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The circadian gene ARNTL2 promotes nasopharyngeal
carcinoma invasiveness and metastasis through suppressing
AMOTL2-LATS-YAP pathway
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Metastasis is the major culprit of treatment failure in nasopharyngeal carcinoma (NPC). Aryl hydrocarbon receptor nuclear
translocator like 2 (ARNTL2), a core circadian gene, plays a crucial role in the development of various tumors. Nevertheless, the
biological role and mechanism of ARNTL2 are not fully elucidated in NPC. In this study, ARNTL2 expression was significantly
upregulated in NPC tissues and cells. Overexpression of ARNTL2 facilitated NPC cell migration and invasion abilities, while inhibition
of ARNTL2 in similarly treated cells blunted migration and invasion abilities in vitro. Consistently, in vivo xenograft tumor models
revealed that ARNTL2 silencing reduced nude mice inguinal lymph node and lung metastases, as well as tumor growth.
Mechanistically, ARNTL2 negatively regulated the transcription expression of AMOTL2 by directly binding to the AMOTL2 promoter,
thus reducing the recruitment and stabilization of AMOTL2 to LATS1/2 kinases, which strengthened YAP nuclear translocation by
suppressing LATS-dependent YAP phosphorylation. Inhibition of AMOTL2 counteracted the effects of ARNTL2 knockdown on NPC
cell migration and invasion abilities. These findings suggest that ARNTL2 may be a promising therapeutic target to combat NPC
metastasis and further supports the crucial roles of circadian genes in cancer development.
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INTRODUCTION
Nasopharyngeal carcinoma (NPC) is a metastasis-prone head
and neck malignancy [1, 2]. As reported, over 70% of patients
develop metastasis to cervical lymph nodes [2, 3], and 20–30%
of cases experience distant metastasis, most commonly to the
bones, lungs, and liver [4]. Modern clinical practice has largely
improved the disease progression of NPC patients owing to early
screening and improved therapeutic regiments, such as plasma
Epstein-Barr virus DNA detection and the combination of
intensity-modulated radiotherapy and chemotherapy [5, 6].
However, the survival benefits of patients with metastasis
remain very limited. Therefore, it is extremely urgent to
elucidate the molecular mechanism involved in NPC metastasis
to facilitate the development of specific therapeutic options
against NPC metastasis.
Circadian rhythms, driven by circadian genes, are widely

present in almost all organisms and coordinate various
biological processes [7]. Epidemiological evidence supports that
disruption of circadian rhythms increases the risk of human
cancers, including nasopharyngeal carcinoma, colon carcinoma,
breast cancer, prostate cancer, and lung cancer [8–13]. As a

result, “shift work that involves circadian disruption” is classified
as potentially carcinogenic to human (Group 2A) by the
International Agency for Research on Cancer (IARC) in 2007.
These data suggest that dysregulation of circadian genes is
potentially important in the pathogenesis of cancers. Recent
studies have reported that multiple circadian genes, especially
PER-ARNT-SIM (PAS) superfamily, are responsible for NPC
progression. For example, overexpression of PER2 attenuated
NPC cell proliferation, metastasis, and chemoradiotherapy
resistance [14]. Additionally, our colleagues’ previous study
revealed that ARNTL exhibited low expression in NPC and
inhibited tumorigenesis and cisplatin resistance by targeting
CDK5, but did not affect cell migration and invasion abilities [15].
Interestingly, we found that the circadian transcription factor
ARNTL2, a paralog of ARNTL, was upregulated in NPC when we
analyzed GSE12452 dataset, indicating that ARNTL2 may have
different roles from ARNTL in the development of NPC. However,
the role and mechanism of ARNTL2 in NPC are yet poorly
understood.
In this study, we identified that a core circadian gene, ARNTL2,

played an essential role in NPC metastasis. Our results showed
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that the upregulation of ARNTL2 significantly facilitated NPC cell
migration and invasion abilities by inhibiting AMOTL2 transcrip-
tion to increase YAP nuclear translocation. The findings give sights
into the role and mechanism of ARNTL2 in NPC.

RESULTS
ARNTL2 is highly expressed in NPC tissues and cells
To gain an insight into the expression status of ARNTL2 in NPC, we
first downloaded four public NPC microarray data (GSE12452,
GSE53819, GSE13597, and GSE61218) and compared the mRNA
level of ARNTL2 between NPC and normal tissue samples. The
results showed that the mRNA level of ARNTL2 in NPC tissues was
dramatically upregulated compared with normal tissues (Fig. 1A).
Also, we evaluated the mRNA levels of ARNTL2 in a normal
nasopharyngeal epithelial (NPE) cell line (NP69) and six NPC cell
lines (CNE1, CNE2, HNE1, SUNE1, HONE1, and HK-1). The results
also confirmed that the mRNA level of ARNTL2 in NPC cells was
significantly higher (Fig. 1B). Subsequently, we detected the
protein levels of ARNTL2 in NPE and NPC tissues and cells, and
obtained consistent results (Fig. 1C, D). These data suggest that

ARNTL2 is highly expressed in NPC and might function as an
oncogene in tumor progression.

ARNTL2 promotes NPC cell migration and invasion abilities
in vitro
To investigate the potential biological role of ARNTL2 in NPC, we
performed RNA-seq analysis in HONE1 cells with or without
ARNTL2 knockdown. As shown in Fig. 1E and Supplementary
Table S3, a total of 1623 differentially expressed genes, including
777 upregulated and 846 downregulated genes, were identified
(|fold-change| > 1.5 and P < 0.05). GSEA analysis revealed a
significant enrichment of multiple metastasis-related gene sets
in the high ARNTL2 expression group (Fig. 1F), indicating
potentially a pro-metastatic role of ARNTL2 in NPC.
To confirm whether ARNTL2 is a regulator of metastatic ability

in NPC, we performed transient overexpression or knockdown of
ARNTL2 in EBV-negative (HONE1) and EBV-positive (HK-1) NPC
cell lines (Fig. 2A, B). Wound healing and Transwell assays were
then performed to explore the effects of ARNTL2 on NPC cell
migration and invasion abilities. Notably, overexpression of
ARNTL2 enhanced NPC cell migration and invasion abilities (Fig.

Fig. 1 ARNTL2 is upregulated and associated with metastasis in NPC. A The relative mRNA levels of ARNTL2 in NPC tissues and normal
tissues based on four microarray data from the GEO database (GSE12452, GSE53819, GSE13597, and GSE61218). B, C The relative mRNA and
protein levels of ARNTL2 in a normal nasopharyngeal epithelial cell line (NP69) and six NPC cell lines (CNE1, CNE2, HNE1, SUNE1, HONE1, HK-1)
followed by RT-qPCR and western blotting. D The protein level of ARNTL2 in normal tissues and NPC tissues. E Heatmap of the differentially
expressed genes (|fold-change| > 1.5 and P < 0.05) from the RNA seq data based on HONE1 cells with or without ARNTL2 knockdown (n= 3).
F GSEA analysis of the RNA-seq data revealed that high expression of ARNTL2 was correlated with tumor metastasis. Data are presented as
means ± SD. *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 2 ARNTL2 promotes NPC cell migration and invasion abilities in vitro. A, B The transfection efficiencies of ARNTL2 overexpression and
knockdown in HONE1 and HK-1 cells using RT-qPCR and western blotting assays. C Wound healing migration assay in HONE1 and HK-1 cells
with ARNTL2 overexpression (× 100). D Transwell migration and invasion assays without or with Matrigel in HONE1 and HK-1 cells with
ARNTL2 overexpression (×100). E Wound healing migration assay in HONE1 and HK-1 cells with ARNTL2 knockdown (×100). F Transwell
migration and invasion assays without or with Matrigel in HONE1 and HK-1 cells with ARNTL2 silencing (×100). Representative images are left
panel and statistical analyses are right panel. Data are presented as means ± SD. **P < 0.01; ***P < 0.001.
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2C, D). In contrast, knockdown of ARNTL2 remarkably impaired
NPC cell migration and invasion abilities (Fig. 2E, F). However,
neither overexpression nor depletion of ARNTL2 had no or little

effect on NPC cell proliferation (Supplementary Fig. S1). These
findings indicate that ARNTL2 may mainly promotes metastasis
in NPC development.
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ARNTL2 represses the expression of AMOTL2 by regulating its
transcription
ARNTL2 is a basic helix-loop-helix (bHLH) transcription factor [16]
and was correlated with transcriptional misregulation in cancer in
KEGG pathway analysis based on the differential genes of the
RNA-seq data (Fig. 3A), indicating a potential role of ARNTL2 in
gene transcription in NPC progression. Thus, to gain a global view
of ARNTL2-binding chromatin distribution, we conducted a ChIP-
seq analysis in HONE1 cells with ARNTL2 overexpression. In total,
we identified 1924 ARNTL2-binding peaks for 1612 genes
(P < 0.001), among which 65.8% were localized to promoters
(Supplementary Table S4). To further determine ARNTL2-regulated
downstream target, we overlapped the genes from the RNA-seq
data (|fold-change| > 1.5 and corrected P < 0.01) and the ChIP-seq
data (promoter, corrected P < 0.001) and identified 17 overlapping
genes (Fig. 3B and Supplementary Fig. S2). Among these, AMOTL2
attracted our interest. AMOTL2 is a member of angiomotin family
that are initially identified as binding proteins of angiostatin that
mediate endothelial cell migration and tube formation [17, 18].
Particularly, AMOTL2 is required for cell migration in zebrafish
embryos and endothelial cells [19]. We found that the mRNA and
protein levels of AMOTL2 were significantly changed regardless of
ARNTL2 overexpression or knockdown in both HONE1 and HK-1
cells (Fig. 3C, D). Additionally, we examined the expression of
ARNTL2 and AMOTL2 in 24 NPC tissues with or with distant
metastasis using IHC staining and then performed IHC score for all
sections according to the following criteria: 0 (weak), 1 (moderate),
and 2 (strong) (Fig. 3E). ARNTL2 showed a higher expression in
NPC tissues with metastasis, but AMOTL2 presented a opposite
result (Fig. 3F). Subsequently, tissues with an ARNTL2 IHC score of
2 were classified as high expression group, low expression group
otherwise. We found that low ARNTL2 group had a higher
AMOTL2 expression (Fig. 3G), which indicated that the expression
of AMOTL2 might be associated with NPC metastasis and was
negatively regulated by ARNTL2 in NPC tissues.
To determine whether ARNTL2 represses AMOTL2 expression

by regulating its transcription, we constructed AMOTL2 promoter
WT and mutant plasmids (Fig. 3H and Supplementary Table S5),
and ChIP-qPCR and dual-luciferase reporter assays were
employed. As expected, ARNTL2 protein could directly bind to
the promoter of AMOTL2 (Fig. 3I). Overexpression or knockdown
of ARNTL2 markedly attenuated or enhanced the luciferase
activity of AMOTL2 promoter, but failed to regulate the activity
of the mutant AMOTL2 promoter (Fig. 3J), revealing that AMOTL2
was transcriptionally inhibited by ARNTL2.

ARNTL2 increases YAP nuclear translocation by suppressing
YAP phosphorylation
KEGG pathway analysis demonstrated that ARNTL2 was associated
with the Hippo signaling pathway (Fig. 3A). Hippo signaling
pathway represents a tumor suppressor pathway that functions in
diverse biological processes, including metastasis [20]. YAP is a key
downstream effector of the Hippo signaling pathway, and its
phosphorylation, as reported, drives cytoplasmic localization and
prevents YAP-mediated transactivation in the nucleus [21].

Immunofluorescence assay showed that elevated ARNTL2 expres-
sion reduced the cytoplasmic localization, but augmented YAP
nuclear localization, while silencing of ARNTL2 presented the
opposite effect (Fig. 4A, B). The cytoplasmic and nuclear protein
fractionation assay also exhibited consistent results (Fig. 4C, D).
Studies have demonstrated the major mechanism of YAP
excluded from the nucleus is regulated, to a large extent, by
pYAP-S127 [22]. Thus, we detected the expression of pYAP-S127
and total YAP in HONE1 and HK-1 cells with ARNTL2 over-
expression or knockdown. The results showed that ARNTL2
overexpression suppressed the expression of pYAP-S127, while
ARNTL2 knockdown markedly facilitated the expression of pYAP-
S127. Nevertheless, total YAP protein was not evidently changed
regardless of overexpression or knockdown of ARNTL2 (Fig. 4E).
Furthermore, we examined the impact of ARNTL2 knockdown on
YAP phosphorylation in HONE and HK-1 cells expressing YAP WT
or YAP 5SA mutant, which cannot be phosphorylated by LATS
kinase. As expected, ARNTL2 depletion increased pYAP-S127
expression in YAP-WT-expressing cells, but had no evident effect
in YAP 5SA-expressing cells (Fig. 4F), suggesting that ARNTL2
induces YAP translocation from the cytoplasm to the nucleus by
regulating YAP phosphorylation.

AMOTL2 facilitates LATS-dependent YAP phosphorylation via
the recruitment and stabilization of LATS1/2 kinases
pYAP-S127 is a direct phosphorylation site by LATS kinase and is
often used to gauge LATS activity [23]. Studies have demonstrated
that AMOT family can recruit LATS1/2 kinases to influence their
activities [24, 25]. Thus, we separately examined the effects of
ARNTL2 and AMOTL2 after overexpression or knockdown on
LATS1/2 expression, and found that ARNTL2 negatively regulate
the expression of LATS1/2 (Fig. 5A) and AMOTL2 positively
regulated the expression of LATS1/2 kinases (Fig. 5B). Further-
more, we also detected the LATS1/2 expression in HONE1 and HK-
1 cells with AMOTL2 overexpression after cycloheximide (CHX)
treatment. The results showed that AMOTL2 enhanced the
stability of the endogenous and exogenous LATS1 and LATS2
kinases through CHX treatment (Fig. 5C). Notably, LATS1/2 silen-
cing reversed AMOTL2-mediated upregulation of pYAP-S127 (Fig.
5D). Then, we performed co-immunoprecipitation and immuno-
fluorescence assays to explore the interaction between AMOTL2
and LATS1/2. The results showed that AMOTL2 could bind to
LATS1/2 kinases (Fig. 5E, F). These results suggest that AMOTL2
can recruit and stabilize LATS1/2 kinases.

AMOTL2 is required for ARNTL2 facilitating NPC cell migration
and invasion in vitro
As described in previous studies, AMOT family proteins including
AMOTL2 exert a negative effect on YAP nuclear translocation [26],
which is associated with tumor metastasis [20]. To investigate the
importance of AMOTL2 in ARNTL2 regulating LATS-YAP pathway
and NPC metastasis, we performed double-knockdown of ARNTL2
and AMOTL2 in HONE1 and HK-1 cells. The results showed that
AMOTL2 knockdown reversed ARNTL2 inhibition-induced upre-
gulation of AMOTL2, LATS1/2 and pYAP-S127 and downregulation

Fig. 3 ARNTL2 suppresses the expression of AMOTL2 by regulating its transcription in NPC. A KEGG analysis based on the differentially
expressed genes from the RNA-seq data. B Identification of potential targets of ARNTL2. 17 genes including AMOTL2 were obtained by
overlapping the genes from the RNA-seq data ( | fold-change | > 1.5 and corrected P < 0.01) and the ChIP-seq data (promoter and corrected
P < 0.001). C, D RT-qPCR and western blotting analyses of AMOTL2 expression in HONE1 and HK-1 cells with ARNTL2 overexpression or
knockdown. E The staining extents of all sections were scored as follows: 0 (weak), 1 (moderate), and 2 (strong). Scale bar, 100 μm. F The IHC
scores of AMOTL2 and ARNTL2 in NPC tissues without (n= 12) or with (n= 12) distant metastasis. G The IHC score of AMOTL2 in low ARNTL2
group and high ARNTL2 group in NPC tissues (n= 24). H ARNTL2-binding motif (up) and ARNTL2-binding site in AMOTL2 promoter predicted
by ChIP-seq analysis. I ChIP-qPCR analysis of ARNTL2 at the AMOTL2 promoter in HONE1 and HK-1 cells transfected with ARNTL2
overexpression plasmid. J Luciferase reporter assays of AMOTL2 promoter activity in ARNTL2 overexpression or knockdown HONE1 and HK-1
cells with wild type or mutant luciferase reporter. The relative activity of cells was presented as firefly/renilla luciferase activity. Data are
presented as means ± SD. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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Fig. 4 ARNTL2 increases YAP nuclear translocation by suppressing its phosphorylation. A, B Representative anti-YAP immunofluorescence
images of HONE1 and HK-1 cells with ARNTL2 overexpression or knockdown (upper panel). The nuclear YAP intensities of 60 cells were
calculated using Image J software (lower panel). Green, YAP; Blue, DAPI, Scale bar, 5 μm. C, D Western blotting for YAP protein from the
cytosolic and nuclear extracts of HONE1 and HK-1 cells with ARNTL2 overexpression or knockdown. EWestern blotting for pYAP-S127 and YAP
proteins from HONE1 and HK-1 cells with ARNTL2 overexpression or knockdown. F Western blotting for pYAP-S127 and YAP proteins from
ARNTL2-depletion HONE1 and HK-1 cells co-transfected with YAP-WT or YAP-5SA plasmid. Data are presented as means ± SD. ***P < 0.001.
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Fig. 5 AMOTL2 facilitates LATS-dependent YAP phosphorylation via the recruitment and stabilization of LATS1/2 kinases. A Western
blotting for LATS1/2 kinases in HONE1 and HK-1 cells with ARNTL2 overexpression or knockdown. B Western blotting for LATS1/2 kinases in
HONE1 and HK-1 cells with AMOTL2 overexpression or knockdown. C Western blotting for LATS1/2 kinases in HONE1 and HK-1 cells
transfected with AMOTL2-Flag and the empty vector plasmids after cycloheximide (CHX) treatment. D Western blotting for LATS1/2, pYAP-
S127, and YAP proteins from HONE1 and HK-1 cells expressing AMOTL2 or vector and co-transfected with siLATS1/2. E Co-
immunoprecipitation with anti-Flag antibody in HONE1 and HK-1 cells transfected with AMOTL2-Flag and the empty vector plasmids.
F Immunofluorescence assays for colocalization between AMOTL2 and LATS1 or LATS2 in HONE1 and HK-1 cells. Red, LATS1 or LATS2; Green,
AMOTL2; Blue, DAPI. Scale bar, 5. Data are presented as means ± SD. **P < 0.01, ***P < 0.001.
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of nuclear YAP (Fig. 6A, B), which revealed that AMOTL2 is
required for the activation of LATS-YAP pathway by ARNTL2.
Moreover, downregulation of AMOTL2 effectively rescued the
inhibitory effect on NPC cell migration and invasion abilities

mediated by ARNTL2 depletion (Fig. 6C, D). Based on these data,
we propose that AMOTL2 is necessary for ARNTL2-driven YAP
transporting to nucleus in LATS-dependent YAP phosphorylation
manner, thus promoting NPC cell migration and invasion abilities.

Fig. 6 AMOTL2 is required for ARNTL2 promoting NPC cell migration and invasion abilities. A RT-qPCR for AMOTL2 and western blotting
for AMOTL2, LATS1/2, pYAP-S127, and YAP proteins from HONE1 and HK-1 cells with concurrent knockdown of ARNTL2 and AMOTL2.
B Representative anti-YAP immunofluorescence images of HONE1 and HK-1 cells with concurrent knockdown of ARNTL2 and AMOTL2 (upper
panel). The nuclear YAP intensities of 60 cells were calculated using Image J software (lower panel). Green, YAP; Blue, DAPI. Scale bar, 5 μm.
CWound healing migration assay in HONE1 and HK-1 cells with concurrent knockdown of ARNTL2 and AMOTL2 (×100). D Transwell migration
and invasion assays without or with Matrigel in HONE1 and HK-1 cells with concurrent knockdown of ARNTL2 and AMOTL2 (×100). Data are
shown as means ± SD. *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 7 ARNTL2 knockdown disturbs NPC invasiveness and metastasis in vivo. Inguinal lymph node and lung metastasis models were
constructed by injecting the stably ARNTL2-interfered HONE1 cells or control cells into the footpad or tail vein of nude mice (n= 6 per group).
A Inguinal lymph nodes (left) and their volumes (right). volume = (length × width2)/2. B Representative images of H&E staining showed that
the primary footpad tumor invaded in the skin and muscle. Scale bar, 100 μm. C Representative IHC images of pan-cytokeratin-positive
inguinal lymph node (left) and the number of metastatic lymph nodes in the shARNTL2 and control groups. D Representative images of
metastatic lung tumors and the number of metastatic nodules on the lung surface between the shARNTL2 and control groups.
E Representative images of H&E staining for lung tumors and the number of microscopic metastatic nodules in the shARNTL2 and control
groups. F Representative IHC images and IHC score for ARNTL2, AMOTL2, LATS1/2, pYAP-S127, and YAP expression in the lung metastases of
the shARNTL2 and control groups. The intensities of staining were scored as 0 (weak), 1 (moderate), and 2 (strong). Scale bar, 100 μm. G A
schematic model for the regulation of YAP by ARNTL2. Data are shown as means ± SD. *P < 0.05; **P < 0.01; ***P < 0.001; ns not significant .
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ARNTL2 knockdown disturbs NPC invasiveness and metastasis
in vivo
To further confirm the functional importance of ARNTL2 in NPC
metastasis in vivo, we constructed xenograft tumor metastasis
models by transplanting stable ARNTL2-silenced HONE1 cells or
corresponding control. Notably, the inguinal lymph node metas-
tasis model revealed that the sizes and volumes of inguinal lymph
nodes from nude mice in the shARNTL2 group were significantly
smaller than those in the control group (Fig. 7A). Moreover, H&E
staining of the footpad primary tumor showed that ARNTL2
knockdown caused a less aggressive phenotype toward the skin
and muscle of the primary tumor (Fig. 7B). IHC staining of inguinal
lymph nodes presented that the ratio of pan-CK-positive lymph
nodes in the shARNTL2 group was markedly lower (Fig. 7C).
Furthermore, to investigate the impact of ARNTL2 on distant
metastasis of NPC, we established a lung metastasis model and
observed that the metastatic nodules on the lung surfaces were
significantly fewer in the shARNTL2 group than in the control
group (Fig. 7D), and H&E staining also presented consistent result
(Fig. 7E). IHC staining showed that the expression of AMOTL2,
LATS1/2, and pYAP-S127 was markedly increased in the shARNTL2
group, while the expression of total YAP was not significantly
changed in the two groups (Fig. 7F). Furthermore, despite the lack
of evident effect on cell proliferation observed in vitro, we
proceeded to establish xenograft tumor growth models, taking
into consideration the complicated in vivo physiological environ-
ment. Intriguingly, the shARNTL2 group exhibited a noteworthy
inhibition in tumor growth compared to the control group
(Supplementary Fig. S3). These findings indicate that ARNTL2
promotes NPC lymphatic and pulmonary metastasis, along with
tumor growth, by the inhibition of AMOTL2 and LATS-dependent
YAP phosphorylation in vivo.

DISCUSSION
This present study highlights the significant role of the core
circadian gene ARNTL2 in NPC invasiveness and metastasis both in
vitro and in vivo. Here, we determined that the expression of
ARNTL2, differing from ARNTL [15], was upregulated in both NPC
tissues and cells. AMOTL2, a member of AMOT family, was
identified as a new downstream of ARNTL2. ARNTL2 transcrip-
tionally inhibited the expression of AMOTL2 to decrease the
recruitment and stabilization of AMOTL2 to LATS1/2 kinases,
ultimately leading to YAP nuclear translocation and facilitating
NPC cell metastasis.
Recent studies have demonstrated that abnormal expression of

circadian genes is known to engage in tumor initiation and
progression through disrupting rhythms of cellular processes, such
as nutrient metabolism, autophagy, DNA damage repair, redox
regulation, protein folding, cellular secretion, and so on [27], thereby
creating a conducive cellular microenvironment for tumorigenesis.
Moreover, extensive in vitro and in vivo studies demonstrate that
dysregulation of multiple core circadian genes is implicated in tumor
development and treatment [14, 28–31]. Particularly, among
circadian genes, ARNTL2, a core component of the circadian clock,
has been demonstrated as a potent oncogene that facilitates various
tumor invasiveness and metastasis via diverse molecular mechan-
isms. For instance, ARNTL2 drives lung adenocarcinoma metastatic
self-sufficiency by orchestrating the expression of a complex pro-
metastatic secretome [31]. In colorectal cancer, ARNTL2 is identified
as a potential biomarker for tumor invasiveness and aggressiveness
and ARNTL2 knockdown suppresses cell migration, invasion, and
proliferation through inhibiting SMOC2-EMT expression and PI3K/
AKT signaling pathway [32, 33]. Similarly, ARNTL2 also promotes
pancreatic ductal adenocarcinoma progression through TGF/BETA
pathway [34]. These studies collectively demonstrate that ARNTL2 is
a pro-metastatic regulator of cancer. Consistent with the above
findings, our study also revealed that ARNTL2 was highly expressed

in NPC tissues and cells and substantially promoted NPC cell
migration and invasion abilities in vitro and in vivo. Moreover, we
found that ARNTL2 did not evidently affect NPC cell proliferation
in vitro, but promoted tumor growth in vivo, which suggests that
in vitro experiment may not completely mimic the complicated
physiological conditions in vivo.
AMOTL2 is known to interrupt angiogenesis by suppressing

endothelial cell proliferation and migration and disrupting cell
polarity [17, 35, 36]. Studies demonstrate that restrained AMOTL2
expression induces the changes in cell morphology and epithelial-
mesenchymal transition (EMT) in breast cells [26, 37]. Moreover,
low expression of AMOTL2 facilitates glioblastoma proliferation
and metastasis through regulating β‑catenin nuclear localization
[36]. Nonetheless, some studies provide contradictory results. In
colon cancer, AMOTL2 functions as an oncogene that promotes
cell growth and invasion by disrupting the apical-basal polarity
[38]. A potential explanation is that AMOTL2 includes two isoforms
of p60 and p100, and the short isoform of AMOTL2 p60 for an
oncogenic role is in contrast with the long isoform of AMOTL2
p100 for tumor suppression [38]. Additionally, AMOTL2 has been
widely reported as a suppressor of the Hippo/YAP signaling
pathway [39–41]. Depletion of AMOTL2 increases mouse liver size
and activation of YAP [41]. AMOTL2 overexpression inhibits YAP-
induced transcription, growth, and metastasis in multiple cancers
[42]. In this study, we observed that the expression of AMOTL2
was significantly higher in NPC tissues with distant metastasis,
suggesting the tight correlation with NPC metastasis. Moreover,
we also found AMOTL2 could recruit and stabilize LATS1/2 kinases
to promote YAP phosphorylation, which was consistent with
previous studies [24, 25].
The present study has several limitations. First, only two NPC

cell lines were used in the in vitro assays. Nevertheless, the
pathogenesis of NPC is closely correlated with Epstein-Barr virus
(EBV) infection [1]. EBV-negative NPC patients have poorer
prognoses in clinical practice [43]. Thus, an EBV-negative NPC cell
line (HONE1) and an EBV-positive NPC cell line (HK-1) have
relatively good representativity. Moreover, the exact mechanism
how AMOTL2 stabilizes LATS1/2 kinase was not be detailly
explored in this study. Despite these limitations, this study is the
first to elucidate the function and mechanism of ARNTL2 in NPC
development.
In summary, Fig. 7G presents our schematic model for the

regulation of YAP by ARNTL2. In NPC cells, the upregulation of
ARNTL2 suppressed the transcription expression of AMOTL2,
decreasing the recruitment and stabilization of AMOTL2 to LATS1/2
kinases, ultimately promoting YAP translocation to the nucleus and
driving NPC invasiveness and metastasis. These findings further shed
light on the molecular mechanism underlying NPC metastasis and
give evidence for targeting ARNTL2 for future cancer therapy.

MATERIALS AND METHODS
Dataset acquisition and clinical specimens
Four quantification matrices of NPC and NPE tissues were downloaded
from the Gene Expression Omnibus (GEO) database (accession numbers:
GSE12452, GSE53819, GSE13597, and GSE61218). Additionally, 8 freshly
frozen human NPE and NPC tissues and 24 paraffin-embedded NPC
specimens with or without distant metastasis were obtained from Sun Yat-
sen University Cancer Center (SYSUCC; China). This study was performed in
accordance with the Declaration of Helsinki and approved by the
Institutional Ethical Review Board of SYSUCC (approval number: B2024-
227), and the written informed consents were obtained from patients.

Cell lines and culture
Human NPE cell line (NP69) and NPC cell lines (CNE1, CNE2, HNE1, HK-1,
HONE1, SUNE1) were kindly gifted by Professor Musheng Zeng from SYSUCC.
HEK293T cell line was purchased from the American Type Culture Collection
(ATCC, USA). All cell lines were routinely tested to ensure the absence of
mycoplasma contamination using MycoBlue Mycoplasma Detector (#D101-02,
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Vazyme, Nanjing, China). NP69 cell was cultured in a keratinocyte serum-free
medium (#17005042, ThermoFisher, Waltham, MA, USA) with bovine pituitary
extract. NPC cells and HEK293 cells were maintained in RPMI-1640 or DMEM
medium (Gibco, Billings, MT, USA) supplemented with 10% fetal bovine serum
(FBS; ExCell Bio, Shanghai, China). All cells were kept in a humidified incubator
set at 37 °C with 5% CO2.

Reverse transcription (RT) and quantitative real-time
PCR (qPCR)
According to the manufacturer’s instructions, total RNA from cells was
isolated using an RNA Quick Purification kit (#RN001, EScience, Shanghai,
China) and then reverse transcribed to cDNA by GoScript Reverse
Transcription System (#A5001, Promega, Madison, WI, USA). Subsequently,
qPCR reactions were performed using ChamQ SYBR qPCR Master Mix
(#Q311-02, Vazyme). GAPDH was used as the endogenous control. Relative
expression of genes was calculated as described previously [44, 45]. The
specific primer sequences for qPCR are listed in Supplementary Table S1.

Plasmids, small interfering RNA (siRNA), and transfection
According to the standard molecular methods, we constructed pSin-EF2-
ARNTL2-Flag-puro, pcDNA3.1-AMOTL2-3×Flag, pCMV-YAP-3×Myc-Neo, and
pCMV-YAP 5SA-3×Myc-Neo plasmids. The siRNAs were purchased from
RiboBio (RiboBio, Guangzhou, China), and their sequences were presented
in Supplementary Table S2. The sequence of siARNTL2#1 was cloned into
pLKO.1 plasmid to obtain shARNTL2. Moreover, ARNTL2-binding AMOTL2
promotor region (500 bp) predicted by ChIP-seq analysis and the indicated
mutant were cloned into the pGL3-basic vectors.
NPC cells were transiently transfected with plasmids using NeofectTM

DNA transfection reagent (#TF20121201, Neofect, Beijing, China) and
transfected with siRNA using Lipofectamine 3000 reagent (#L3000015,
Invitrogen, Carlsbad, CA, USA).

RNA sequencing (RNA-seq) and bioinformatic analysis
Total RNA from HONE1 cells transfected with siARNTL2#1 or siCon was
extracted using a TRIzol reagent kit (#15596018, Invitrogen). RNA
sequencing libraries were constructed using the NEBNext® UltraTM RNA
Library Prep Kit for Illumina® (#E7530L, NEB, Ipswich, Massachusetts, USA).
The sequencing was carried out on an Illumina Novaseq 6000 platform and
150 bp paired-end reads were generated. Reads were mapped onto a
human reference genome (assembly GRCh38) by using HISAT2 (v 2.0.4).
Fragments per kilobase of exon million mapped reads (FPKM) were
calculated to evaluate gene abundance. The differentially expressed genes
with |fold change| > 1.5 and P < 0.05 were considered significant. Heatmap
was generated using R software (v3.4.3). The significant pathways of the
differential genes were investigated using Kyoto Encyclopedia of Genes
and Genomes pathway analysis (KEGG, http://www.genome.ad.jp/kegg).
The potential functions of ARNTL2 were identified using Gene set
enrichment analysis (GSEA) with gene sets downloaded from the
molecular signature database (MSigDB, v.7.2, http://
www.broadinstitute.org/gsea/msigdb).

Nuclear and cytoplasmic protein fractionation
The nuclear and cytoplasmic proteins were separated using NE-PER
nuclear and cytoplasmic extraction kit following the manufacturer’s
instruction (#78833, ThermoFisher). The extracted proteins were subse-
quently used for western blotting analysis. Lamin B1 and GAPDH were
used as the nuclear and cytoplasmic controls, respectively.

Western blotting
Total protein from cells was extracted using RIPA buffer (#P0013B,
Beyotime, Shanghai, China) containing EDTA-free protease inhibitor
(#4693159001, Roche, Basel, Switzerland) and phosphatase inhibitor
(#4906837001, Roche). Equal amounts of total proteins were subjected
to electrophoresis with a 10% PAGE Gel Fast Preparation Kit (#PG112,
EpiZyme, Shanghai, China) and then transblotted to 0.45 μm polyvinyli-
dene fluoride (PVDF) membranes (#IPVH00010, Merck Millipore, Billerica,
MA, USA). The membranes were blocked for 30min with 5% non-fat
powdered milk (#A600669-0250, Sangon Biotech, Shanghai, China), and
then incubated with primary antibodies overnight at 4 °C and secondary
antibodies for 1 h at room temperature. The primary antibodies used were
presented as follows: anti-ARNTL2 (#sc365469, 1:50, Santa Cruz, USA), anti-
AMOTL2 (#23351-1-AP, 1:1000, ProteinTech, Wuhan, China), anti-YAP

(#13584-1-AP, 1:2000, ProteinTech), anti-pYAP-S127 (YAP phosphorylation
site serine 127; #13008, 1:1000, Cell Signaling Technology, CST, Beverly,
MA, USA), anti-LATS1 (#C66B5, 1:1000, CST), anti-LATS2 (#D83D6, 1:1000,
CST), anti-Lamin B1 (#ab133741, 1:1000, Abcam, Cambridge, UK), anti-
GAPDH (#ab8245, 1:5000, Abcam), and anti-Flag M2 (#F1804, 1:1000,
Sigma, Carlsbad, CA, USA) antibodies.

Lentivirus packaging and stable cell line construction
As previously described [46], HEK293T cells at a 60–80% confluence were
co-transfected with PLKO.1-shARNTL2 or PLKO.1-shCon plasmid and
lentiviral packaging plasmids (pMD.2G and psPAX2) using polyethylenei-
mine (#40816ES03, Yeasen, Shanghai, China). The virus-containing cell
supernatant was harvested to infect HONE1 cells after 48 h. Subsequently,
cells were screened with 2 μg/ml puromycin for at least 4–5 passages. RT-
qPCR and western blotting were performed to examine the knockdown
efficiency of ARNTL2 in the stable cell lines.

Co-immunoprecipitation
NPC cells with Flag-AMOTL2 overexpression were harvested and lysed
using IP lysis buffer (#87788, ThermoFisher) containing protease inhibitor
(Roche). After centrifugation, the supernatants were incubated with anti-
Flag antibody-conjugated magnetic beads (#M8823, Sigma-Aldrich) at 4 °C
overnight. The beads were then washed and subjected to western blotting.

Immunohistochemistry (IHC)
IHC was carried out on paraffin-embedded sections as previously
described [47]. The primary antibodies were as follows: anti-ARNTL2
(1:50), anti-AMOTL2 (1:200), anti-YAP (1:100), anti-pYAP-S127 (1:200), anti-
LATS1 (1:200), anti-LATS2 (1:200), and pan-cytokeratin (pan-CK; #ab234297,
1:1000; Abcam). The staining extents of all sections were scored as follows:
0 (weak), 1 (moderate), and 2 (strong).

Immunofluorescence
NPC cells (5 × 104 cells/ well) were seeded on coverslips in 24-well
plates. The adherent cells were fixed with 4% paraformaldehyde for
30 min, permeabilized with 0.5% Triton X-100 for 20 min, and blocked
with 1% bovine serum albumin (BSA) for at least 30 min. Subsequently,
the cells were incubated with primary antibody against YAP (1:50),
AMOTL2 (1:500), LATS1 (#17049-1-AP, 1:50, ProteinTech), and LATS2
(#20276-1-AP, 1:50, ProteinTech) overnight at 4 °C and Alexa FluorTM
488 goat anti-rabbit or 647 goat anti-mouse IgG secondary antibodies
(1:1000, Invitrogen) for 1 h at room temperature. Cell nuclei were
counterstained with Hoechst (#H3570, 1:500, Invitrogen) for 3 min.
Images were acquired using a confocal laser-scanning microscope
(Zeiss, LSM-980, Germany).

Wound healing assay
HONE1 or HK-1 cells were transfected for 24 h and replaced with an FBS-
free medium until near confluence in 6-well plates. Subsequently, cells
were scratched using a 200 μl pipette tip. Images (100×) were captured at
0 h and 24 h (HONE1) or 12 h (HK-1) using an inverted microscope (Leica,
Germany).

Transwell migration and invasion assays
HONE1 (5 × 104 or 1 × 105) or HK-1 (1 × 105 or 2 × 105) cells were
suspended in 200 μl FBS-free medium and added into the upper Transwell
chambers (8-μm pores, Corning, NY, USA) without matrigel for migration
assay or with matrigel (1:9; #356237, Corning) for invasion assay, while
500 μl medium containing 10% FBS was plated into the lower chambers.
After 12 h (HONE1) or 40 h (HK-1) incubation, cells migrating to the lower
surface of the chamber were fixed with methyl alcohol for 30min and then
stained with crystal violet for 2 h. The chambers were captured at 100 ×
magnification using an inverted microscope (Leica) and counted using
Image J (http://imagej.nih.gov/ij).

Cell counting kit8 (CCK8) and colony formation assays
Cell proliferation ability was measured using CCK8 and colony formation
assays. Briefly, for the CCK8 assay, 1 × 103 cells were seeded into 96-well
plates. Each day on 1–5 days of incubation, 10 μl of CCK8 (#CK04, Dojindo,
Kumamoto, Japan) was added into each well, and the absorbance values
were measured at 450 nm. For colony formation assay, 1 × 103 cells were
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cultured in 6-well plates for 1-2 weeks. The colonies were fixed by
methanol and stained by hematoxylin.

Chromatin immunoprecipitation (ChIP) assay
ChIP assay was performed using a pierceTM Magnetic ChIP Kit (#26157,
ThermoFisher) according to its protocol. Briefly, cells were crosslinked with
1% formaldehyde for 10min and quenched with 125mM glycine at room
temperature. Then, the cell nuclei were isolated, lysed, and sonicated to
yield 200–1000 bp chromatin fragments. The chromatin fragments were
immunoprecipitated with 3 μl anti-HA antibody (#ab9110, Abcam) or anti-
rabbit IgG antibody (#26157, ThermoFisher) overnight at 4 °C and then
immobilized on protein A/G magnetic beads for 2 h at 4 °C. After washing,
the enriched DNA was eluted, de-crosslinked, purified, and then subjected
to ChIP-seq or qPCR analyses. The specific primers for ChIP-qPCR are
displayed in Supplementary Table S1.

ChIP-seq and data analysis
The obtained ChIP-DNA and input DNA fragments were first end-repaired
and A-tailed using the NEBNext End Repair/dA-Tailing Module (#E7442,
NEB) and then ligated adapter using the NEBNext Ultra Ligation Module
(#E7445, NEB). The DNA libraries were amplified for 15 cycles and then
subjected to high-throughput sequencing using Illumina NextSeq 500.
Subsequently, Data analysis was constructed. Briefly, the sequencing
adapters, short reads (length < 35 bp), and low-quality reads were
removed to obtain high-quality clean reads, which were confirmed using
FastQC. Then, the reads were aligned to a human genome (assembly
GRCh38) using Bowtie2 software (v2.2.6). Peak detection was carried out
using MACS (v2.1.1) and 0.01 was set as the cut-off value. The peak sites to
gene features were annotated using the ChIP seeker R package.

Dual-luciferase reporter assay
NPC cells were co-transfected with ARNTL2 overexpressing plasmid or
siARNTL2 (#1 and #2) or corresponding negative control, along with the
pGL3-AMOTL2 wild type (WT) or pGL3-AMOTL2 mutant plasmid and a
phRL-TK-Renella luciferase control vector. After 24 h, the luciferase
activities of cells were detected using a Dual-Luciferase Reporter Assay
System (#E1910, Promega). The relative activity of cells was presented as
firefly/renilla luciferase activity.

In vivo xenograft tumor models
BALB/c nude mice (female, 14–18 g, 4–5 weeks old) were purchased from
Zhejiang Vital River Lab Animal Technology Co., Ltd (Zhejiang, China) for all
xenograft assays. 2 × 105 HONE1 cells stably expressing shARNTL2 were
injected into the mice footpad for constructing the inguinal lymph node
metastasis model (n= 6 per group), and 8 × 105 cells were implanted into
the tail vein of mice for lung metastatic model (n= 6 per group). Mice were
observed every three days. After 4 weeks, these mice in the inguinal lymph
node metastasis model were euthanized. The primary footpad tumors were
dissected for Hematoxylin-eosin (H&E) staining, and the inguinal lymph
nodes were collected for IHC staining targeting pan-CK. The lymph nodes
with positive-pan-CK staining were considered metastatic. Moreover, lymph
node volumes were calculated based on the formula of (length × width2)/2.
After 5 weeks, these mice in the lung metastasis model were sacrificed.
Lung metastases were counted and stained using H&E and IHC staining.
For the establishment of xenograft tumor growth model, 1 × 106

HONE1 cells stably expressing shARNTL2 and control were subcutaneously
injected into the armpit of mice (n= 6 per group). The tumor sizes of these
mice were measured every three days, and tumor volume was calculated
based on the formula of (length × width2)/2. After 18 days, these mice
were euthanized and tumors were dissected and weighted.
All animal work complied with the National Institutes of Health Guide for

the Care and Use of Laboratory Animals and has been approved by the
Institutional Animal Care and Use Ethics Committee of SYSUCC (approval
number: L0255202107006).

Statistical analysis
All quantitative data were presented as the means ± standard deviation.
The difference comparisons of the groups were performed using Student’s
t-test or one-way ANOVA or two-way repeated-measures ANOVA with
Bonferronis test. All statistical analyses were performed using SPSS
software (version 26, IBM Corp), a two-tailed P value < 0.05 was considered
significant.

DATA AVAILABILITY
Raw data relevant to this study have been uploaded to the Research Data Deposit
public platform (www.researchdata.org.cn). The RNA-seq and ChIP-seq data used in
this study have been deposited in the Gene Expression Omnibus (GEO) database
under the accession number GSE234440 and GSE234441.
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