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Identification of unique cell type responses
in pancreatic islets to stress

Marlie M. Maestas1,2, Matthew Ishahak 2, Punn Augsornworawat 3,
Daniel A. Veronese-Paniagua1,2, Kristina G. Maxwell 2,4,
Leonardo Velazco-Cruz1,2, Erica Marquez2,4, Jiameng Sun1,2, Mira Shunkarova2,
Sarah E. Gale2, Fumihiko Urano 1,2,5 & Jeffrey R. Millman 1,2,4

Diabetes involves the death or dysfunction of pancreatic β-cells. Analysis of
bulk sequencing from human samples and studies using in vitro and in vivo
models suggest that endoplasmic reticulum and inflammatory signaling play
an important role in diabetes progression. To better characterize cell type-
specific stress response, we perform multiplexed single-cell RNA sequencing
to define the transcriptional signature of primary human islet cells exposed to
endoplasmic reticulum and inflammatory stress. Through comprehensive
pair-wise analysis of stress responses across pancreatic endocrine and exo-
crine cell types, we define changes in gene expression for each cell type under
different diabetes-associated stressors. We find that β-, α-, and ductal cells
have the greatest transcriptional response. We utilize stem cell-derived islets
to study islet health through the candidate gene CIB1, which was upregulated
under stress in primary human islets. Our findings provide insights into cell
type-specific responses to diabetes-associated stress and establish a resource
to identify targets for diabetes therapeutics.

The primary function of the pancreatic islets of Langerhans is to reg-
ulate blood glucose. The β-cell, an endocrine cell within the islet,
produces and secretes insulin to lower blood glucose levels. Failure of
β-cells to properly maintain normoglycemia results in diabetes melli-
tus, an incurable metabolic disorder that affects hundreds of millions
worldwide1. Disruptions to β-cell health can be caused by endoplasmic
reticulum (ER) and inflammatory stress, which are connected to type 1
(T1D)2–4 and type 2 diabetes (T2D)5–8 onset and clinical progression. ER
homeostasis is a balanced state between newly synthesized proteins
entering the ER and properly folded proteins exiting the ER. ER stress
occurs when there is an accumulation of unfolded and misfolded
proteins in the ER. This can be caused by a multitude of reasons in the
pancreatic islet, including inflammatory cytokines, high glucose, and
free fatty acids7. In all cell types, ER stress is regulated by the unfolded

protein response (UPR) pathway9. Physiological and transient activa-
tion of theUPR is necessary for proper insulin processing in the ER, but
pathologically high and chronic levels can lead to activation of cell
death pathways10. A better understanding of the transcriptional land-
scape of islets under ER and inflammatory stress conditions could lead
to clinical treatments for diabetes.

Targeting UPR pathways or improving ER folding through genetic
changes or chemical chaperones has restored normoglycemia in dia-
betic mouse models11–13. However, mouse models do not fully recapi-
tulate human islets. Prior studies have also discovered compounds
through high-throughput chemical screening that increased the sur-
vival of a β-cell line under exogenous stress compounds14. Bulk
sequencing of primary human islets has described a Golgi stress
signature15. However, bulk approaches on heterogeneous tissue (such
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as islets) mask cell-type-specific responses. Human pluripotent stem
cell-derived islets (SC-islets) are a tool for the study and treatment of
diabetes16–19. We and others have shown that geneticallymodifying SC-
islets can reduce ER stress20 and apoptosis21. These studies suggest that
targeting ubiquitous regulators of the UPR and stress may be a pro-
mising approach for treating diabetes. However, the specific tran-
scriptional regulators of cellular stress response in the various primary
islet cell types remain largely unknown.

Here, we examine the transcriptional responses to ER and
inflammatory stressors22–26 in isolated primary human islets using
single-cell RNA sequencing (scRNAseq). Our analysis identified cell-
type and tissue-specific stress response signatures and pathways, with
β-, α-, and ductal cells being the most susceptible to stress. The com-
parisonofβ-cells to other pancreatic endocrine and exocrine cell types
allowed for the identification of a β-cell specific stress signature. We
modulated gene candidates in SC-islets to demonstrate the utility of
this dataset to study islet health. These results provide a cell-type-
specific resourceof islet stress response, enhancingour understanding
of islet health throughout the progression of diabetes.

Results
Human islet scRNAseq identifies stress-specific cell populations
To study cell-type-specific responses to ER and inflammatory stress,
multiplexed scRNAseqwasperformed on three non-diabetic cadaveric

human islet donors (Supplementary Fig. 1a–i) and fixed scRNAseq on
an additional two donors (Supplementary Fig. 2a–f) following ex vivo
exposure to conditions that mimic diabetic stress (Fig. 1a). The islets
were treated for 48 h with cytokines (IFNγ, TNFα, and/or IL1β), thap-
sigargin (TG), brefeldin A (BFA), or DMSO for the control (CTRL)
(Supplementary Data 1). The cytokines can induce both ER stress27 and
inflammation. TG induces ER stress by inhibiting sarcoendoplasmic
reticulum Ca2+ ATPase (SERCA). BFA works by inhibiting the transport
of protein from the ER to the Golgi causing ER and Gogi stress28. The
treated cadaveric human islets were sequenced, and we ensured
reproducibility by assessing each patient data individually. We found
that across all five patients, the top differentially expressed genes had
similar expression levels (Supplementary Fig. 1d–f, 2c, d, Supplemen-
tary Data 2–6). In addition, all five patients had similar proportions of
cells across all treatment conditions, annotated cell type populations,
and sequencing methods (Supplementary Fig. 3a–e). The treatment
conditions in the hashed samples were identified through demulti-
plexing analysis (Fig. 1a, b, Supplementary Fig. 1h). The hashed samples
were then integrated to minimize patient-specific findings (Fig. 1b, c).

We identified 14 clusters of cells based on the upregulation of
canonical RNA markers, including α-, β-, δ-, Pancreatic Polypeptide
(PP-), exocrine, immune, endothelial, and mesenchyme cells
(Fig. 1c, d). There are four populations ofα-cells (α-cell 1,α-cell 2,α-cell
3, and α-cell 4) and three populations of β-cells (β-cell 1, β-cell 2, and

Fig. 1 | Multiplexed single-cell sequencing of stressed primary human islets.
a Schematic for multiplexing single-cell RNA sequencing of primary human islets
with exogenous stressors. b UMAP showing which cells were treated with each
stressor, and a bar graph of the ratio of each treatment in the entire population.

c UMAP of islet cell populations based on RNA expression, and a bar graph of the
ratio of cell types in the entire population. d Heatmap of key markers used to
identify cell types in UMAP. e UMAP of key endoplasmic reticulum and inflamma-
tory stress markers. Source data are provided as a Source Data file.
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β-cell 3). These sub-populations are not donor-specific and, instead,
arise from the different exogenous stressors (Supplementary
Fig. 1g, h). The α-cell 1 population is composed of CTRL, TG, and IL1β
treated cells and expressed high levels of α-cell markers (Fig. 1b–d,
Supplementary Fig. 1i). The α-cell 2 population consisted of cells
treated with cytokine mix (CM, a combination of all three cytokines),
IL1β + IFNγ, IL1β, and TNFα and showed increase expression of
inflammatory markers. The α-cell 3 population had only IFNγ treated
cells and showed upregulation of both inflammatory and α-cell mar-
kers. 85.1% of the cells found in the α-cell population 4 were treated
with BFA, and these cells had decreased expression of α-cell markers
and upregulation of UPR-associated genes (Supplementary Fig. 1i,
Supplementary Data 7). Similar sub-populations of β-cells were
observed, where the β-cell population 1 was treated with CTRL, TG,
TNFα, and IL1β and had the highest expression of β-cell markers. In
contrast, β-cell population 2was treatedwith CM, IL1β + IFNγ, and IFNγ
inducing increased inflammatory gene expression (Supplementary
Fig. 1i). 94.6% of the cells in β-cell population 3 were treated with BFA
and had decreased β-cell markers compared to other β-cell popula-
tions (Fig. 1d, Supplementary Fig. 1i, Supplementary Data 7).

To validate our stress conditions, we assessed the expression of
genes from published literature15,29,30 and found upregulation of HER-
PUD1, HSPA5, COPZ2, GOLGA2, GBF1, CREB3, and COG2 under BFA
stress; MANF, SDF2L1, PPP1R15A, FKBP11, DDIT3, ATF4, and HERPUD1
under TG stress; and STAT1, CXCL10, NOS2, RSAD2, ISG20, CD40, and
OAS1 under CM stress (Fig. 1e, Supplementary Fig. 3f). This data was
consistent across allfive patients (Supplementary Fig. 3f).We validated
our control cell population through comparative analysis with a pub-
lished dataset of cadaveric human islets from donors without
diabetes31 (Supplementary Fig. 1j, k). We also conducted a Pearson
correlation between hashed CTRL and fixed CTRL samples to confirm
cell type populations between sequencing methods. We found the
highest correlation between the same cell types across sequencing
methods (Supplementary Fig. 3g, h). We also observed variation in the
correlation value ofmatched cell types across cell types, whichmay be
due to donor and processing variations. These data are consistent with

previous reports of these exogenous stressors15,32 and validate our
scRNAseq approach to studying human islets cultured under defined
chemical stressors.

Islet cell types have specific expression of UPR genes
We conducted a pair-wise analysis of differentially expressed genes
(DEG) to determine cell-type-specific transcriptional changes due to
stress. Tobroadly characterize the transcriptional divergence from the
CTRL cells, we compared each stressor versus the CTRL in each major
endocrine and exocrine cell type (Fig. 2a). BFA stress, which affects
both the Golgi and ER28, resulted in a robust transcriptional response
with the most upregulated genes in β- (2679 genes), α- (2616 genes),
and ductal cells (1399 genes). We found that cytokinemix also induces
the most downregulated genes in β- (707 genes), α-(850 genes), and
ductal cells (999 genes) (Fig. 2a). No δ-cells and PP-cells were observed
within the BFA condition, so there is no DEG analysis for these cell
types. Further, fewer DEG were observed in δ-, PP-, and acinar cells
across other stress conditions compared to β-, α-, and ductal
cells (Fig. 2a).

The UPR is a signaling network that works to mitigate ER stress9.
During basal conditions, the islets show minor signs of UPR and ER
stress as they are under constant pressure to produce hormones that
regulate blood glucose levels31. We analyzed the three major UPR and
endoplasmic reticulum-associated protein degradation (ERAD) path-
ways across cell types and stressors. Under BFA stress, β-cells have the
highest expression of the pro-apoptotic gene, DDIT3. (Fig. 2b). Con-
versely, BFA stressed α- and ductal cells have higher expression of
BIRC2 and API5, pro-survival genes33, compared to BFA-treated β-cells.
The three stress sensors that regulate the UPR are PERK, IRE1, and
ATF6. In ductal and acinar cells, CM and TG exposure induced the
highest expression of PERK pathway-associated genes. In contrast,
endocrine cell types responded to these stressors by increased
expression of genes associatedwith theATF6pathway (Fig. 2b). Across
stressors, we detected very few cells with IRE1 pathway-associated
gene expression. In addition to the UPR, ERAD plays a role in preser-
ving homeostasis in the ER34. This pathway is expressed highly under

Fig. 2 | Variable UPR regulation of stress response. a Plot of differentially
expressed genes (DEG) stressor vs. CTRL in endocrine and exocrine cell types.
Above the zero are the number of upregulated genes and below the zero is the
number of down-regulated genes. b Average RNA expression of known genes

associated with the unfolded protein response (UPR) or ERAD under different
stressors and across cell types. Circle size indicates the percent of cells expressing
the gene. Source data are provided as a Source Data file.
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BFA stress in endocrine and ductal cells, whereas it is higher in ductal
and acinar cells under TG stress. The individual cytokines showed
mostly upregulation of PERK and ERAD pathways in ductal and acinar
cells, while α-, β-, δ-, and PP-cells are more variable across UPR and
ERAD pathways (Supplementary Fig. 4a–d). Taken together, our ana-
lysis reveals cell-type-specific transcriptional changes associated
with the UPR and ERAD pathways in various endocrine and exocrine
cell types under different stress conditions.

Stress-induced changes in gene expression are tissue-specific
Endocrine cells, which include α-, β-, δ-, and PP-cells, are identified by
CHGA and CPE expression (Supplementary Fig. 5a). Exocrine cells,
including acinar and ductal cells, are identified by KRT7 and KRT19
expression (Supplementary Fig. 5b). We compared the upregulated of
DEGs between BFA and CTRL and found 1326 genes shared between
tissue types (Fig. 3a, Supplementary Data 8). The 1226 genes specific to
endocrine are statistically associated with pathways involved in the

Fig. 3 | Tissue-specific differences in response to stress. a–f Differential gene
expression of stressor vs control. Compared endocrine (β-, α-, δ-, PP-cells) vs
exocrine (Ductal and Acinar) in Venn diagram. Below the Venn diagram is a bar
graph using EnrichR analysis. The top 5 pathways are specific to endocrine, and the
bottom 5 are specific to exocrine, (a) upregulated genes in BFA vs CTRL, (b)
upregulated genes in TG vs CTRL, (c) upregulated genes in CM vs CTRL, (d)
downregulated genes in BFA vs CTRL, (e) downregulated genes in TG vs CTRL, and
(f) downregulatedgenes inCMvsCTRL.DEGcutoffwas >0.25Log2(fold change) for
upregulated or < −0.25 Log2(fold change) for downregulated and <0.05 adjusted P-
value. EnrichR uses the Benjamini-Hochberg method to correct for multiple

hypotheses testing. gMotif accessibility of CM treated cells vs CTRL. Venn diagram
compares endocrine (β-, α-, δ-, PP-cells) vs Exocrine (Ductal and Acinar). The left
Venn diagram and bar graph are upregulated motif accessibility, and the right is
downregulated. The bar graph shows the Log2(fold change) of motifs specific to
endocrine (top 10) or exocrine (bottom 10). h Coverage plot of CFTR accessibility
and violin plot of RNA expression across endocrine and exocrine cell types.
Adjusted P-value **P = 3.11 × 10−31 or ns for non-significant. Statistical significance
was determined by a two-sided Wilcoxon rank sum test. Highlighted is risk variant
rs7795896. Source data are provided as a Source Data file.
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metabolism of RNA (R-HSA-8953854), the tricarboxylic acid cycle
(TCA) (BioPlanet_2019), autophagy (R-HSA-9612973), and the ciliary
landscape (WP4352). In contrast, the 198 upregulated genes specific to
exocrine are involved with mannokinase/glucokinase activity
(GO:0019158, GO:0004340), antiviral by interferon-stimulation (Bio-
Planet_2019), and inositol pyrophosphates biosynthesis (PWY_6369)
(Fig. 3a, Supplementary Data 8, 9).

Islets treated with TG had 44 shared genes upregulated in endo-
crine and exocrine cells (Fig. 3b). The endocrine cells specifically had
genes related to tubulin folding (R-HSA-389977), epithelial-
mesenchymal transition (MsigDB_Hallmark_2022), innate immune
system (R-HSA-168249), and hypoxia/apoptosis (MsigDB_Hall-
mark_2022); the exocrine cells had genes involved in response of
EIF2AK4 to amino acid deficiency (R-HSA-9633012), cytoplasmic
ribosomal proteins (WP477), and ferroptosis (WP4313). TG induces a
larger effect on DEG in exocrine than endocrine (Fig. 3b, Supplemen-
tary Data 8, 9).

Interestingly, exocrine cells that have been treated with CM
showed upregulation of genes associated with PD-1 (R-HSA-389948)
and T1D (KEGG_2021) (Fig. 3c). Genes that are upregulated are part of
themajor histone complex II (MHCClass II), includingHLA-DRB5,HLA-
DQA2, HLA-DQA1, and HLA-DPA1 (Fig. 3c, Supplementary Data 8, 9).
These genes are also upregulated within exocrine tissue treated with
IL1β + IFNγ and IFNγ; however, IL1β alone andTNFα treated cells donot
have these genes upregulated (Supplementary Fig. 5c–j, Supplemen-
tary Data 8, 9). Upregulated genes in endocrine are associated with
programmed cell death (R-HSA-5357801) and actin cytoskeleton reg-
ulation (BioPlanet_2019) (Fig. 3c, Supplementary Data 8, 9). Overall
there is a similar number of upregulated genes between endocrine and
exocrine in cells treated with IL1β + IFNγ, IL1β, and IFNγ (Supplemen-
tary Fig. 5c–e). However, TNFα induces a more significant response in
endocrine cells than exocrine (Supplementary Fig. 5i). In addition, IL1β
induces upregulation of genes related to T cell receptor regulation of
apoptosis (Reactome_2022) in both endocrine and exocrine tissue
(Supplementary Data 8, 9).

BFA induces downregulation of more genes in exocrine tissue
compared to endocrine tissue (Fig. 3d). Pathways associatedwith these
genes downregulated in exocrine tissue include the immune system
(Reactome_2022) and neutrophil degranulation (R-HSA-6798695)
(Supplementary Data 8, 9). However, genes downregulated in endo-
crine tissue are related to the integration of energy metabolism
(Reactome_2022), circadian entrainment (KEGG_2021), and genes
associated with lysosomes, which has previously been shown to be
downregulated during ER stress35. In endocrine cells, TG stress sti-
mulates the downregulation of genes related to the translational
initiation complex formation (R-HSA-72649) and mRNA activation. At
the same time, downregulated genes in exocrine cells exposed to TG
stress are associated with glutathione metabolism (BioPlanet_2019)
and Wnt in lipid metabolism and immune response (BioPlanet_2019)
(Fig. 3e). Only six genes are downregulated under TG stress in both
exocrine and endocrine tissue, NR4A1, FOSB, DSP, SMIM24, KIF12, and
TNFSF10 (Supplementary Data 8, 9). CM stress suppresses genes
associated with energy metabolism (R-HSA-163685), peptide hormone
metabolism (R-HSA-2980736), and transmission across chemical
synapses (R-HSA-112315) in endocrine tissue (Fig. 3f). Exocrine tissue
displayed decreases in TCA cycle (R-HSA-1428517) and respiratory
electron transport (R-HSA-611105). Across different combinations of
cytokines, we find that genes related to neuronal systems are com-
monly downregulated in endocrine tissue (Supplementary Fig. 5f–h, j).
In summary, our analysis reveals distinct gene expression profiles and
pathway associations between endocrine and exocrine cells under
various stress conditions, highlighting the diverse molecular respon-
ses and possible cross-talk between tissue types during diabetic-
associated stress.

We found upregulation of apoptotic-associated pathways in our
gene ontology analysis, prompting us to investigate whether our CM
cocktail induced cell death. We found no significant difference in the
viability of cadaveric human islets when treated with CM compared
to control (Supplementary Fig. 6a). We also wanted to determine if
islets can recover from these inflammatory conditions. We treated
cadaveric human islets with CM for 48 h and then removed and
washed off the CM and found a reduction of MT2A, CXCL11, CXCL9,
IL32, SOD2, ISG15, SAA2, and LCN2when compared to CM treated cells
(Supplementary Fig. 6b). This recovery from treatment has been
shown in other systems as well35. MAFA was reduced in islets treated
with CM; however, after recovery, the cells were able to induceMAFA
expression. This data indicates that human islets can recover after
cytokine stress, even with significant transcriptional changes during
inflammation.

Chromatin accessibility of CM reveals similarities to T1D
To better understand the chromatin changes under stress, we treated
cadaveric human islets with CM (IFNγ + TNFα + IL1β) or PBS+ 1%
bovine serum albumin (BSA) (PBS/CTRL). We then used single-nucleus
multi-omic sequencing to obtain gene expression (RNA) and chroma-
tin accessibility (ATAC) data fromCM and PBS/CTRL-treated islets and
identified cell types by RNA expression (Supplementary Fig. 7a, b) and
promoter accessibility (Supplementary Fig. 7c). We found ATAC-
defined cell clusters were composed of two distinct treatment groups,
while RNA alone clusters are more homogenous between treatments
(Supplementary Fig. 7a). We looked at genes that were upregulated in
our single-cell sequencing data set, CXCL10, SOD2, IL32, GBP4, and
LY6E, and found that the chromatin region associatedwith these genes
in CM treated cells are also more accessible compared to PBS/CTRL
cells (Supplementary Fig. 7d). We compared motif accessibility of
endocrine (β-,α-, andδ-cells) and exocrine (ductal and acinar cells) cell
types and found the top 20 accessible transcription factor-binding
motifs in each cell type between CM and PBS/CTRL (Supplementary
Fig. 7e). Across β-, α-, and δ-cells, the top 20 motifs for each cell-type
share 3 motifs in common, FOSL1::JUND, RBPJ, and ZNF282, while
within the exocrine population, they share 15 motifs as their top 20.
When comparing endocrine and exocrine, the endocrine motifs are
more ubiquitously upregulated across cell types, while the exocrine
motifs aremore specific to exocrine tissue (Supplementary Fig. 7e).We
also find that more motif accessibility is downregulated in endocrine
than upregulated (Fig. 3g). In patients with diabetes, studies have
shown differential accessibility associated with T1D36,37. Here, we
investigate the risk variant rs7795896, which has previously been
shown to have lower accessibility inT1Dpatients and is associatedwith
lower CFTR expression36. In our dataset, we find that the environ-
mental factor of inflammationdue to treatmentwith CMcauses similar
chromatin changes in ductal cells to that of a T1D patient (Fig. 3h).
There was also a significant decrease in RNA expression of CFTR under
CM treatment in ductal cells (Fig. 3h, Supplementary Data 8). These
data support a similar cellular response to both genetic and environ-
mental contributions to T1D.

Stressed α-, β-, and δ-cells have distinct identities
To elucidate similarities and differences in stress response between
the three main endocrine cell types (α-, β-, and δ-cells), we compared
the DEG of each stressor versus the control (Fig. 4a). We found
2465 shared genes betweenα- and β-cells under BFA stress. Among the
2117 upregulated genes, ARF4, CREB3, and COG6 are Golgi stress-
related genes15, and ARL1 and TTC3 are upregulated in patients with
T2D38 (Supplementary Data 10). Gene ontology analysis of shared
genes under BFA stress revealed pathways related to ER-golgi
(GO:0006888, GO:0048193, GO:0030134, GO:0012507,
GO:0030127), which was expected due to the mechanisms of stress
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induced by BFA (Supplementary Data 11). Several genes associated
with endocrine identity and insulin secretion (GO:0050796) were
among the 286 downregulated genes shared between α- and β-cells.

Under TG stress 29 genes were differentially expressed in α-, β-,
and δ-cells (Fig. 4a). SCGN and ABCC8 are the only two genes down-
regulated across all three cell types, both of which have been corre-
lated with T2D39 (Supplementary Data 10). The three cytokines
together induced an immune response, with 459 genes shared among
the three cell types, 307 of which were upregulated and 152 down-
regulated (Fig. 4c). Upregulated genes shared between α-, β-, and δ-
cells under CM stress are related to inflammation (GO:0050729,
GO:0006954, GO:0050727) and immune response (GO:0034341,
GO:0045088), while downregulated genes are associated with endo-
crine identity and ribosomes (GO:0042254, GO:0042274,
GO:0042255) (Supplementary Data 11).

α-cells have more DEGs compared to β-cells under BFA stress.
These genes encode proteins, including ALDOA (involved in glyco-
lysis), VIM (involved in intermediate filaments), UCHL1 (found in neu-
rons), and MTRNR2L8 (negative regulation of apoptosis). Gene
ontology provided only two pathways specifically upregulated in α-
cells and not β-cells; protein serine/threonine phosphatase activity
(GO:0004722) has previously been implicated in other models of
diabetes40 and vesicles (GO:0031982). β-cells show upregulation of
CRELD2 (ER stress-responsive gene41), JUN (regulates gene expression),
COX14 (mitochondrial gene), and IDI1 (up-stream of cholesterol
synthesis) (Fig. 4b). Gene ontology of upregulated genes in β-cells are
related to double-stranded RNA binding. Recent data has indicated
disruptions to RNA editing can upregulate double-stranded RNA

leading to increases in inflammatory response and islet cell death42.
Downregulated genes in β-cells are associated with metabolic path-
ways (GO:0031966, GO:0005747, GO:0005761, GO:0045333). Meta-
bolism is essential for the proper function of pancreatic β-cells, and
metabolic changes could result in differences in post-translational
modifications that are related to T1D43.

TG induces almost 17 times as many genes to be differentially
expressed in α-cells than β- or δ-cells. α-cells also have the highest
foldchange for cell-type specific genes. We see a similar trend under
CM stress; however, a more subtle difference between the cell types is
present. In β-cells, we find upregulation of CCL2 (cytokine), MIR155HG,
RRAD (GTPase transduction), FSTL3 (glycoprotein), and IGFBP3. Only
one significant gene ontology pathway, transition metal ion binding
(GO:0046914), was related to genes upregulated under CM stress in β-
cells compared to α- or δ-cells (Supplementary Data 11). We validated
IDI1, upregulated under BFA stress, and RAB3B, upregulated under TG
stress, using immunofluorescence (Supplementary Fig. 8a). RRAD,
which is upregulatedunderCMstress, showednoapparent differences
in protein levels between treatments. In α-cells, CXCL6 (chemokine),
GC (binds vitamin D), ID4 (regulated gene expression), DUOXA2 (ER
protein), and PLIN2 (coats intracellular lipid storage) are all upregu-
latedunderCMstress. In addition, geneontology terms related to tight
junctions (GO:0070160) and cadherin binding (GO:0045296) are
downregulated in α-cells under CM stress. This could implicate a dis-
ruption to cell-to-cell contact during CM stress.

In CM, IL1β + IFNγ, IL1β, and TNFα, there is a significant down-
regulation of CHGB, ABCC8, and PARVB in all three cell types (Sup-
plementary Fig. 8b–e, Supplementary Data 10). IFNγ induced the

Fig. 4 | Endocrine cell-type specific regulation of stress response. a Venn Dia-
gram of differentially expressed genes across β-, α-, and δ-cells. A list of genes that
are shared across cell types, black is upregulated and red is downregulated genes.
b Bar graph indicating Log2(fold change) of cell-type specific gene regulation
under stress conditions. c Stem cell-derived islets (SC-islets) treated with BFA for

24 h then the addition of a compound for 24 h. d Caspase 3/7 of SC islets with
Cynaropicrin (Cyna) (n = 8, P =0.0001), Acyclovir (Acy) (BFA, n = 3; Acy 1 nM, n = 4,
P =0.024) or Liquitirin (Liq) (n = 4, P =0.0026). P-values were calculated by Dun-
nett’s multiple comparison test. *P <0.05, **P <0.01 and error bar represent the
s.e.m. Source data are provided as a Source Data file.
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most transcriptional changes in β-cells compared to the other indi-
vidual cytokines, which has previously been reported44. To better
understand the transcriptional response of each cytokine, we com-
pared each cytokine combination to each other. We found 13 upre-
gulated but no downregulated genes shared in α-, β-, and δ-cells
across all five combinations of inflammatory stressors (Supplemen-
tary Fig. 8f, g). Most are directly related to the immune system and
inflammatory response, while NCOA7 regulates RNA polymerase II,
TYMP promotes angiogenesis, and GLRX is a member of the thior-
edoxin family (Supplementary Fig. 8f, Supplementary Data 10). We
next compared cell-type responses to specific signaling pathways
related to each cytokine. We found that under control conditions, α-
cells seem to have the highest expression of genes associated with
antigen processing and cross-presentation, signaling by interleukins,
interferon gamma signaling, and TNFR2 non-canonical NF-kB path-
way (Reactome_2022) (Supplementary Fig. 8h). As previously repor-
ted, α-cells have a high expression of HLA-E, an immune-inhibitory
molecule, under different cytokine stress45,46. However, we findmore
heterogeneity across cell-types under stress conditions (Supple-
mentary Fig. 8h). In antigen processing and cross-presentation, we
see a switch from α-cells in CTRL conditions having high expression
of genes to IL1β + IFNγ treated β-cells having a higher expression of
genes associated with CD8 + T cells and promote their infiltration,
such as PSMB8-10 and PSME247.

One of the major processes by which β-cells die is through
apoptosis48. To study apoptosis, we generated SC-islets49,50 and
determined that BFA induces high levels of caspase-3/7, reduces
expression of islet cell identity markers, and increases UPR-associated
gene expression (Supplementary Fig. 9a-c), similar to our results from
the cadaveric human islet scRNAseq data. We explored drug-gene
interactions using The Drug Gene Interaction Database (DGIdb)51 and
DrugBank to establish the possible utility of this dataset for drug dis-
covery. Three candidate genes RELA (subunit NF-KB), CKB (enzyme to
transfer phosphates), and P4HB (part of oxidoreductase complex),
were all upregulated under BFA stress in α- and β-cells (Fig. 4a). Using
the databases, the corresponding drugs are Cynaropicrin, an inhibitor
of RELA52, Acyclovir, which is an antiviral agent previously shown to
reduce insulin resistance in a mouse model53, and Liquiritin, which has
shown anti-inflammatory effects54. To test the impact on caspase 3/7,
we treated our SC-islets with BFA for 24 h and then added each drug at
different concentrations for an additional 24 h (Fig. 4c). We found all
three drugs reduced caspase 3/7 in SC-islets under BFA stress (Fig. 4d).
These data reveal the utility of this scRNAseq data set to be leveraged
to discover approaches to improve SC-islet health.

Six genes upregulated in endocrine cell types under stress
Gene lists created from BFA, TG, or CM vs control in β-, α-, and δ-cells
(Fig. 4a) were then narrowed down to include only the upregulated
genes (Fig. 5a). As previously stated, 2165 genes are upregulated in β-
and α-cells under BFA stress, 70 genes in at least two endocrine cell
types under TG stress, and 530 under CM stress (Fig. 5a). This com-
bined list of 2765 genes was then compared to find overlapping genes
between stressors. Only six genes are upregulated under all three
stressors: CIB1, ERP44, HSP90B1, NEAT1, SELK, and VMP1. Most of these
genes are expressed at the highest in BFA-treated β- and α-cells, while
expression in δ-cells is more variable between TG and CM (Fig. 5b).
Protein expression of these genes varies across stressors, which could
be due whole-islet differences (Supplementary Fig. 9d). However,
HSP90B1 is upregulated under BFA and TG stress in primary islets. To
understand the gene regulatory network (GRN) in which these six
genes may be involved, we used single-cell regulatory network infer-
ence and clustering (SCENIC)55 to identify possible transcription factor
networks activating these genes (Fig. 5c). Here, we show the regulon
activity of the top 10 GRNs that target at least three of the six genes. In
the CEBPB(+) gene regulatory network, the gene CEBPB is increased in

diabetic animals56 and the regulon targets ERP44, HSP90B1, NEAT1, and
VMP1. JUNB(+) and JUND(+) are part of the AP1 transcription factor
family and STAT1(+) inflammatory signaling. YY1(+) plays a role in
histone modification, and the regulon activity is highest under BFA
stress. CREM(+) is involved in cAMP-signaling transduction.

Calcium and integrin-binding protein 1 (CIB1) is a protein
involved in many cellular processes57. However, its role in SC-islets
has not been characterized. CIB1 is significantly upregulated in β- and
α-cells under BFA, TG, CM, IL1β + IFNγ, IL1β, and TNFα (Supplemen-
tary Data 12). CIB1 has been shown to interact with a multitude of
proteins57. When CIB1 binds with PRKDC, TBPL1, PSEN2, PPP3R1,
PTK2, PAK1, PDK1, KCNN1, or ITGA2B, it activates these proteins, and
these genes have increased expression in BFA-treated β-cells. How-
ever, the gene expression of proteins that CIB1 inhibits also increases
in TG-treated cells (Fig. 5d).

To better understand the impact of CIB1 on islet health, we uti-
lized SC-islets. We generated lentiviral short-hairpin RNA to knock-
down (KD) or open-reading-frame to overexpress (OE) CIB1 during the
terminal stageof SC-islet differentiation (Fig. 5e).Weproducedeither a
3.48-fold reduction or 5.64-fold increase in CIB1 expression (Supple-
mentary Fig. 10a). CIB1 KD resulted in significant increases in insulin
secretion under both 2mM glucose and 20mM glucose. At the same
time, CIB1 OE has no impact on insulin secretion (Fig. 5f, Supplemen-
tary Fig. 10b). Due to the functional changes in CIB1 KD SC-islets, we
measured cytosolic calcium levels, which are regulated by glucose58.
CIB1 KD increased cytosolic calcium, and CIB1 OE decreased the levels
in SC-islets (Supplementary Fig. 10c).CIB1KD increased the proinsulin/
insulin ratio while decreasing insulin content (Supplementary
Fig. 10d, e). CIB1 OE did not affect the proinsulin/insulin ratio but
increased insulin content (Supplementary Fig. 10d, e). Flow cytometry
confirmed a decrease in C-Peptide expression in CIB1 KD cells and no
significant difference in CIB1 OE (Supplementary Fig. 10f). In addition,
even though we saw upregulation of CIB1 in our sequencing data in all
three cell types and differences in GCG expression after CIB1 KD or OE
in SC-islets (Supplementary Fig. 11a), we see no significant differences
in GCG or SST protein expression between CIB1 KD or CIB1 OE com-
pared to control SC-islets (Supplementary Fig. 10f). We also find that
CIB1 KD or CIB1 OE did not significantly change cell type proportions
(Supplementary Fig. 10g). These data establish CIB1 as a regulator of
β-cell function in vitro.

Next, we assessed the proliferation of CIB1 KD orOE under stress
conditions. We found that both KD and OE induced reduction of Ki-
67+ cells under TG stress. We see no significant difference between
control and CIB1 KD in other stress conditions (Supplementary
Fig. 10h, i). We also measured transcriptional changes following CIB1
KD or OE induced in homeostatic and stress conditions. Under basal
conditions, CIB1 KD reduced INS and GCG and some UPR genes
(ATF4, DDIT3, and PPP1R15A), while CIB1 OE increases GCG, HSPA5,
and DDIT3 (Supplementary Fig. 11a). Under stress conditions, there is
an increase in apoptosis under BFA, CM, and TG stress due to CIB1 KD
(Fig. 5g), while CIB1OE reduces apoptosis under BFA stress only. CIB1
KD significantly reduces TXNIP expression under CM stress. Yet, OE
increases gene expression of islet identity markers and chaperones
for the UPR (Supplementary Fig. 11b). Under TG stress, CIB1 KD
reduces the expression of islet identity genes and most UPR genes
but increases HSPA5 expression. In comparison, CIB1 OE increases
expression of islet identity genes and UPR-associated genes (Sup-
plementary Fig. 11c). BFA stress induces increases in INS and GCG
expression, while decreasing TXNIP expression in CIB1 KD cells.
Exposure to BFA in CIB1 OE cells induces increased expression of
GCG, HSPA5, and MANF and decreases expression of TXNIP (Supple-
mentary Fig. 11d); INS expression is also increased under these con-
ditions, but it is insignificant. These data demonstrate that CIB1 has a
role in controlling the expression of genes related to islet identity
and UPR.
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Stress induces β-cell heterogeneity
During the progression of T1D, β-cells are preferentially attacked by
the immune system and are killed48, while the other major endocrine
cell type, α-cells, have reduced glucagon secretion and gene
expression59. The reason for the different effects on islet cell types
during diabetes is unknown. Here, we define a β-cell-specific gene
expression signature under ER and inflammatory stress conditions by
comparing β-cells with other islet cell types (α-, δ-, PP-, acinar, and
ductal cells). We generated a subset of β-cells from all the other cell
types (Fig. 6a). Upon re-clustering, three predominate populations
arose, including a population composed of cells treated with IFNγ,
IL1β + IFNγ, and CM, a population of CTRL, TG, IL1β, and TNFα, and,
finally, a BFA population. The average expression of canonical β-cell
gene markers is decreased in BFA and CM stress (Fig. 6b). We also
found that BFA induces upregulation of proliferation and cell cycle

markers60 in β- and α-cells, however, MKI67 had the same expression
across all conditions (Fig. 6c, Supplementary Fig. 12a). We are uncer-
tain how much the lack of MKI67 variation is caused by technical or
biological factors at this time. To determine changes specific to β-cells
under CM stress, we compared CM to control cells, in α-, β-, δ-, PP-,
acinar, and ductal cells to generate several gene lists. We then com-
bined these lists and delineated genes unique to β-cells (Supplemen-
tary Data 13). In total 657 genes are upregulated under CM stress in β-
cells, however, only 98 are unique to β-cells (Fig. 6d). These 98 upre-
gulated genes are statistically associated with xenobiotic metabolism,
TNF-alpha signaling via NF-kB, and interferon alpha response
(MsigDB_Hallmark_2020) (Supplementary Fig. 12b, Supplementary
Data 14). CM treated β-cells have 171 genes that are downregulated and
related to pancreas β-cells, DNA repair, protein secretion (MsigDB_-
Hallmark_2020), and translation (R-HSA-72766) (Supplementary

Fig. 5 | Six genes are upregulated across endocrine cell types and stressors.
a Upregulated DEG in β-, α-, and δ-cells across BFA, TG, and CM from 4a. Genes
that were in at least two cell types were used to make a new Venn diagram across
stressors. b Heatmap of the expression of the 6 upregulated shared genes in
CTRL, BFA, TG, and CM. c >3 of the shared 6 genes were found downstream of
these regulons in β-, α-, and δ-cells. d Heatmap of genes that activate/inhibit CIB1
in β-cells. e SC-islet differentiation with the addition of lentiviral short hairpin
RNA (shRNA) or open reading frame (ORF) targeting CIB1. f Static glucose-
stimulated insulin secretion of CTRL and CIB1 KD (n = 4). The left two bars are

CTRL, and the right two bars are CIB1 KD. Paired t test for 2mM vs. 20mM (CTRL
P =0.0067, KD P = 0.0249), Unpaired t test for 2mM CTRL vs. 2mM KD
(P = 0.001) or 20mMCTRL vs. 20mMKD (P = 0.0057). gCaspase 3/7 assay of CIB1
KD and CIB1 OE under stress conditions, BFA (n = 8; KD P =0.00048; OE
P =0.000211), CM (n = 5; KD P = 1.1 × 10−6), and TG (n = 8; KD P = 6.87 × 10−6),
unpaired t test, **p <0.01,***p < 0.001,****p < 0.0001, and not significant (ns) by
one-sided paired t test. All error bars represent s.e.m. Source data are provided as
a Source Data file.
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Fig. 12c, Supplementary Data 13,14). We also wanted to compare these
results to α-cells and interestingly, upregulated genes specific to α-
cells under CM stress are related to pathways involved in Myc targets
V1, apoptosis, TGF-beta signaling, and heme metabolism (Supple-
mentary Fig. 12d, Supplementary Data 15, 16), and downregulated
genes are related to NMDA activation (R-HSA-438064, R-HSA-442755),
integration of energy metabolism (R-HSA-163685) and neuronal

system (R-HSA-112316) (Supplementary Fig. 12e, Supplementary
Data 15, 16).

Specifically in β-cells, TG-induced stress resulted in increased
expression of ARID5B (part of demethylase complex), MAP1LC3A
(Mitophagy), and CLIC1 (chloride channel) expression and decreased
G6PC2 and HADH, which have been associated with diabetes (Fig. 6e,
Supplementary Data 13). We could not conduct pathway analysis
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because too few genes were differentially expressed between TG and
CTRL. α-cells have 123 DEG under TG stress, including PSMD8, PSMB6,
PSMB3, PSMB1, and PSMA7, which are involved in a variety of signaling
pathways including Hedgehog (R-HSA-5358351, R-HSA-5362768, R-
HSA-5387390, R-HSA-5610787) and cell cycle (R-HSA-69615, R-HSA-
69615, R-HSA-69206, R-HSA-69656) (Supplementary Data 15,16).
Genes downregulated in α-cells under TG stress are related to trans-
lation and the extracellular matrix (Reactome_2022) (Supplementary
Fig. 12f).

Given that BFA stress induces a distinct sub-population, most
DEGs are found in this condition, with 433 upregulated genes (Fig. 6f).
Pathway enrichment shows these genes are associated with the
metabolism of RNA, mRNA splicing, and processing of capped intron-
containing pre-mRNA (Supplementary Data 14). Ten genes associated
with these pathways are significantly upregulated only in β-cells and
not α-cells under BFA stress (Fig. 6g). Downregulated genes specific to
β-cells are associated with FOXO-mediated transcription (R-HSA-
9614085), regulation of insulin secretion (R-HSA-422356), and β-cell
development (R-HSA-186712). α-cells have upregulation of genes
related to the dopamine neurotransmitter release cycle (Reac-
tome_2022, Supplementary Data 15,16) and downregulated metabo-
lism (R-HSA-1430728) and ion homeostasis (R-HSA-5578775). When
comparing β-cell specific DEGs across all the cytokines, we found 0
upregulatedgenes thatweredifferentially expressed in all thedifferent
combinations, however, all combinations significantly decreased
expression of ASB9, MAFA, NPTX2, RPS29, RNF187, and C1orf127 in β-
cells (Supplementary Fig. 12g-i, Supplementary Data 13). We also
compared our CM sequencing data with published T1D and AAB+
sequencing data61 and performed pathway enrichment analysis across
T1D, AAB+, and CM datasets using the upregulated DEGs. We found
pathways related to antigen presentation and processing, cellular
response to stress and stimuli, endosomal/vacuolar, and metabolism
of proteins shared between T1D, AAB+, and CM (Supplementary
Fig. 12j, Supplementary Data 17).

We were next interested in understanding if chromatin
remodelers62 are affected during ER stress in β-cells. Other model
systems show the recruitment of remodelers after induction of ER
stress63. Here, we found upregulation of genes associated with chro-
matin remodelers mainly under BFA-induced stress in β-cells (Fig. 6h).
Given this finding, we conducted multi-omic sequencing on BFA and
DMSO (CTRL) human islets to better understand chromatin and gene
expression changes from the same cell. We integrated BFA and CTRL
samples (Supplementary Fig. 13a). We used canonical RNA markers
(Supplementary Fig. 13b) and promoter accessibility (Supplementary
Fig. 13c) to define the cell types of the islet. We next assessed differ-
entially accessible regions (DAR) between BFA and CTRL in β-cells. We
found 8294 regions significantly (Adjusted P-value < 0.05) differen-
tially accessible (Fig. 6i, Supplementary Data 18) and 3819 regions that
had an absolute average Log2(fold change) of at least 0.1. DAR asso-
ciated with INS was significantly closed under BFA stress, while
RABEPK, associated with endosomal trans-golgi network transport64

wasmore open under BFA stress compared to CTRL (Fig. 6j). Inα-cells,
4979 regions were significantly differentially accessible, with 2761

regions with an absolute average Log2(fold change) of at least 0.1
(Supplementary Fig. 13d). In δ-cells, therewere only 1216DAR and 1043
met our threshold of 0.1 Log2(fold change) (Supplementary Fig. 13e).
We also compared RNA expression and promoter accessibility of
genes thatwere significantly upregulated inβ-cells but notα- or δ-cells
(Fig. 6k). These genes included WSB1, a gene involved in hypoxia65,
TNFRSF10B, shown in other models to induce downstream inflamma-
tory cytokine production after ER stress66, and SMARCE1, a chromatin
remodeler.

We used JASPAR202067 to identifymotif accessibility across β-,α-,
andδ-cells (Fig. 6l, SupplementaryData 18).Motif enrichment inβ-cells
shows an increase in β-cell identity, such as NKX6.1, SIX2, and
ONECUT268. To determine if the associated gene of the TF-binding
motifs is also upregulated, we compared enriched motifs with upre-
gulated genes under BFA stress in β-cells. We found 43 genes and
motifs upregulated in β-cells (Fig. 6m).We then compared the list of 43
motifs to α- and δ-cell motif enrichment and found only 5 were unique
to β-cells (Fig. 6m, Supplementary Data 18): BACH2, a risk gene for
T1D69; SMAD5, a protein downstream of TGF-β signaling and can
autonomously promote glycolysis70; HMBOX1, a regulator of telomer-
ase activity71; TP53, a gene connected T1D and T2D by TP53-mediated
apoptosis72; and JUND, a gene associated with β-cell dysfunction73.
These data detail the many responses β-cells exhibit to diabetes-
associated stresses.

Discussion
Here, we comprehensively index transcriptional changes driven by
diabetes-associated stress in pancreatic human islets. Previous studies
have utilized cell lines, animalmodels, bulk sequencing, and ribosomal
footprinting35 to investigate exposure to cytokines24,27,35,46,74–76 and ER
stress15,77 in the context of T1D. More recently, emerging single-cell
technologies have led to insights using primary human islets and SC-
islets36,78–80. Our use of single-cell/nuclei sequencing offers additional
in-depth analysis of human cell-type-specific changes associated with
ER and inflammatory stress. Future technological developments, such
as single-cell proteomics, could be promising to further this study81,82.
In addition, analysis of lipidomic, metabolomics, other post-
translational modifications could advance our understanding of how
ER and inflammatory stress drive diabetes progression83–86. Our find-
ings also focus on 48 h treatments of human islets. At the same time,
acute responses by reducing treatment timing or investigating chronic
responses using long-term culture microphysiological systems87–89

would also be interesting to examine in the future.
Our study revealed that diabetes-associated stressors induce cell-

type-specific and tissue-specific transcriptional responses. Notably,
stress-inducedmoreDEG inα-cells than in β- orδ-cells.While the exact
reason for this remains unknown, our dataset provides a resource to
further investigate this observation.We found important differences in
stress response between pancreatic endocrine and exocrine tissues.
Surprisingly, stress downregulates more genes in exocrine tissue than
in endocrine tissue. Endocrine cells have upregulation of genes asso-
ciated with autophagy and programmed cell death across stressors.
Exocrine cells have upregulation of MHC class II-associated genes

Fig. 6 | Stress-inducedheterogeneity in the pancreaticβ-cells. aUMAP of onlyβ-
cells, circle is the proportion of stressors within the β-cell population (n = 4473).
b Average RNA expression of known β-cell genes across stressors. c Heatmap of
gene expression associated with cell cycle/ proliferation. d–f, Volcano plots of
stressor vs CTRL. d CM vs CTRL, (e) TG vs CTRL, and (f) BFA vs CTRL. The top
number is the number of genes specific to β-cells when compared to α-, δ-, PP,
acinar, and ductal while the number in the parenthesis is the total number when
FindMarkers is conducted. The parameters for genes were genes with a Log2(fold
change) >0.25 (upregulated) or Log2(fold change) < −0.25 (downregulated) and
adjusted p-value < 0.05. Statistical significance was determined by a two-sided

Wilcoxon rank sum test. EnrichR was used for pathway analysis. g Average RNA
expression of 10 genes associated with metabolism from (f). hHeatmap of average
RNA expression of genes associated with chromatin remodelers across stressors in
β-cells. i Differentially accessible regions in β-cells between BFA (top) and CTRL
(bottom). j Comparing chromatin peaks near INS, REBEPK, and HSPA5 in β-cells
across BFA and CTRL. kHeatmap comparing β-cell-specific genes across cell types,
stressors, and promoter accessibility. l Z-score of motif enrichment across β-, α-,
and δ-cells.m, Venn diagram showing there are 43 overlapping upregulated genes
and accessiblemotifs upregulated in β-cells. Dot plot are the 5 that are specific to β-
cells. Source data are provided as a Source Data file.
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under CM stress, which previously has been shown to be enriched in
ductal cells in patients with T1D90. These results provide some evi-
dence of the influence of exocrine-endocrine crosstalk in diabetes
pathology, a concept that is gaining increased attention90–92.

Our ATAC data compares tissue types under CM stress and allows
for the analysis of chromatin changes. Previously, T1D risk variant
rs7795896 at the CFTR locus was identified to have lower
accessibility36, and here we found that CM stress also decreased
accessibility in this region within exocrine tissue. Taken together, this
suggests that both genetics and microenvironmental cues, like stress,
could play a role in developing T1D via rs7795896. However, we could
only secure one human islet donor for the ATAC data and, therefore,
cannot speak to how common these findings are across donors. This
study could be expanded upon by including a larger number of donors
better representing the population, material from patients with dia-
betes, and a more comprehensive range of ages68,90,93,94.

A recent paper by Chen et al. investigated ER stress in β-cells35.
These authors found a specific signature comparing MIN6 cells to
MEFs; our paper compared primary human β-cells with α-, δ-, acinar,
and ductal cells. To further investigate the β-cell-specific signature, we
conducted ATAC sequencing and found only five genes that were
upregulated under BFA stress and had enrichedmotif accessibility. We
did not further explore these five transcription factors in this study,
but these results could be used in future experiments to study β-cell-
specific stress responses. In addition, Chen et al. found loss of β-cell
identity and the ability of the islet to recover fromstress after recovery,
which we also saw in our model system. However, they investigated
translational differences, whereas in this study we focus mainly on
transcriptional differences between islet cell types.

By regulating gene expression through genetic editing or the
additionof a compound,wewere able to alter the responseof SC-islets
to stress, establishing utility of this dataset. Prior studies have identi-
fied genes for islet survival, including genetic knockouts to prevent
autoimmune rejection in mouse models11,95, targeting the UPR to pro-
tect the islet12–14,21, or granting human SC-islets various degrees of
hypoimmunity or immunocloaking in vitro and in vivo96–100. In addi-
tion, compounds have been identified to reduce stress signatures
found in cells with Wolfram Syndrome genetic variants101,102. Here, we
discovered that CIB1 is important for the function of SC-islets and
response to apoptosis. One role CIB1 has is inhibiting protein-ligand of
the inositol-1,4,5-triphosphate receptor (InsP3R)57,103 which regulates
intracellular calcium. CIB1 KD might allow calcium release through
InsP3R, resulting in increased cytosolic calcium and subsequently
increasing the secretion of stored insulin, possibly explaining the
change in function. We also identified several compounds that
reduced caspase-3/7 under BFA stress in SC-islets in vitro. Compounds
improving islet health could also be used to improve islet
transplantation104–108.

Our sequencing data provides cell-type-specific findings to study
human islet health. A limitation of our study is that wewere not able to
source primary human islets for all components of the analysis.
Another way to study islet health would be to generate SC-islets from
patient cells by utilizing genetic engineering to introduce or correct
disease-associated genetic variants20,76,109–114. Additionally, sequencing
datasets from multiple sources could be combined into a more com-
prehensive atlas to reveal insights115 to improve SC-islets for modeling,
such as including endothelial cells116–119. Our robust scRNAseq of
stressed primary islets provides a resource for future rigorous studies
into identifying targets to improve diabetes treatments.

Methods
Our research complies with all relevant ethical regulations. Non-
diabetic islets were procured from Prodo Laboratories. Prodo
Laboratories obtains informed consent that covers all non-identifiable
information, which can be found at (https://prodolabs.com/human-

islets-for-research), and compensation is not provided. These islets
have been refused for transplantation, have been quality-controlled,
and meet specific criteria for research purposes only. Sex was not
considered in the study design because that was not within the scope
of this study. The research in this study was approved by the
Washington University Institutional Biological & Chemical (IBC) Safety
Committee (Approval number 12186). Washington University
Embryonic Stem Cell Research Oversight Committee approved all
work utilizing HUES8 (Approval number 15-002).

Cadaveric human islet processing
Cadaveric human islets from donors without diabetes were purchased
from Prodo Labs. Cells were cultured in CMRL (Mediatech; 99-603-
CV) + 10% FBS (GE Healthcare; SH3007003). Donor islets for sequen-
cing comparisons are from patients as follows: (1: hashed) 30 yr male
with BMI 22.7, (2: hashed) 65 yr female with BMI 25.1, (3: hashed) 56 yr
male with BMI 24.3, (4: fixed) 64 yr male with BMI 25.5, (5: fixed) 47 yr
male with BMI 28.3, (6: ATAC) 33 yr male with BMI 33.3.

Stress treatment of islets
Human cadaveric islets were separately treated for 48 h under the
following conditions: (1) DMSO (Fisher; BP231), (2) 1 ug/mL Brefeldin A
(Sigma; B5936), (3) 10μM Thapsigargin (Sigma; T9033), (4) Cytokine
mix (1000 ng/mL IFNγ, 500 ng/mL TNFα, 100 ng/mL IL1β), (5) 100 ng/
mL IL1β + 1000ng/mL IFNγ, (6) 1000 ng/mL IFNγ (R&D; 285IF100), (7)
100 ng/mL IL1β (R&D; 201LB005), (8) 500 ng/mL TNFα (R&D;
210TA020). For multiomic sequencing, human islets were treated
under the following conditions: (1) 24h DMSO (CTRL), (2) 48 h PBS+
0.1%BSA, (3) 24h 0.1 ug/mL Brefeldin A, (4) 48 h 1000ng/mL IFNγ +
500ng/mL TNFα + 100 ng/mL IL1β.

Hashed single-cell RNA preparation and sequencing
Cells were prepared according to BioLegend TotalSeq A antibodies
with 10X single cell 3’ v 3.1 hashing protocol. Briefly, cells were single-
cell dispersed using TrypLE andwashedwith PBS. Then 1-2million cells
were resuspended in 100μl cell staining buffer (BioLegend 420201)
and 10% FBS for 10mins. Cells were incubated separately in 1μg of
hashed antibodies (BioLegend; 3946-01,-03,-05,-07,-09,-11,-13, -15) for
30mins at 4 °C and washed twice with cell staining buffer. Finally, all
cells were resuspended inDMEM at 1000 cells/μl and pooled together.
These samples were processed by the McDonnell Genome Institute
(MGI) atWashingtonUniversity for library preparation and sequencing
using the NovaSeq 6000 System (Illumina).

Fixed single-cell RNA sequencing preparation
Patients 4 and 5 were sequenced using the 10X fixed RNA kit protocol.
After treatment with stressors, cells were single-cell dispersed using
TrypLE and washed with PBS. The cells were spun down and resus-
pended in fixation buffer (10X Genomics; PN-2000517) and 37% for-
maldehyde. The samples were incubated overnight for 20 h at 4 °C.
Cells were resuspended in a quenching buffer (10X Genomics; PN-
20000516) and counted using Countess II. Enhancer (10X Genomics;
PN-20000482) was added to store samples at -80 °C. Once both
patients were fixed, probe hybridization (Protocol 10x Genomics;
CG000527) was conducted using 16 separate barcodes, 8 for patient 4
(Supplementary Data 5) and 8 for patient 5 (Supplementary Data 6).
The samples were then pooled together and sent to Washington Uni-
versity in St. Louis MGI for sequencing.

Single-cell RNA sequencing analysis
Datasets were analyzed using R version 4.0.3 and Seurat version 4.0.
Quality control was conducted on each patient individually by
excluding cells with high mitochondrial and RNA counts. Patient one
(hashed sequencing) was filtered for unique feature counts between
2000 and 7500; patient two (hashed sequencing) was filtered between
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1000 and 7500; and patient 3 (hashed sequencing) was filtered
between 1000 and 6000. To demultiplex the hashed samples we used
the Seurat function HTODemux. This function defines doublets as
havingmore thanone oligo barcode and a negative cell as having a low
value for the oligo barcode. This uses a 0.99 quantile as a threshold to
identify positive and negative cells. Only the positive cells were used
for further analysis.

Then, the three hashed patients were individually LogNormalized
using Normalize Data, and the top 2000 variable features were iden-
tified using FindVariableFeatures. FindIntegrationAnchors was used to
identify anchors between the three patients. The anchors were then
used to integrate the patients using IntegrateData. Following integra-
tion, ScaleDate, RunPCA, and RunUMAP were used on the integrated
data set containing data from the three patients. Clustering and
dimension reduction were done using dimensions of 1:20 and a reso-
lution of 0.3. Pair-wise comparisons using FindMarkers and the Wil-
coxon Rank Sum test were used to determine DEG with a Log2 Fold
change absolute value of > |0.25| and adjusted p-value < 0.05 using
Bonferroni correction. This threshold was set based on previously
published data31,35,46,78,79,90,120. EnrichR121–123 was used for gene set
enrichment analysis. As input, we used gene lists specific to a cell type
or tissue type separated by upregulated (>0.25 Log2Fold Change) or
downregulated (<−0.25 Log2Fold Change) genes. We filtered the gene
set enrichment analysis by an adjusted p-value < 0.05.

For the fixed samples, the different stress treatments were
merged using the raw data counts. Then, patients 4 and 5 were filtered
for 200-9000 genes in each cell and percent mitochondria below 5.
SCTransform was used to normalize each patient and regressed out
percent.mt. RunUMAP, FindNeighbors, and FindClusters were done on
each patient. The dimensions of patient 4 clustering and dimensional
reductionwere 1:25 and a resolution of 1.6. Thedimensions of patient 5
were 1:35 and a resolution of 1.6. To integrate the two fixed data sets,
we used SelectIntegrationFeatures, with features set to 3000. Then, we
used FindIntegrationAnchors and the integration features to find
anchors. Next, IntegrateData was used to integrate data from the
anchors. For UMAP projection, RunUMAP and FindNeighbors were set
to a dimension of 1:25, and FindClusters at a resolution of 1.6.

To integrate fixed and hashed sequencing, each patient was
Lognormalized using NormalizeData. Then SelectIntegrationFeatures,
FindIntegrationAnchors, and IntegrateData was performed. The data
was scaled, and RunPCAwas performed. The dimensions for RunUMAP
and FindNeighborswere set to 1:27, and FindClustershada resolutionof
1.5. The integration of fixed and hashed samples was used for Sup-
plementary Fig. 3.

Single-nuclei sequencing and preparation
Human islets were single-cell dispersed using TrypLE for 10min at
37 °C and quantified for >90% viability using the Vi-Cell XR (Beckman
Coulter). The 10X Multiome ATAC+Gene Expression (GEX) protocol
(CG000338) was used to obtain the nuclei from the samples. The cell
samples were collected and washed in PBS with 0.04% BSA, lysed with
chilled lysis buffer for 4mins, washed three times with wash buffer,
and resuspended with 10x nuclei buffer at 3000–5000 nuclei/μl.
Nucleus samples were processed using the Chromium 10x genomics
instrument. The McDonnell Genome Institute at Washington Uni-
versity conducted library preparation according to the 10x Single Cell
Multiome ATAC +Gene Expression v1 kit. The library was sequenced
using the NovaSeq 6000 System (Illumina).

Single-nuclei sequencing analysis
Cell Ranger ARC v2.0 was used on raw files. Genes were mapped and
referenced toGRCh38, the human reference genome. RStudio 1.3.1093
(R version 4.0.3), Seurat 4.01, and Signac 1.3.0 were used for analysis.
MACS2 was used to call peaks, and the genomic positions were map-
ped and annotated with EnsDb.Hsapeins.v86 and hg38. Low-quality

cells, including doublets, dead cells, and poor sequencing depth cells
were removed by filtering out cells in BFA/DMSOwith low RNA counts
(nCount_RNA < 1000), and low ATAC counts (nCount_ATAC< 1000);
high RNA counts (>40,000-50,000) and high ATAC counts (>40,000);
nucleosome signal >1.5 and transcription start site (TSS) enrichment
<2. In CM/PBS with low RNA counts (nCount_RNA < 1000) and low
ATAC counts (nCount_ATAC< 1000), high RNA counts (>50,000), and
high ATAC counts (>50,000-60,000), nucleosome signal >1.5 and
transcription start site (TSS) enrichment <2. BFA was integrated with
its control, DMSO, and CM with its control, PBS, using SelectInte-
grationFeatures, PrepSCTIntegration, FindIntegrationAnchors normal-
izing to SCT from each dataset, and IntegrateData. To create merged
ATAC data, we used RunTFIDF and RunSVD. To build an integrated
UMAP of RNA and ATAC, we used FindMultiModalNeighbors. To add
motif information, we used the JASPAR2020 database and genome
BSgenome.Hsapiens.UCSC.hg38 to call RunChromVar. Promoter
accessibility was found by calling GeneActivity. For differential motif
expression, we used an adjusted p-value of <0.05 and average log2Fold
Change >0.1 or < -0.1 (Fig. 3g). CoveragePlot was used to graph
rs7795896 peak accessibility. To show gene expression (SCT assay)
and peak accessibility (peaks assay) on a UMAP we used FeaturePlot.
Differentially accessible regions were found by using the “peaks” assay
and FindMarkers comparing BFA and DMSO in β- or α-cells, logistic
regression framework was used, and the variable to test was set to
nCount_peaks.

Stem cell-derived islet differentiation
The HUES8 stem cell line was generously provided by Dr. Douglas
Melton (Harvard University). HUES8 stem cell line was differentiated
using our published method49,50. Undifferentiated hPSCs were seeded
onto a Matrigel (Corning; 354277) treated tissue culture flask at 0.63 ×
106 cells cm−2 with mTesR1 (StemCell Technologies; 05850) and 10μM
Y-27632 (Pepro Tech; 129382310MG). After 24h, media and growth
factorswere added to start the differentiationprocess (Supplementary
Data 1).On Stage6Day7, thedifferentiationwasdispersedwithTrypLE
at 0.2ml cm−2 (Gibco; 12-604-013) and seeded into individual wells of a
6-well dishwith 4-mLof ESFMmediaon anOrbi-Shaker (Benchmark) at
100 RPM. After 6-12 more days, cells were used for assessment. All
factors, timing, and media forumulations for the differentiation are in
Supplementary Data 1.

Stress treatment SC-islets
SC-islets were treated with (1) Control (DMSO), (2) 24 h 0.1 ug/mL
Brefeldin A, (3) 48 h 10μM Thapsigargin, (4) 48 h Cytokine mix
(500ng/mL IFNγ, 500 ng/mL TNFα, 100 ng/mL IL1β).

Transduction of lentiviral gene-editing
Lentiviral transduction was initiated on Stage 6 Day 7 during aggre-
gation with a multiplicity of infection (MOI) of 5 for 24h. Plasmids
containing sequences targeting the gene of interest or GFP (Control)
were ordered. Plasmid DNA was isolated using a QIAprep Miniprep kit
(Qiagen; 27115) and then transformed into One Shot™ Stbl3™ Chemi-
callyCompetent Escherichia coli (Invitrogen; C737303). Single colonies
were selected, cultured, and DNA was extracted using Qiagen Maxi
plus kit (Qiagen; 12981). Viral particles were generated using Lenti-X
293T cell line (Takara; 632180) and cultured in DMEM+ 10% heat-
inactivated Fetal Bovine Serum (MilliporeSigma; F4135) + 0.01mM
Sodium Pyruvate (Corning; 25-000-CL) in 10-cm tissue culture treated
plates (Falcon; 353003). Next, Lenti-X 293 T cells were transfectedwith
6-μg of plasmid DNA, 4.5μg of psPAX2 (Addgene; 12260), 1.5μg
pMD2.G (Addgene; 12259), and 48μL of Polyethylenimine Max (Poly-
sciences; 24765-2). Viral supernatant was collected at 96 h post-
transfection and concentrated using Lenti-X concentrator (Takara;
631232). The lentivirus was titered using Lenti-X™ GoStix™ Plus
(Takara;631280). MOI of 5 is used for all viruses.
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Caspase 3/7 Assay
On stage 6 day 7 of SC-islet differentiation, cells were transduced with
lentivirus to knock down or overexpress CIB1. On Stage 6 Day 12 cells
were single-cell dispersed and plated onto Matrigel in 96-well black
plates at 15,000 cells per well. After 24 h, cells were treated with
stressors, BFA (0.1 ug/mL), TG (10 uM), or CM (IL1B 100ng/mL + IFNy
500 ng/mL + TNFa 500 ng/mL). After 48 h (TG, CM) or 24 h (BFA), we
measured Caspase-3/7 according to the manufacturer’s instructions
(Promega, G8093). For compound treatment, cells were single-cell
dispersed and plated on Stage 6 Day 12. After 24 h, cells were treated
with BFA (0.1 ug/mL). After an additional 24 h, the compound was
added at the following concentrations: (1) Cynaropicrin (200 ug/mL or
400 ug/mL), (2) Acyclovir (1 nM or 100nM), (3) Liquitirin (10 nM or
1000 nM) for an additional 24 h. After another 24 h, the assay was
conducted.

Quantitative real-time PCR (q-PCR)
Cell clusters were collected, washed, and resuspended in an RLT buf-
fer. RNA was extracted from SC-islets using the RNesy Mini Kit (QIA-
GEN; 74016) and DNase treatment (QIAGEN; 79254). cDNA was then
synthesized using the High-Capacity cDNA Reverse Transcriptase Kit
(Applied Biosystems; 4368814) and a T100 thermocycler (Bio-Rad).
PowerUp SYBR Green Master Mix (Applied Biosystems; A25741) gen-
erated real-time PCR reactions on the QuantStudio™ 6 Pro System.
Data was analyzed using the DDCt methodology. Normalization mar-
kers used were TBP and GUSB. Primer sequences are available in
Supplementary Data 1.

Proinsulin and insulin content
Proinsulin to insulin content was measured by collecting SC-islets,
rinsingwith PBS, and incubating in an acid–ethanol solution for 48 h at
−20 °C. Sampleswereneutralizedwith 1MTris buffer (Millipore Sigma;
T6066). Enzyme-linked immunosorbent assay (ELISA) kits: human
insulin ELISA (ALPCO; 80-INSHU-E01.1) and human pro-insulin ELISA
(Mercodia; 10-1118-01) were used to measure protein levels. Results
were normalized to cell counts performed on Vi-Cell XR (Beckman
Coulter).

Glucose-stimulated insulin secretion (GSIS)
Static GSIS was conducted using stage 6 day 14 SC-islet clusters. The
clusters were placed in a transwell (Corning) and washed with 1mL of
Krebs-Ringer Bicarbonate (KREB buffer, Supplementary Data 1) three
times. Then the transwells were transferred to 2mM glucose for 1 h to
equilibrate cells. Next, cells were moved into 2mM glucose for 1 h and
20mM for 1 h, and the supernatant was collected for both 2mM
and 20mM.

Cytosolic calcium assay
Calcium was measured in Stage 6 Day 14 SC-islets following the Fura-
2AM protocol (ab176766). Cells were single-cell dispersed and plated
at a density of 60,000 cells/well ontoMatrigel onto a 96-well plate. 20
uL of Fura-2 AM stockwas added to 10mL 1X assay buffer, then 100 uL
was added to each well of cells. Cells were incubated for 1 h at 37 °C,
then 20min at room temperature. Fluorescence was measured at an
excitation of 340 nm and 380nm and an emission of 510 nm. Finally,
340/380 ratios were calculated.

Immunocytochemistry
Samples were plated onMatrigel-coated 96 black plates after lentiviral
transduction. After 24 h, cells were treated with BFA, TG, or CM
(described in the stress treatment section). Cells were then fixed with
4% paraformaldehyde for 30min at room temperature. Samples were
then blocked for 45min at room temperature with PBS +0.1% Triton-X
100 + 5% donkey serum. The primary antibody was incubated

overnight at 4 °C. The secondary incubated the next day for two hours
at room temperature. DAPI was used to stain nuclei. Imaging was
performed on a Leica. Quantification of fluorescence was done using
ImageJ. Antibody details can be found in Supplementary Data 1.

Immunohistochemistry
Stress-treated human islets were paraffin-embedded. To remove par-
affin slides were put into histoclear for 10min, 100% EtOH 4min, 95%
EtOH 4min, 70% EtOH 4min, and then rinsed with DI water. Antigen
retrieval was performed using 0.05-0.1M Ethylenediaminetetraacetic
acid (EDTA) for 2 h in a pressure cooker. Slides were blocked with
PBS +0.1% Triton-X 100 + 5% donkey serum for 30min at room tem-
perature. Primary antibody was added at a 1:200 dilution, overnight at
4 °C. Samples were incubated in secondary for 2 h at room tempera-
ture (1:300 dilution). Slides weremounted using DAPI Fluoromount-G.
Leica was used for imaging.

Flow cytometry
SC-islets were transduced with short-hairpin RNA GFP (CTRL), shCIB1,
Open-reading frame GFP (CTRL), or CIB1 OE. After 6 days, cells were
collected and dispersed using TrypLE. The cells were fixed with 4%
paraformaldehyde aqueous solution (PFA, 157-4-100) for 20min at RT.
Then PFA was removed, and cells were washed with PBS. Blocking and
permeabilized were done using 5% donkey serum and 0.1% Triton-X in
PBS for 30min on ice. Cells were then incubated in primary antibody
overnight at 4 °C (C-peptide 1:300 DSHB GN-ID4-S, GCG 1:350
BD565891, SST 1:250 BD566032). Next day secondary was added and
incubated for 2 h in the dark. Cells were filtered and Cytek Northern
Lights was used for flow cytometry. Analysis was done using FlowJo.

Western blots
Primary human islets were obtained from Prodo Labs. The cells were
cultured in CMRL (Mediatech; 99-603-CV) + 10% FBS (GE Healthcare;
SH3007003). After 24 h, cells were treated with BFA, TG, and CM
(same as the stress treatment section). After 48 h, cells were collected,
lysed in 500uLMPERbufferwith protease complete, and incubated for
10min shaking at 1500 RPM. Lysed cells were centrifuged for 10min at
14,000 g at 4 C and the supernatant was collected. 20ug of protein, as
determined by BCA assay (Pierce) was mixed with 4x LDS buffer
(Invitrogen), boiled for 5min, and separated on a 4-12% Bis-Tris gel
(Invitrogen) in MES running buffer (Invitrogen). The proteins were
transferred onto PVDF membrane (BioRad), blocked in 5% milk
(BioRad) for 1-h at room temperature, and incubated in primary anti-
bodies in 5% milk overnight at 4 °C. The following day, blots were
washed and incubated in secondary antibody for 1 h at room tem-
perature. Blots were exposed with chemiluminescence (Biorad) and
imaged on a LicorOdyssey FC. All blots were normalized toGAPDH. All
antibody information and dilutions can be found in Supplemen-
tary Data 1.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. The
scRNAseq is comprised of 3 separate patients sequenced using hash-
ing in different batches. Two additional patients were sequenced using
fixed scRNAseq. The ATAC-sequencing has 1 patient. Individual patient
data can be found in Supplementary Data 1. Statistical significance of
DEG was calculated through the Wilcoxon Rank Sum test with a fold
change >0.25 or < -0.25 and adjusted p-value using Bonferroni cor-
rection of P < 0.05, and differential motif accessibility was calculated
through a logistic regression framework. For SC-islet in vitro experi-
ments, we used unpaired or paired t-tests, Tukey’s multiple compar-
isons, and Dunnets multiple comparisons to determine P-value.
Significant values are represented as follows: *P <0.05, **P <0.01,
***P <0.001, ****P <0.0001, and not significant (ns)>0.05.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single cell and single nuclei sequencing data generated in this
study have been deposited in the gene expression omnibus (GEO)
database and are accessible via accession code GSE237448. Source
data are provided with this paper.

Code availability
No codes were developed for the analysis of this study. All the
sequencing data was analyzed using Seurat and Signac.
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