SII).

Nuclearmagnetic resonance (NMR)metabolomics data (Category
220) were acquired from randomly selected EDTA plasma samples
using a high-throughput NMR-based metabolic biomarker profiling
platform. This platform covers 249 metabolic spanning multiple
metabolic pathways, including lipoprotein lipids, fatty acids, fatty acid
compositions, and various low-molecular-weightmetabolites (detailed
protocol can be found at https://biobank.ndph.ox.ac.uk/showcase/
label.cgi?id=220).

Proteomics data (Category 1838) of 1463 proteins in plasma were
measured by Olink Explore platform, using Proximity Extension Assay
(PEA) (detailed information on sample collection, processing, nor-
malization, and quality control procedures can be found at https://
biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1839).

Causal relationship between regional brain iron and brain
disorders
To investigate the causal relationships between QSM and multiple
brain disorders, we first performed a Genome-Wide Association Study
(GWAS) using imputed SNP (to the Haplotype Reference Consortium)
genotype data obtained from the UK Biobank resource63. A total of
8,445,740 SNPs were included in the GWAS. Samples were mainly
restricted to white British and those who were used in computing the
principal components. Individuals with amissing genotype rate > 0.05,
with mismatch self-reported (Data field 31) and genetic sex (Data field
22001), with abnormal sex chromosome aneuploidy, and have more
than 10 putative third-degree relatives been further removed. We also
excluded variants with call rate < 0.95,MAF < 0.01, Hardy–Weinberg P-
value < 10−6, or imputation quality score < 0.5. GWAS were indepen-
dently performed for each phenotype using linear regression models
implemented in PLINK264. Covariates included age, sex, and the first
ten genetic principal components. A total of 26,776 to 28,129
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participantswith phenotype and covariates available for 26 subcortical
and cerebellum structures were included in the final GWAS.

Our primary two-sample MR analyses were conducted using
regional brain iron as exposure, and diseases as outcomes. For diseases,
we leveraged GWAS summary data of iron-related brain disorders,
including Parkinson’s disease (Ncase = 33,674, Ncontrol = 449,056)65,
Depression (excluding 23andMe and UK Biobank: Ncase =45,591,
Ncontrol = 97,674)66, Bipolar (Ncase = 20,352, Ncontrol = 31,358)67, and
Alzheimer’s disease (Ncase = 21,982, Ncontrol = 41,944)68. Instrumental
variables (IV) were selected based on a significant level (p<5× 10�8) and
followed by LD clumping (R2 > 0.001). Then IV from the exposure and
outcome data were harmonized to the same effect alleles. F-statistics
were computed to assess the strength of the instruments. When only a
single SNP was available, the Wald ratio was used to estimate the caus-
ality of exposure to outcome. When more than one SNP was available,
the inverse-variance weighted (IVW) with multiplicative random effects
method was employed69. MR-PRESSO test70 was used to detect outliers,
and if an outlier was detected, the original p-value was replaced by the
outlier-corrected p-value. The q-value FDR approachwas used to correct
for multiple comparisons across brain regions and diseases71.

To assess the robustness of our analysis, several sensitivity ana-
lyses were conducted. This involved using different MR methods,
including MR Egger72, Wald ratio73, and Weighted median74. The
intercept of MR Egger was used to identify the presence of directional
pleiotropy. Considering the similarity of genetic architecture between
different brain regions, LASSO feature selection (mv_lasso_feature_-
selection () function in “TwoSampleMR”) followed by a Multivariable
MR (MVMR) was performed to further assess whether the causal
effects were independent75. In addition, we also performed a reverse
MR (from neurologic and psychiatric disorders to regional brain iron)
to infer the direction of causality. The MR analysis was performed
using the “TwoSampleMR” version 0.5.6 in R version 4.2.

Power analysis
We simulated 1000 datasets for each combination of the estimated
effect sizes (i.e., based on the regression coefficient and its estimated
errors) and the cMACper gene of our analysis, based on themethod in
ref. 11. Carrier status was randomized across N = 29,828 (sample size
for our collapsing tests) participants. A linear regression model was
used to test for the association with a threshold of p<1:7 × 10�8 (cor-
responding to the significance threshold in our collapsing tests).

Statistics and reproducibility
The code used in the paper is made publicly available for reproduci-
bility purposes. Statistical analyses are given as well. There is no ran-
domness for all results presented in this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Themaindata, including the individual-levelphenotypic andgeneticdata
used in this study, were accessed from theUKBiobank under application
number 19542 and were available through UKB. The EWAS summary
statistics are available at https://doi.org/10.5281/zenodo.1117006476.

Code availability
All softwareandRpackagesused toperformtheanalyses in thiswork are
freely available online: SnpEff, https://pcingola.github.io/SnpEff/; SAIGE-
GENE+, https://github.com/saigegit/SAIGE; R, https://www.r-project.org;
PLINK2, https://www.cog-genomics.org/plink/2.0/; FUMA, https://fuma.
ctglab.nl; MAGMA, https://ctg.cncr.nl/software/magma/; STRING,
https://www.string-db.org/.The scripts76 used to conduct the main ana-
lyses are available at https://github.com/weikanggong/BrainIronWES.
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