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Chromosome 20p11.2 deletions cause congenital
hyperinsulinism via the loss of FOXAZ2 or its regulatory elements
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Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin
secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does
not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI.
Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and
replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling
from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning
chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five
individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple
non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three
children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation
of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic Hl.
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INTRODUCTION

Deletions that affect large regions of genomic DNA have an
important role in both rare and common diseases [1, 2]
Monogenic disease can result when a deletion removes all, or
part of the coding sequence of a single disease-causing gene. For
example, recessively acting whole and/or partial gene deletions of
ABCC8 or HADH cause isolated persistent congenital hyperinsulin-
ism (HI) [3-5], a genetically heterogenous condition characterised
by severe hypoglycaemia due to inappropriate insulin secretion
[6].

Some deletions that affect multiple genes can cause syndromic
disease, with the extent of the deletion impacting on the clinical
presentation [7]. The phenotype resulting from these large
deletions can be readily explained when the deletion disrupts
known monogenic disease genes, for example a deletion on
chromosome 11p15.1 causes HI, enteropathy and deafness with
loss of the ABCC8 gene responsible for the HI and loss of the
adjacent gene, USHI1C, causing the enteropathy and deafness [8].
In other large deletion syndromes where Hl is a rare feature [9], for
example partial or full monosomy of the X chromosome causing
Turner syndrome, and the 9p deletion syndrome, the precise

genetic mechanism leading to the HI has not been fully
determined [10].

Large deletions can cause disease through haploinsufficiency,
by unmasking a recessive pathogenic variant on the opposite
allele, by affecting a differentially methylated imprinted control
region (e.g. Beckwith-Wiedemann syndrome [11]) or by disrupting
a non-coding regulatory element that is critical for controlling
gene expression. The latter is exemplified in a recent study where
genome sequencing identified large (~4.5kb) overlapping de
novo deletions within an intronic region of the HKT gene in two
children with HI. These deletions led to the discovery of a ~ 42 bp
region that is critical for controlling HK1 expression within the
insulin-producing pancreatic beta-cell [12].

For HI, large cohort studies have shown that routine genetic
testing identifies a pathogenic variant in a known disease gene in
45-79% of cases [13, 14]. These pick-up rates are set to increase
over time as more genetic causes of Hl, such as HK1, continue to
be discovered [12]. In this study we aimed to search for new
genetic causes of HI in genetically unsolved individuals. We
focussed on large deletions (>1 Mb) given their known contribu-
tion to the aetiology of this condition. We identified overlapping
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heterozygous deletions on chromosome 20p11.2 in five indivi-
duals (range 3-8 Mb); in two this included the HI gene, FOXA2. In
the remaining three, the deletion encompassed multiple non-
coding regulatory elements that are in conformational contact
with FOXA2 suggesting that they may cause disease by disrupting
the regulation of FOXA2 expression within the pancreatic beta-cell.

MATERIALS AND METHODS

We studied an international cohort of 1063 individuals referred for routine
genetic testing for HI. Clinical information was provided at referral using a
standardised request form. Follow-up data by case note review were
requested for individuals when a large deletion was identified. Informed
consent was obtained from each of the parents/carers. This study was
approved by the North Wales Research Ethics Committee (517/WA/0327).

Routine screening of genes known to cause Hl

DNA was extracted from peripheral blood leucocytes using standard
procedures. Disease-causing variants in at least 12 known HI genes (ABCC8,
CACNA1D, GCK, GLUD1, HADH, HNF1A, HNF4A, INSR, KCNJ11, PMM2, SLC16A1
and TRMT10A) were excluded by targeted next generation sequencing in
all 1,063 individuals as described previously [15]. This analysis generated
an average of three million reads per sample. In all individuals routine
screening by read depth analysis using ExomeDepth [16] excluded partial/
whole gene deletions of the targeted genes. Deletions on chromosome X
and 9p24, which are reported to cause Hl [9], were also excluded using off-
target reads [17].

Searching for large deletions using whole genome sequencing
We initially searched for large deletions (>1 Mb) in 180 individuals using
whole genome sequencing. Reads were aligned to the GRCh37/hg19
human reference genome with BWA mem (v0.7.15) followed by local re-
alignment using GATK IndelRealigner (v3.7.0). Deletions were called by
read depth analysis using SavvyCNV [17] (default parameters, bin size
2kbp, samples segregated by sequencing machine and sex). We searched
for overlapping deletions present in at least three individuals with HI.
Deletions which appeared in 882 in-house controls were assumed to
reflect common variation or an artefact of the screening method and
were excluded. Sequencing data was used to fine map the deletion
breakpoints with the boundaries determined by manual inspection in the
Integrative Genomics Viewer (IGV) based on the boundary of the drop in
coverage.

Replication screening studies using off-target next generation
sequencing data

When a deletion was identified in three or more individuals, we used
SavvyCNV [17] (transition probability 0.001, bin size 200 kbp, samples
segregated by targeting panel and sex) to screen for overlapping
deletions in off-target next generation sequencing data from 883
individuals with genetically unsolved HI. Due to the limitations of off-
target copy number variant (CNV) calling the CNV boundaries are only
accurate to +200kb. To ensure that the novel deletions identified in our
cohort were rare in the population we screened 6574 in-house controls for
deletions in the same region using the same method. We then screened
for deletions in this region in two population control cohorts: UK Biobank
(n=488,377) [18] and the gnomAD structural variant (SV) database v2.1
(n=150,119) [19].

Confirmation of deletions

Deletions identified from off-target CNV calling were confirmed by an
independent cytogenetics analysis (patient 4) or by digital droplet PCR
(ddPCR) (patient 5). ddPCR (Bio-Rad QX200 system) involved an EvaGreen
dye-binding assay to measure dosage at 11 target sites across a 6.6 Mb
region (Chr20:17930867-24565591) which extended across the FOXA2
gene [20]. Targets and primer sequences are provided in Supplementary
Table 1. This analysis also allowed for refinement of the 5’ breakpoint in
patient 5.

When a deletion was identified, parental samples were tested by ddPCR
as described above (n=3 families) or by off-target CNV calling from
targeted panel data (n=2 families) [17]. Family relationships were
confirmed by microsatellite analysis (PowerPlex kit, Promega,
Southampton, UK).

SPRINGER NATURE

Interrogation of genome sequencing data and epigenomic
data to decipher disease mechanism

Genome sequencing data was available for three probands. This was
analysed to search for a recessive variant unmasked by the deletion. To do
this we called all non-synonymous variants using an approach based on
the GATK best practice guidelines. Briefly, variants were called using GATK
haplotype caller and annotated using Alamut Batch (Interactive Biosoft-
ware v1.11, Rouen, France). All variants common in gnomAD 2.1.1
(AC > 500) were excluded.

In a further attempt to pinpoint the genomic region causative of the HI
we next searched for de novo variants within the minimal deleted region
in 103 genetically unsolved individuals with Hl where genome sequencing
data was available on the proband and their unaffected parents. Variants
were called using the pipeline outlined above then confirmed as de novo
by DeNovoCNN [21]. This analysis included point mutations and deletions
>2 kb.

Analysis of gene expression. To assess the expression of genes disrupted
by the novel deletion we studied publicly available human islet single-cell
RNA-seq (scRNA-seq) datasets collected over a time course of pancreatic
differentiation projected onto a differentiation pseudotime obtained from
[22]. We identified consistent temporal trends using Gaussian Process
regression, following the approach that we have previously applied [12].
For scRNA-seq data in human islets [23], accession GSE101207, we used
gene counts per cell for the size healthy donors and normalized by depth
per cell. All accessions used in this analysis are provided in Supplementary
Table 2.

Epigenomic analysis. We next interrogated assay for transposase-
accessible chromatin sequencing (ATAC-seq) datasets to identify whether
the loss of minimal deleted region has the potential to impact the
regulation of FOXA2 expression. Quantification of genomic single-nucleus
ATAC-seq (snATAC-seq), bulk ATAC-seq and chromatin immunoprecipita-
tion followed by sequencing (ChIP-seq) data was performed as in Wakeling
et al. [12]. For human islet snATAC-seq data from Chiou et al. [24]
(GSE160472), total snATAC-seq beta-cell peaks were obtained by generat-
ing a bam file of all reads assigned to beta_1 cluster (obtained https://
github.com/kjgaulton/pipelines/tree/master/islet_snATAC_pipeline), and
then calling peaks with MACS2 v2.2.7.1.

To determine the number of distinct active regulatory regions within the
FOXA2 control region, we calculated depth normalised transcription factor
occupancy/chromatin accessibility in reads per million of single-end
fragments extended 120 bp and the paired-end fragments of all islet
transcription factor binding data and snATAC data for alpha_1 and beta_1
clusters. We then took the union of all intervals for which at least one
dataset exceeded 1.5 RPM. Human islet Hi-C data were obtained from
experiment accession TSTSR043623 and file accession DFF064KIG (.hic file)
and TSTFF938730 (bedpe file) [25], were processed and visualised as in
[12]. EndoC-BH1 RNA Pol Il ChlA-PET enhancer promoter loops [26] were
obtained from GSM3333915.

RESULTS

Overlapping deletions on 20p11.2 in five individuals

Using whole genome sequencing we identified large overlapping
deletions on chromosome 20p11.2 in three unrelated probands
with HI. No further large heterozygous or homozygous deletions
were detected in three or more individuals.

Using off-target sequencing data generated from routine
testing we next screened for deletions which overlapped this
region in 883 individuals with genetically unsolved HI. This
analysis identified overlapping deletions in two additional
probands.

Testing of parental samples confirmed that the deletions had
arisen de novo in four individuals whilst one child (patient 3) had
inherited the variant from their unaffected mother, who was also
heterozygous. Biochemistry studies had not been performed on
the mother to investigate hyperinsulinism and pituitary function
and samples from the maternal grandparents were not available
for co-segregation studies.

All five deletions encompassed a non-imprinted region on
chromosome 20p11.2. Patient 3 had a complex variant with a
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A diagram showing the 20p11.2 deletions in the five probands identified in our study and two published cases [36, 39] with

hyperinsulinism who had deletions that overlapped those in our probands. The chromosomal location of the deletions is at the top. The
deletions are depicted by bars—deletions identified in our patients in black, published deletions unfilled. A grey bar represents the inversion
in the middle of two deletions that was identified in patient 3. The box shows the minimal deleted region shared between our five probands.
The approximate positions of the genes and the putative FOXA2 control region (Chr20:22,359,758-22,516,969) are marked on the diagram.

deletion of 2.1 Mb (Chr20:9.19507014-21588883del) followed by
a 09Mb inversion (Chr20:9.21,588,883-22,510,428inv) and a
further 15Kb deletion (Chr20:9.22,510,428-22,525,896del). The
deletions in the five patients ranged from 3 to 8 Mb and had a
minimal shared overlap of 2.4Mbp. This was fine mapped to
2,367,250 bp using the genome sequencing data from three
individuals (Chr20:20,158,646-22,525,896) (Fig. 1). No large dele-
tions spanning the minimal deleted region were identified in
>7000 internal controls or >600,000 population controls recruited
to the UK Biobank and gnomAD SV.

The ~2.4 Mb shared minimal deleted region contains the entire
coding region of seven genes (INSM1, RALGAPA2, KIZ, XRN2, NKX2-
4, NKX2-2 and PAX1). The 5’ boundary dissected CFAP61, removing
14 of its 27 exons and the 3’ boundary was located 37 kb
downstream of the coding region of FOXA2 (Fig. 1). In two
individuals the deletion extended over the entire FOXA2 coding
sequence.

To test whether the deletions were unmasking a recessive
variant we analysed the genome sequencing data that was
available from three individuals (patients 1-3). No rare non-
synonymous variants in the coding regions of the genes within
the minimal deleted region (CFAP61, INSM1, RALGAPA2, KIZ, XRN2,
NKX2-4, NKX2-2 and PAXT) or rare non-coding variants shared
between the three patients were identified. We also searched for
de novo variants in genome sequencing data from a further 103
individuals with genetically unsolved HI to see if we could
pinpoint the disease-causing gene or regulatory region. No de
novo non-synonymous variants were detected and no non-coding
de novo variants within 10 kb of each other were found, making
them unlikely to be within the same regulatory region.

20p11.2 deletions cause HI and extra-pancreatic features
The five probands with a 20p11.2 deletion were diagnosed with HI
between the ages of 1 day and 52 weeks (Supplementary table 3).
All individuals were treated with diazoxide. Three individuals
continued drug treatment at a median age of 4 years (range 3-12
years), while HI remitted at 6 months in one child (Patient 5), and
one child showed poor response to treatment necessitating a
near-total pancreatectomy at the age of 3.3 years (Patient 1).
Pancreatic tissue had not been stored following surgery.
Extra-pancreatic features were observed in all five individuals.
Patient 1, whose deletion included the coding region of FOXA2
had dysmorphic features, mild motor delay, and hypoplastic
anterior pituitary gland with other midline defects. They had
recently been diagnosed with growth hormone (GH) deficiency at
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the age of 7 years. The second child (Patient 4), whose deletion
included the FOXA2 coding region, had ventricular septal defect
and horseshoe kidney, but no dysmorphic features or concerns
with pituitary function or development by the age of 4 years. The
three individuals (Patients 2, 3 and 5) whose deletion did not
extend over the coding region of FOXA2, had not been identified
with pituitary hormone deficiencies by the median age of 7 years
(range 3-12) but had subtle facial features and developmental
delay. Additional features were reported in two of these patients,
including mild ventricular hypertrophy in infancy (possibly due to
the HI) and epilepsy in Patient 2, and resolved patent ductus artery
and anal stenosis in Patient 5.

Epigenomic analysis of the minimal deleted region

To investigate the functional impact of the deletions, we assessed
the expression of FOXA2 and the eight genes within the minimal
deleted region whose coding sequence was partially or fully lost.
Human islet single-cell RNA-seq data [23] demonstrated that all
genes except for CFAP61, NKX2-4, and PAXT are expressed in islets
and pancreatic beta-cells. FOXA2, NKX2-2, XRN2, INSM1 were most
highly expressed (Supplementary Fig. 1).

Motivated by the knowledge that heterozygous loss-of-function
variants in FOXA2 cause HI [27-30] and that the deletion in two of
the individuals encompassed the entire FOXA2 gene, we next
assessed the gene regulatory potential of the minimal deleted
region. Human islet single-nuclei ATAC-seq [24] revealed 149
distinct regions of chromatin accessibility in insulin-secreting beta-
cells, including the promoters of the five beta-cell expressed
genes (INSM1, RALGAPA2, KIZ, XRN2 and NKX2-2) (Fig. 2). We next
determined whether any of these regulatory regions had the
potential to regulate genes outside the minimal deleted region by
examining chromatin conformation by human islet Hi-C data [25].
Amongst multiple three-dimensional contacts, we found
a ~350kb topologically associated domain spanning FOXA2 and
the minimal deleted region (Fig. 2, white arrow). This region has
previously been reported to contain islet super enhancers [31-33].

We found multiple lines of evidence to suggest that this region
acts as a FOXA2 control region that regulates expression across
developing and adult tissues. We identified a 220kb region
(Chr20:22,359,758-22,516,969) encompassing 77 distinct regula-
tory regions in islets (Supplementary Fig. 2). We found that these
regions were marked with active enhancer mark histone 3 lysine
27 acetylation (H3K27ac), and moreover, that the activity of
these regulatory regions varied across pancreatic cell differentia-
tion, between pancreas and liver where FOXA2 is also highly

SPRINGER NATURE
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Fig. 2 Regulatory landscape of the Chr20 minimal deleted region. Human islet Hi-C contact frequency heatmap [25] (top), and single-
nucleus ATAC-seq beta-cell chromatin accessibility [24] (bottom). White triangles and circles mark chromatin loops called in [25]. The white
arrow and black bar mark the topologically associated domain (TAD) spanning FOXA2 and minimal deleted region. The yellow arrow
highlights the chromatin loop between FOXA2 and NKX2-2. The grey region marks the minimal deleted region. FOXA2 marked in orange with

an arrow indicating direction of transcription.

expressed, and within islet cell types (Supplementary Fig. 2). For
the latter, the regulatory region most strongly bound by the beta-
cell restricted transcription factor PDX1 is accessible in beta-cells
and not alpha-cells, suggesting this region confers beta-cell
specific control of FOXA2.

Beyond the FOXA2 control region, human islet chromatin
conformation data reveals a CTCF-CTCF loop connecting the
promoters of NKX2-2 and FOXA2 identifying a co-regulatory
mechanism between these two genes that is lost in the minimal
deleted region (Fig. 2, yellow arrow). It should be noted that
FOXA2 and NKX2-2 occupy many of the same regulatory loci, with
FOXA2 sharing 45% of its human islet binding sites with NKX2-2
[31], and therefore a loss of NKX2-2 may impact FOXA2 binding at
loci where there is a dependency between these factors.

Together, our analysis of public epigenomic data indicates that
in addition to the loss of coding sequence of eight genes, the
minimal deleted region includes multiple regulatory elements
whose loss is predicted to disrupt FOXA2 expression.

DISCUSSION

We have identified large overlapping deletions on chromosome
20p11.2 in five individuals with HI. In four, the deletions had arisen
de novo providing strong evidence for pathogenicity, while in one
proband a complex deletion/inversion variant was identified
which had been inherited from their unaffected mother, in
keeping with variable penetrance. Variable penetrance has been
well reported in other dominantly-inherited forms of Hl including
ABCC8 [34] and HNF4A [35]. The absence of rare single-nucleotide
variants on the non-deleted allele in three individuals and the lack
of an imprinted region suggests that these deletions are causing
disease through haploinsufficiency.

Large proximal chromosome 20p11 deletions of varying size are
rare and have been associated with developmental and structural
abnormalities of varying severity [30, 36-40]. While many of these
features are non-specificc most individuals with 20p11 deletions
encompassing FOXA2, as well as those with HI due to pathogenic
missense variants in FOXA2, have presented with (pan)hypopituitar-
ism due to pituitary gland defect, midline defects affecting
abdominal or cardiovascular organs and the central nervous system,
developmental delay and dysmorphism [30, 36-40]. All five
individuals in this study had varying syndromic features which
overlap with previously described cases with proximal 20p deletions.

For the two individuals whose deletions included the coding
region of FOXA2, Patient 1 showed clear midline and pituitary
defects resulting in GH deficiency and Patient 4 had two structural
abnormalities which could be considered as midline defects.

SPRINGER NATURE

Follow-up is though needed for this patient as they are currently
only 4 years of age, which might be too young to have presented
with clear signs of pituitary hormone deficiencies.

All five probands in this study were referred for genetic testing
for HI, a condition not commonly associated with 20p11deletions.
A literature search identified only two cases with HI caused by
heterozygous 20p11 deletions, both had GH deficiency. One was a
5.8Mbp deletion on 20p11.22-p11.21 [39] that covers almost the
entirety of our minimal deleted region including part of the FOXA2
control region we identified. The other is a 2.48Mbp deletion on
chromosome 20p11.23-p11.21 [36], that overlaps with our minimal
deleted region but does not extend over CFAP61, INSM1 or
RALGAPA2 suggesting that the disruption of these genes is not
responsible for the Hl (see Fig. 1 for a visual representation).

Considering the overlapping deletion reported by Sugawara
et al. [36] we are left with five genes within the minimal deleted
region for HI: KIZ, XRN2, NKX2-4, NKX2-2 and PAX1. Convincing data
to support a role for each of these genes in the aetiology of Hl is
lacking. XRN2, NKX2-4, NKX2-2 and PAX1 are tolerant to truncating
variants based on their gnomAD pLlI score (threshold pLI >= 0.9)
(data unavailable for KiZ) [41] and scRNA-seq data shows that
NKX2-4, and PAX1 are not expressed in islets and insulin-producing
pancreatic beta-cells. Only NKX2-2 is known to have a role within
the pancreas where it encodes a transcription factor involved in
pancreatic cell differentiation, maintenance of beta-cell function
and formation of islet structure [42]. Importantly however, bi-
allelic null variants in NKX2-2 cause neonatal diabetes and the
parents, who are heterozygous carriers, do not have hypoglycae-
mia [43]. NKX2-2 expression has also been shown to be increased
rather than decreased in islets from patients with HI [44].

FOXA2 in contrast is a strong candidate gene for the HI despite
the coding sequence of the gene only being deleted in two of the
five individuals in our study and one of the two individuals
previously reported to have HI caused by deletions on chromo-
some 20p [36, 39]. This gene encodes a transcription factor that
has an essential role in pancreatic development [45]. In mature
pancreatic islet cells, FOXA2 regulates the expression of genes that
encode key components of the insulin secretion pathway [46, 47].
Most convincingly, heterozygous loss-of-function coding variants
in FOXA2 have been reported in at least seven individuals with
hypoglycaemia, most of whom also had confirmed HI
[27-30, 40, 48, 49]. Interestingly Kaygusuz et al. [30] reported a
patient with an 8.53 Mb deletion that included FOXA2 who
presented with diabetes and the patient with transient hypogly-
caemia reported by Stekelenburg et al. [48] developed diabetes
later in childhood, suggesting there could be a more variable
pancreatic phenotype caused by variants in FOXA2.

European Journal of Human Genetics (2024) 32:813-818



In keeping with a role for FOXA2 in the aetiology of HI in our
three patients who have the coding region of the gene intact, our
analysis of functional genomic data highlighted a FOXA2 control
region that was deleted in all individuals. This control region has
strong three-dimensional contact with the FOXA2 promoter and
comprises at least 77 distinct active regulatory regions within
human islets. We find that these regulatory regions exhibit cell-
specific regulatory activity, varying in activity across differentiation
and adult tissues where FOXA2 is expressed; it therefore likely
plays a role in fine-tuning FOXA2 expression. Part of this FOXA2
control region was also deleted in the patient with HI studied by
Wee et al. [39]. Therefore, all seven patients (five in this study and
two from the literature) with a deletion on chromosome 20p11.2
and HI have a deletion that affects the FOXA2 control region. This
deletion extends over the FOXA2 coding sequence in three cases.
Follow-up of all these patients is therefore warranted to examine
whether they go on to develop similar features to those reported
in individuals with FOXA2 coding variants, particularly (pan)
hypopituitarism.

We acknowledge that our patients have deletions affecting
significant components of the islet transcription factor network
and the phenotypes and impact on gene expression could be
multifaceted. Given that FOXA2 and NKX2-2 bind many of the
same regulatory loci, with FOXA2 sharing 45% of its human islet
binding sites with NKX2-2 [31], it remains possible that FOXA2
binding is altered at sites it shares with NKX2-2 (such a
dependency has been shown for PDX1, another FOXA2 co-
binding factor [50]). We therefore cannot exclude that concomi-
tant loss of NKX2-2 with loss of FOXA2 regulatory control is
necessary for Hl to develop in these individuals. Furthermore, no
de novo coding variants or clusters of non-coding variants within
the minimal deleted region were identified in a large unrelated
cohort of individuals with genetically unsolved HI. This suggests
that single nucleotide variants within this region are an extremely
rare cause of HI or that large structural variants, that disrupt
multiple genes/regulatory regions, are required to cause disease.
Identifying further deletions or disease-causing single nucleotide
variants that refine the critical region will be important to gain
knowledge of the precise molecular mechanism(s) of HI.

In conclusion, we have identified a 24 Mb deletion on
chromosome 20p11.2 as a cause of syndromic HI in five
individuals and we recommend that this chromosome region is
included by genomic laboratories in their screening panels for this
condition, especially when syndromic disease is suspected. Our
findings suggest that these deletions cause HI through the
disruption of FOXA2, either by removing its entire coding region or
by disrupting non-coding regulatory elements that are critical for
controlling FOXA2 expression within the pancreatic beta-cell.
These findings further highlight the critical role of studying large
structural variants to gain insights into non-coding gene regula-
tion and to aid discovery of novel causes of Mendelian disease.
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