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A B S T R A C T   

Cognitive workload is a measure of the mental resources a user is dedicating to a given task. Low 
cognitive workload produces boredom and decreased vigilance, which can lead to an increase in 
response time. Under high cognitive workload the information processing burden of the user 
increases significantly, thereby compromising the ability to effectively monitor their environment 
for unexpected stimuli or respond to emergencies. 

In cognitive workload and stress monitoring research, sensors are used to measure applicable 
physiological indicators to infer the state of user. For example, electrocardiography or photo
plethysmography are often used to track both the rate at which the heart beats and variability 
between the individual heart beats. Photoplethysmography and chest straps are also used in 
studies to track fluctuations in breathing rate. The Galvanic Skin Response is a change in sweat 
rate (especially on the palms and wrists) and is typically measured by tracking how the resistance 
of two probes at a fixed distance on the subject’s skin changes over time. Finally, fluctuations in 
Skin Temperature are typically tracked with thermocouples or infrared light (IR) measuring 
systems in these experiments. While consumer options such a smartwatches for health tracking 
often have the integrated ability to perform photoplethysmography, they typically perform sig
nificant processing on the data which is not transparent to the user and often have a granularity of 
data that is far too low to be useful for research purposes. It is possible to purchase sensor boards 
that can be added to Arduino systems, however, these systems generally are very large and 
obtrusive. Additionally, at the high end of the spectrum there are medical tools used to track these 
physiological signals, but they are often very expensive and require specific software to be 
licensed for communication. In this paper, an open-source solution to create a physiological 
tracker with a wristwatch form factor is presented and validated, using conventional off-the-shelf 
components. The proposed tool is intended to be applied as a cost-effective solution for research 
and educational settings.   
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1. Specifications table  
Hardware name CogWatch Open-source Physiological Monitoring System 

Subject area Educational tools and open-source alternatives to existing infrastructure 
Hardware type Wearable Sensors for Physiological Testing 
Closest commercial analog FitBit, Zephyr, AppleWatch 
Open source license CERN-OHL-S 
Cost of hardware ~$100 
Source file repository http://doi.org/10.17605/OSF.IO/SZUYW  

2. Hardware in context 

Physiological indicators are often monitored in research to measure pain, stress, cognitive workload, the onset of disease, and 
responses to physical activity [1–7]. These conditions cause activations of the autonomic nervous system (ANS) and the results can be 
observed by monitoring: heart rate (HR), heart rate variability (HRV), blood volume pressure (BVP), skin temperature fluctuations 
(STK), galvanic skin responses (GSR), photoplethysmography (PPG), and respiration rate (RR) [3,7] (Table 1) 

Significant recent attention has been given to wrist worn solutions due to their unobtrusive nature and convenience [8–13]. The 
market for wearable health sensors is expected to reach $4,645,160 million by 2026 [14], and currently includes a wide variety of 
commercial wrist-based physiological sensor solutions (e.g., FitBit, Garmin, Apple Watch, Galaxy Gear) that monitor vitals including 
HR, RR, SKT, and in some cases GSR. Most commercial devices suffer from one or more of the following issues, which limit feasibility in 
research and educational settings:  

a) Low Speed: In many consumer devices the granularity of data is inadequate. For GSR data typical sampling rates range from 1 to 4 
HZ [15]. To reconstruct HRV from PPG sensors the minimum recommended sampling rates found in papers ranged from 100 Hz to 
125 Hz [16,17]. The maximum frequency of sampling provided by Fitbit via their API is 1 Hz [18], and the AppleWatch provides a 
lower 0.2 Hz frequency [19]. While potentially useful for fitness, this recording rate is far too low to evaluate stress and cognitive 
workload.  

b) Lack of Data Transparency: Raw sensor data is not generally available from fitness watch APIs, and the processes used to generate 
final values for physiological indicators such as HR and RR from the sensors are not typically exposed or explained [18,19].  

c) Lack of Data: Many devices either do not have or do not expose an adequate number and variety of sensors to be useful. For 
example, Apple Watch and Fitbit do not include GSR sensors.  

d) Cost: Often the cost of devices marketed for research use can be thousands of dollars, which may be prohibitive for use in 
educational settings and laboratories.  

e) Proprietary Software: Software for devices is often complex and poorly documented. 

In recent years a significant number of open source software tools have been designed to process the data from physiological 
sensors, which can help to address the challenges of commercial electronics sensor software packages [20–23]. However, the hardware 
side of physiological monitoring does not have nearly as many open source options. 

In this work, the Cogwatch (an inexpensive and empirically validated physiological sensor) is proposed to lower financial barriers 
to research. The system was constructed from easily accessible and programmable conventional-off-the-shelf components (COTS) and 
does not require significant programing or electronics expertise; making it possible to build in research and educational settings. 

Table 1 
Abbreviations.  

Abbreviation Term 

SKT Skin Temperature Fluctuation 
GSR Galvanic Skin Response 
ANS Autonomic Nervous System 
BVP Blood Volume Pressure 
HR Heart Rate 
HRV Heart Rate Variability 
RR Respiration Rate 
BLE Bluetooth Low Energy 
IC Integrated Circuit 
PPG Photoplethysmography 
ECG Electrocardiography 
API Application Interface 
IDE Integrated Development Environment 
COTS Conventional Off the Shelf Components 
ACC Accelerometer 
DOF Degree of Freedom 
IMU Inertial Motion Unit 
Wi-Fi Wireless Network Protocol  
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3. Hardware description 

A limited number of open source systems are cited in the literature for the purpose of monitoring cognitive workload and stress. 
These systems all have barriers to adoption in educational settings and laboratories such as form factor, connectivity, or programming 
interfaces. Many of these devices were designed by groups with an in-depth research knowledge of electrical engineering, circuit 
design and building, and microcontroller programming. While these devices present promising solutions for physiological sensing, 
many engineering and biological research groups will not have the skills to build these systems in-house or the excess funds to sub
contract to a professional. Many existing options are limited to Bluetooth Low Energy (BLE) as a wireless communication option 
[24–27]. BLE has become more common, is great for extending battery life, and works well with cell phones. However, the learning 
curve to implement BLE in microcontroller and application environments is non-trivial. 

Table 2 contains details on selected open-source options for cognitive workload and stress monitoring found in literature. This list 
was developed by reviewing recent publications focused on the design and build of wearable cognitive workload and stress monitoring 
devices. In addition, commercially available options are included in the table for comparison.. The Zephyr 3.0 is included as an 
example of a commercial device built specifically for tracking bio-signals, which has been used in cognitive workload and sports 
research. It tracks HR and HRV via ECG rather than PPG and uses onboard sensors to calculate core body temperature (this is different 
from SKT and generally not applicable for research in this area). It can also communicate wirelessly but requires proprietary software 
and a specialized hub. The Table 2 Micro Controller column indicates the specific microcontroller used in the system (if the data was 
available). The Wrist Wearable column indicates whether a device can be worn on the wrist. IDE Access indicates whether the source 
files can be modified and uploaded via standard Arduino tools, which have a lower learning curve than directly programming 
microcontrollers. The Raw Data column indicates whether raw data from the device is available. The Wireless column notes the form of 
wireless communication available (if any). PPG, GSR, SKT, ACC (accelerometer), and ECG columns indicate if the given monitoring 
sensor is present. 

The proposed Cogwatch device focusses on a design that does not require specialized techniques to build or program, and which 
exposes raw data from a variety of physiologically meaningful sensors. Key features include the following notable elements:  

• Unlike offering such as the FitBit and AppleWatch, the Cogwatch provides raw data from PPG, GSR, and SKT sensors at an adequate 
rate to reconstruct physiologically meaningful signals for stress and cognitive workload. 

• Unlike many offerings in contemporary research, the Cogwatch is built entirely from conventional off-the-shelf (COTS) compo
nents, eliminating specialized equipment as a barrier to construction. These parts are acquired from stable product lines and are 
expected to remain in production for the foreseeable future.  

• The Cogwatch is completely software agnostic. Rather than locking the user into a licensed proprietary software package, the 
sensor data is streamed in a serial format allowing users to select the tools best suited to their project and software skills.  

• The Cogwatch is built on the ESP32 microcontroller which offers several advantages to research groups electing to user this 
platform:  

o A wide variety of communication options are available on the ESP32 including USB serial, Bluetooth Classic, BLE, and WiFi. The 
provided firmware exposes the USB and Bluetooth Classic ports for interface control and data streaming.  

o The ESP32 microcontroller can be programmed entirely using the Arduino IDE or Micropython environments. This lowers the skill 
barrier to implementing custom features by modifying firmware. 

The key design criteria considered include:  

• Simplified Assembly: The ability to assemble by hand without specialized equipment was a key consideration. While access to pick 
and place equipment and a reflow oven are useful, we validated a unit hand assembled by authors with soldering paste, a soldering 
iron, a magnifying glass, and toaster oven to handle reflow on the surface mounted chips.  

• Minimal Footprint: Efforts were taken to ensure that the footprint on the body was minimized.  
• Flexibility: While envisioned as a wristwatch form factor with small changes, the Cogwatch can be worn around the ankle, neck, or 

on a chest strap to obtain data from different locations depending on a project’s needs. 

Table 2 
Selected biosensor options.  

Item Micro Controller Wrist 
Wearable 

IDE 
Access 

Raw 
Data 

Communication 
Options 

PPG GSR SKT ACC 

Mohemaddi et al [24] NRF52832 No No No BLE Yes Yes No No 
Biotracker[25] STM32L1 No No No BLE Yes No Yes Yes 
Wang[26] NRF52832 Yes Yes Yes BLE Yes No No No 
Robust Driver[27] MSP430G2553 Yes No Yes BLE Yes Yes Yes Yes 
Apple Watch UNK Yes No No BLE,WiFi Yes No Yes Yes 
FitBit UNK Yes No No BLE,WiFi Yes No Yes Yes 
Zephyr 3 UNK No No No Communication hub No No No Yes  

Cogwatch ESP32 Yes Yes Yes Bluetooth, WiFi, USB, BLE available Yes Yes Yes Yes  
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• Parts Availability: This design was implemented shortly after the COVID-19 pandemic during a period where supply chains were 
disrupted. The components selected were mature product lines which we anticipate being widely available in the foreseeable 
future.  

• Programming options: An ESP32 based microcontroller was selected for this system because it allows for a variety of programming 
paradigms including Arduino IDE, MicroPython, and directly uploading microcontroller code via the ESP32 toolchain 
environment.  

• Communication options: An ESP32 was selected as a microcontroller because it can transmit over WiFi, Bluetooth, BLE, and serial 
USB. This allows the end user to select the communication mode best suited to the project’s needs.  

• Flexible Sensor Configuration: While our current research is focused on cognitive workload in stationary subjects, the inclusion of 
an Accelerometer and Magnetic sensor in the design gives the option of looking at patterns of motion and correcting motion ar
tifacts from other sensors in studies involving dynamic motion. It also potentially allows the use off the Cogwatch in motion and 
health studies which are not directly related to cognitive workload or stress. 

A high-level block diagram of the system can be seen in Fig. 1. 
An Adafruit QTPY ESP32 dev board was selected as the central microcontroller for this system. The QTPY can communicate 

wirelessly over Bluetooth Classic, BLE, and Wi-Fi [28]. The Wi-Fi communication allows for network time to be obtained from Uni
versal Time Protocol (UTP) servers if desired. Physiological sensors were selected to measure the indicators typically used in stress and 
cognitive workload models with ease of implementation, cost, and stability of the product line as key metrics to select sensors. 

HR and HRV are typically measured with either ECG or PPG sensors. ECG generally requires multiple wire connected electrodes to 
be attached to the body via conductive adhesive. These electrodes can be broadly spaced. In addition, sweat can degrade signals over 
time and the wires can become an impediment in daily wear and physical activities. PPG can be implemented on a variety of body sites 
including earlobes, finger tips, wrist, and neck; it eliminates wires by using an optical method to predict HR based on blood 
oxygenation [16,29]. Historically the clinical gold standard for HR and HRV has been ECG [11,17], but many studies have found that 
PPG derived HRV values are acceptably close to those of ECG [16,29,30]. Both PPG and ECG have been shown to be useful in deriving 
RR and BVP, with PPG being slightly better for BVP [31–34]. It has also been shown that PPG can work well at lower recording rates 
than ECG requires [34–37]. Given the open-source nature of this project HeartPy was used for preliminary analysis of HR and to extract 
RR data [22]. Further analysis was performed in Neurokit2 which has superior tools for analyzing and displaying data pertaining to RR 
variability (RRV), HRV and GSR [37]. In cognitive workload and stress research, the HRV of interest is in the range 50 ms. This 
translates to a 20 Hz frequency for the signal of interest, which sampling theory indicates a minimum sampling rate of 40 Hz to capture 
[38]. 

To monitor HR and RR, the Maxim MAX30101 EFD [39] integrated circuit was selected. Maxim electronics has several analog front 
end integrated circuits (IC) that are suitable for performing PPG. Many of these IC have embedded algorithms for cancelling ambient 
light, and subroutines to communicate with an external 9 Degree of Freedom (DOF) inertial motion unit (IMU) to cancel motion 
artifacts. These more sophisticated options had lower sampling rates, less access to raw data, or lacked integrated LED illumination 
sources and light sensors. The MAX30101 has Red, Green, and IR LED on board to illuminate blood vessels and integrated light sensors 
at fixed spacings on board, which saves time in optimizing sensor to light spacing, simplifies construction, and provides the basic 
elements required for reflective PPG. Many libraries exist to communicate with the MAX3010 in Arduino IDE and Micropython. The 
voltages required to operate the MAX30101 required a specific subsystem to convert between the native 3.3 Volt level of the QTPY and 
the MAX30101, which communicates over a 1.8 Volt I2C channel and requires a 5 Volt input for its LED driver. A MAX8511 was used to 
provide a stable 1.8 Volt input to a PCA9306 which translated voltages between the QTPY and MAX30101 to allow communication. A 
PAM2401 voltage converter was used to boost voltages from the QTPY to the 5 Volt level needed for the LED driver. While a full 

Fig. 1. Block Diagram of Cogwatch Components.  
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discussion of the mechanics behind SpO2 is outside the scope of this paper, with the default settings in the firmware, the SpO2 in the 
MAX30101 has a full scale range of 16,348nA with an LSB resolution of 62.5 pA. 

Options for SKT include physically placing a temperature sensor on the skin and using an IR sensor to read temperatures without 
contact. These methods produce comparable values, especially in the range of temperatures likely to be observed on human skin 
[40–43]. While IR measurements display some minor sensitivity to skin color and distance from objects being measured, they have the 
advantage of not requiring direct skin contact [40–43]. The Melexis MLX 90614 IR temperature sensor was selected for use in this 
project. This IC is approved for medical use, is likely to remain in production for the foreseeable future, and has a resolution of 0.02 
Celsius [43]. It communicates over I2C with a 3 Volt logic level and has ample libraries available for both Arduino and Micropython 
environments. 

GSR is a measure of skin conductivity often used in cognitive workload and stress studies [44]. A typical sampling rate for GSR is 1- 
10 Hz [45]. While there are many ways to measure GSR, one of the simplest takes the form of a Wheatstone Bridge, a pair of Unity Gain 
Op Amps to boost signal, a final Op Amp differentiator, and an RC filter [46]. The network diagram of this model is shown in Fig. 2. A 
wide variety of body locations have been proposed for GSR measurements and empirical research has been performed to assess the 
selection of locations [47]. In our implementation the default location is on the user’s wrist to simplify application of the sensors and 
minimize noise from wire motion artifacts. We have attached this via a plugin port to allow the option of using a wired connection to 
the fingertips if desired. In keeping with the open-source nature of this project, we have elected to utilize the PyEDA library to perform 
analysis on GSR responses [20]. 

For motion tracking, our design incorporates the LSM6DSOX 6 DOF IMU and a LIS3MDL magnetic sensor. The outputs of the 6 DOF 
IMU and magnetic sensor can be fused to provide 9 DOF linear accelerations and angular velocities in the earths frame of reference. In 
theory these can allow for tracking of the smoothness of user’s motions and be used as a secondary input to correct for motion artifacts 
observed by the PPG. With the settings coded into the the Cogwatch firmware, the LSM6DSOX measures Acceleration in a range of 
+/-2g with a Least Significant Bit Resolution (LSB) of 0.61 mg, and measures Angular Velocity in a range of +/-125 degree/s with an 
LSB of 4.37 degrees/s. The LIS3MDL has a range of +/-4 Gauss with an LSB of 0.14 milli-Gauss. As an initial step, the IMU subsystem 
communication was verified for the current design. While we hope to use the IMU to evaluate motion patterns as an indicator for stress 
and cognitive workload in the future, the current application is for a stationary subject. Motion sensors have been included in this stage 
of the design because: a) Motion is a physiological feature of interest in many studies and adding this in the design stage provides the 
flexibility to utilize it at a later point and b) If the decision is made to include motion in future studies, the IMU may be useful in 
identifying sources of noise in other signals and correcting for them through sensor fusion algorithms. The IMU data can be streamed if 
desired, but it is not used in our current research and the accuracy of the IMU has not been validated against ground truth. 

4. Design files summary  

Design file name File type Open-source license Location of the file 

CogWatch_main.sch Eagle CAD Schematic File CERN-OHL-S https://osf.io/szuyw/ 
CogWatch_main.brd Eagle Cad Board File CERN-OHL-S https://osf.io/szuyw/ 
CogWatch_sensor.sch Eagle CAD Schematic File CERN-OHL-S https://osf.io/szuyw/ 
CogWatch_sensor.brd Eagle Cad Board File CERN-OHL-S https://osf.io/szuyw/ 

(continued on next page) 

Fig. 2. Wheatstone Bridge and Differentiator to measure GSR. The GSKIN port allows for selection of sensors so GSR can be measured from wrist, 
fingers, or any other location desired. 
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(continued ) 

Design file name File type Open-source license Location of the file 

CogWatch_Main.lbr Eagle Cad Library File CERN-OHL-S https://osf.io/szuyw/ 
CaseBase.stl 3d Printer file CERN-OHL-S https://osf.io/szuyw/ 
CaseTop.stl 3d Printer file CERN-OHL-S https://osf.io/szuyw/ 
UnifiedCase5.SLDPRT Solidworks file for case CERN-OHL-S https://osf.io/szuyw/ 
cogwatch_upload.ino Arduino.ino source code CERN-OHL-S https://osf.io/szuyw/ 
CogWatchBOM.xlsx Bill of Materials CERN-OHL-S https://osf.io/szuyw/  

A bill of materials was generated in an Excel spreadsheet and can be found at: https://osf.io/szuyw/. 

5. Build instructions  

1) Build circuit boards from EagleCad files.  
2) Populate circuit boards. The.brd files indicate the location for each of the required electronics components. Each pad should receive 

a small dab of solder paste and it is possible to complete assembly under a microscope using an Xacto blade and a pair of tweezers. 
Having a solder screen cut to squeegee solder onto pads and access to a pick and place machine to populate parts simplifies 
construction significantly.  

3) Place board in reflow oven and melt solder according to temperature profile given by manufacturer. Toaster ovens can be used as a 
low-cost alternative to reflow ovens if needed.  

4) Use voltage meter to test voltage outputs at the 5 V, 3 V, and the 1.8 V output pins. Occasionally manufacturers will ship voltage 
converters that do not work properly. The MAX30101 is very sensitive to overvoltage inputs and difficult to replace if damaged. For 
the 1.8 V circuit, the pad closest to the MAX8510 voltage converter (R21) should be tested as shown in Fig. 4A. If the voltage is 
correct solder the pads for R21 together.  

5) Test round connection point pads on sensor board to verify that no shorts have occurred during reflow. These points can be seen in 
gold in Fig. 4B. These pads and are connected to ports on the various IC which are note used in this design. They are very close 
together and can be accidentally bridged. Testing at this stage can save considerable time later on.  

a) Optional: If you have access to an oscilloscope, validate that I2C waveforms are seen at the SDA_3V, SCL_3V, SCL_1.8 V, SDA_1.8 V 
pins. A little bit of time spent doing this will save a lot of time troubleshooting later. A typical output is shown in Fig. 5A. The lines 
for the 3 V and 1.8 V connections are all shown on same scale and should have identical waveforms when device is on, but data is 
not being transmitted.  

6) Use pins and solder to attach the mainboard to the sensor board.  
b) Optional: Installing the Adafruit testbed library to the Arduino IDE will also allow a simple scan of the system to validate that the 

ESP32 QT PY can see and connect to all devices. The anticipated output is shown in Fig. 5B.  
7) Print top and bottom cases from CaseBase.stl and CaseTop.stl files. 

Fig. 4. A) CogWatch Main Board. The test point for 1.8 V is shown in the blue box and pads to be joined by solder are shown in the purple box. B) 
The Sensor Board carries the PPG, 6DOF IMU, and Magnetometer. It allows for the PPG unit to have direct skin contact. The solid gold circles are test 
points to validate that pads on the IC components have not been bridged. 
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8) Tap the screw holes in bottom case with a 4–40 tap. Put assembled sensor board into bottom case aligned with the window in the 
bottom case and attach top case with 4–40 screws. 

There are a variety of locations on the body which are viable for placing GSR sensors; popular locations include the fingers and the 
wrist [47]. While the fingers have slightly higher correlation to stress and cognitive workload, wiring sensors to them does create the 
potential for noise from wire motion artifacts, and adds the potential for the wires themselves to impede the users’ interactions with the 
environment. To maximize flexibility in this device we have used a PH2 port to allow wire leads to be plugged in so that electrodes can 
be placed at the desired location on subjects’ body. Fig. 6 shows which port the GSR sensor and battery should connect to and a sample 
of two GSR sensor locations. The top one in Fig. 4B shows sensors constructed from conductive tape attached to the wrist location, the 
figure in Fig. 4C shows remote wired connections to record data from fingertips. 

6. Operation instructions 

6.1. Connecting to the CogWatch 

These instructions assume that the Cogwatch is being connected to a Windows PC. A flowchart the assembly process can be seen in 

Fig. 5. A) Typical output on SCL pins in connected state. The lines for the 3 V and 1.8 V connections are all shown on same scale and should have 
identical waveforms when device is on, but data is not being transmitted. B) Output from the I2C_Scan app showing expected devices connected. 

Fig. 6. A) The battery port shown circled in Blue and GSR port in Yellow, B) placeholder for wrist mounted GSR sensors, C) placeholder for GSR 
sensors on fingers. 
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Fig. 3.  

1) Open Windows Control Panel, select Devices and Printers and find the com ports associated with your device as shown in Fig. 7A. If 
using Bluetooth to connect, the device should appear under devices as in Fig. 7B. If using USB to connect then the device will be 
listed under ‘Unspecified’ and COM port will be listed in its name as shown for in Fig. 7C.  

2) To communicate with the CogWatch, a terminal emulator was used. While one is included in the Arduino IDE, it does not allow data 
logging. The simplest way to log data is to use the YAT terminal emulator and connect to the devices port. The CogWatch can be 
configured to provide timestamps, or timestamps can be provided by YAT.  
a. To provide timestamps from the device, first update the SSID and Password in the.ino file to match that of the local network. An 

image of the pertinent lines is shown in Fig. 8A. Once the serial connection is established, send the command ‘T’ over the serial 
port.  

b. If using YAT to provide timestamps select View->Show timestamps from the menu bar, and then select View->Format to format 
the timestamps. In the timestamp box enter HH:mm:ss.fff to set timestamps to hour:minute:second.fraction as seen in Fig. 6B. 
Then press Cntl-Shift-N to start logging.  

3) Once connected to the device there are a few optional commands that can be entered. These commands can be found in the.ino file. 
The commands most likely to be used include:  
c. A: list current sensors attached to device and their status as seen in Fig. 6C. 

Fig. 3. Assembly Flowchart.  

Fig. 7. A) Devices and Printers shown in Green Box, B) Bluetooth Device name shown in green box, double click the icon and select the services tab 
to find the COM port circled in Yellow Box, C) if using standard USB connection then the device will be listed under ‘Unspecified’ and com port will 
be listed in its name as shown for device in Green Box. 
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d. P: Lists Sensors being queried by the device.  
e. S: Query all sensors once and for current values.  
f. R: Sets device to run until another command is sent. 

7. Validation and characterization 

7.1. Heart rate 

The HeartPy Python library was used to perform HR analysis on both PPG and ECG signals. This library has modules built in to clean 

Fig. 8. A) Update lines circled in yellow to allow connection to your local WiFi network, B) Insert timestamp as shown in green box, C) the ‘a’ 
command can be sent to query device to ensure that it is working and give a list of attached sensors. 

Fig. 9. A) shows calculated heart rate based on ECG (Zephyr 3.0 ground truth), B shows PPG (CogWatch) predicted heart rate, Figures C and D show 
the multimeter measurement of kOhm vs the values registered on the ADC of the ESP32 for selected resistor readings. Fig C highlights min/max in 
light blue and D shows the standard deviation light blue. It should be noted that both were negligible. 
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noisy data, perform signal processing, and predict RR [24]. Raw data was collected simultaneously using the Cogwatch and a Zephyr 
Bioharness 3.0 on a single sample user seated in a quiet temperature-controlled office. Local timestamps were used to synchronize the 
start of recording. HeartPy was used to process the initial data into detectable peaks and calculate heart rate for both ECG and PPG. A 
comparison of these outputs is shown in Fig. 9A for the normalized ECG and Fig. 9B for the PPG. Analysis of both data collected from 
the PPG and ECG sensors was performed solely for demonstration purposes and indicated comparable heart rate from both devices. The 
calculated HR on the two devices differed by a total of 1.3 %. 

7.2. GSR 

As discussed earlier GSR is a measurement of skin conductivity. Conductivity in turn is the inverse of resistance. To validate that the 
Cogwatch could measure resistance accurately within applicable ranges, a series of resistors varying from 1 kOhm to 620 kOhm were 
placed in a bread board allowing them to be tested individually and in series. Values from a Fluke 117 Multimeter were collected for 
each individual resistor and selected combinations along with 1 s of data from the Op Amp Differentiator (OAD). Average values and 
standard deviations were then calculated from the OAD data at each step. It was found that the minimum recognizable resistance was 
18.2 kOhm and that above this resistance a step size of 3.8 kOhm could be distinguished from the background noise. Within the range 
of 600 kOhm to 1400 kOhm the system displayed near linear behavior as seen in Fig. 9 C and D. 

7.3. Temperature 

IR temperature sensors are commonly used in medical settings. According to manufacturer specifications, the selected IR Tem
perature sensor (MPL90614-DXX) is approved for use in medical settings. While thermometers are often calibrated in a range of 0C to 
100C using ice water and boiling water respectively, this approach would be a far broader range of values than our device needs to 
operate within. A simpler test is to select an insulated vessel (such as a travel coffee mug) and create a rig for the top opening. The rig is 
used to mount an IR temperature sensor and position a standard thermocouple to be submerged in the fluid poured into the vessel. Both 
sensors can then be used to measure the temperature of a fluid poured into the vessel and their measurements compared. Tap water was 
poured into the glass and the temperature was measured prior to the test using a kitchen thermometer at 27C. Two minutes of data 
were recorded at a 100 Hz frequency including the IR measured temperature and the thermocouple measured temperature. At the end 
of the test the temperature was measured again and found to still be approximately 27C. 

The MPL90614 was found to be both more accurate and display less noise. This is of particular interest because typical stress and 
cognitive workload applications are more interested in fluctuations of temperature than specific temperatures. As a result, noise is a far 
more significant concern than accuracy alone. On average the MPL90614 showed a temperature of 27C with an SD of 0.041C and the 
thermocouple showed a temperature of 20C with an SD of 0.176C. A plot of the variation observed for the two devices can be seen in 
Fig. 10. 

7.4. Battery life 

The selection of a battery for this design can vary, which will impact the usage. To assess how much energy was required to power 
the device we attached a 400 milli-Amp Hour (mAh) Lithium-Ion battery to the battery charging system. The battery was charged to 
full as indicated by the charge light going off, followed by disconnection of the USB cable. A Bluetooth serial connection was 
established and a command to start streaming data was sent. The time the command was sent and the time the last message from device 
was received were recorded to establish runtime. This was performed three times and averaged to calculate total run time. The average 
runtime was 2.47Hours ± 0.35Hours. 

The total run time was then divided by the battery’s energy capacity to estimate how many minutes the Cogwatch could run per 
mAh of battery. 

RunTimepermAh =
timeHour

mAh
*60

m
hour 

This gave a runtime of 0.37 ± 0.052 minute
mAh which can be used to select appropriately sized batteries. 

8. Conclusions and future work 

A design for the Cogwatch (a low-cost open-source device to monitor physiological indicators) is presented. The sensor systems 
applicable to our research were validated against existing commercial options. With all sensors running, the device can record at 60 Hz 
which is adequate for physiological measures. PPG sensors for RR and HR were validated against a Zephyr 3 biosensor on a single 
seated stationary subject and it was found that the measured heart rates were within 1.3%. The OAD for GSR was compared to a Fluke 
117 and it was found that it displayed linear behavior within the range of 600 kOhm to 1400 kOhm with a minimum recognizable step 
size of 3.8 kOhm. Temperature measurements from the MLX 90614 were compared to a conventional thermocouple with a standard 
thermometer as ground truth. It was found that while the MLX measured the same temperature as the thermometer, the thermocouple 
was off by 7 degrees and had significantly higher noise. These results verify that the proposed design can be used to track stress and 
cognitive workload, which has implications for its use in a variety of applications. Future work includes validating and using the 
streams of data from the onboard motion sensors to expand applications to experiments involving movement. In addition, the sensors 
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will be used to identify sources of noise in other signals and correcting for them through sensor fusion algorithms. While cognitive 
workload experimental design was not in the scope of this paper, future work includes utilizing the Cogwatch to distinguish between 
different levels of workload while performing generalizable cognitive and psychomotor tasks. This includes the extension of prior 
empirical studies comparing custom built physiological sensors to commercial sensors and subjective cognitive workload metrics 
across a variety of tasks (perception, physical interaction, memory and decision making) [48,49]. 
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response in test groups facing pleasant and unpleasant stimuli, Sensors (Basel) 21 (12) (2021) 4210, https://doi.org/10.3390/s21124210. 

[48] B.M. Knisely, J.S. Joyner, A.M. Rutkowski, M. Wong, S. Barksdale, H. Hotham, K. Kharod, M. Vaughn-Cooke, A Cognitive decomposition to empirically study 
human performance in control room environments, Int. J. Hum.-Comput. Stud. (2020), https://doi.org/10.1016/j.ijhcs.2020.102438. 

[49] B.M. Knisely, J.S. Joyner, M. Vaughn-Cooke, Cognitive task analysis and workload classification, MethodsX 8 (2021) 101235, https://doi.org/10.1016/j. 
mex.2021.101235.  

Louis J. Dankovich is a post doctoral fellow with the Army Research Lab at Aberdeen. His research focusses on using machine learning to 
recognize the activities and intentions of human operators in order to allow them to better team with mechanical, artificial intelligence, and 
augmented reality systems.  

Janell S. Joyner is a graduate student pursuing a PhD in Reliability engineering. Her research focuses on human factors and understanding 
what causes a person to misuse a device or system. She leads a VR team in the development of Unity simulations to be used in different 
immersive environments (CAVE and VR headsets).  

William He is a Computer Science major and is a member of the VR team in the Hybrid-System Integration and Simulation Lab. His work in 
the lab centers on simulation development in Unity, biosensor data analysis, and multi-system device integration.  

L.J. Dankovich IV et al.                                                                                                                                                                                              

https://doi.org/10.1111/srt.12847
https://www.melexis.com/en/documents/documentation/datasheets/datasheetmlx90614
https://www.melexis.com/en/documents/documentation/datasheets/datasheetmlx90614
https://doi.org/10.3390/s22093177
https://imotions.com/blog/learning/research-fundamentals/galvanic-skin-response/
https://imotions.com/blog/learning/research-fundamentals/galvanic-skin-response/
https://www.semanticscholar.org/paper/Electrodermal-activitymeasurements-for-detection-Ko%25C5%2582odziej-Tarnowski/b188db85abd8e1247f4c407bd20c176b829f0632
https://www.semanticscholar.org/paper/Electrodermal-activitymeasurements-for-detection-Ko%25C5%2582odziej-Tarnowski/b188db85abd8e1247f4c407bd20c176b829f0632
https://doi.org/10.3390/s21124210
https://doi.org/10.1016/j.ijhcs.2020.102438
https://doi.org/10.1016/j.mex.2021.101235
https://doi.org/10.1016/j.mex.2021.101235


HardwareX 19 (2024) e00538

14

Ahmad Sesay is a Computer Science major and is a member of the VR team in the Hybrid-System Integration and Simulation Lab. His work in 
the lab centers on simulation development in Unity, biosensor data analysis, and the creation of realistic interactions with virtual objects in 
VR.  

Monifa Vaughn-Cooke is an Associate Professor in the Department of Health Systems and Implementation Science in the Virginia Tech 
Carilion School of Medicine. Her research focuses on the modeling and simulation of human performance in laboratory and field environ
ments with the goal of identifying and mitigating risk to the human user. 

L.J. Dankovich IV et al.                                                                                                                                                                                              


	CogWatch: An open-source platform to monitor physiological indicators for cognitive workload and stress
	1 Specifications table
	2 Hardware in context
	3 Hardware description
	4 Design files summary
	5 Build instructions
	6 Operation instructions
	6.1 Connecting to the CogWatch

	7 Validation and characterization
	7.1 Heart rate
	7.2 GSR
	7.3 Temperature
	7.4 Battery life

	8 Conclusions and future work
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	References


