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ABSTRACT: This study explores the research area of drug
solubility in lipid excipients, an area persistently complex despite
recent advancements in understanding and predicting solubility
based on molecular structure. To this end, this research
investigated novel descriptor sets, employing machine learning
techniques to understand the determinants governing interactions
between solutes and medium-chain triglycerides (MCTs).
Quantitative structure-property relationships (QSPR) were con-
structed on an extended solubility data set comprising 182
experimental values of structurally diverse drug molecules,
including both development and marketed drugs to extract
meaningful property relationships. Four classes of molecular descriptors, ranging from traditional representations to complex
geometrical descriptions, were assessed and compared in terms of their predictive accuracy and interpretability. These include two-
dimensional (2D) and three-dimensional (3D) descriptors, Abraham solvation parameters, extended connectivity fingerprints
(ECFPs), and the smooth overlap of atomic position (SOAP) descriptor. Through testing three distinct regularized regression
algorithms alongside various preprocessing schemes, the SOAP descriptor enabled the construction of a superior performing model
in terms of interpretability and accuracy. Its atom-centered characteristics allowed contributions to be estimated at the atomic level,
thereby enabling the ranking of prevalent molecular motifs and their influence on drug solubility in MCTs. The performance on a
separate test set demonstrated high predictive accuracy (RMSE = 0.50) for 2D and 3D, SOAP, and Abraham Solvation descriptors.
The model trained on ECFP4 descriptors resulted in inferior predictive accuracy. Lastly, uncertainty estimations for each model
were introduced to assess their applicability domains and provide information on where the models may extrapolate in chemical
space and, thus, where more data may be necessary to refine a data-driven approach to predict solubility in MCTs. Overall, the
presented approaches further enable computationally informed formulation development by introducing a novel in silico approach
for rational drug development and prediction of dose loading in lipids.
KEYWORDS: smooth overlap of atomic positions (SOAP), machine learning, solubility prediction, lipids, lipid based formulations,
quantitative-structure−property-relationships (QSPR)

■ INTRODUCTION
The process of identifying the most suitable formulation for a
drug candidate is increasing in complexity and requires careful
decision-making, primarily due to the high prevalence of
poorly water-soluble drug candidates.1,2 These drugs often
require more sophisticated formulation strategies, termed
bioenabling approaches, to improve their absorption and
consequently their bioavailability.3 Preformulation profiling
plays a pivotal role in this context. This involves extensive
solubility screenings in a diverse range of excipients, which
provide the basis for formulation development.4 This step is
crucial in understanding the challenges associated with a given
drug candidate and tailoring effective formulations. The

commercial reality of reducing time-to-market and the need
to move away from property-agnostic formulation develop-
ment underscore the importance of computationally informed
approaches. Leveraging in silico methods can mitigate trial and
error in formulation development and support informed
decision-making in drug product development.5−8 Lipid-
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based formulations are a bioenabling approach with demon-
strated clinical success.9 This formulation strategy typically
involves constructing complex phase diagrams based on
solubility screenings in specific solvents. Adopting in silico
approaches in this process can be beneficial as it can enable
decision-making based on molecular properties. Through the
extraction of chemical insights by computational approaches,
the formulation process can be streamlined, accelerated, and
better understood.
Over the past decade, data-driven approaches have made

significant strides in predicting solubility in formulation
vehicles utilizing quantitative structure property relationships
(QSPR).10 Conceptually, the accuracy of any machine learning
model depends on the quality of the data set, the algorithm
used, as well as the way in which molecular properties are
being encoded. Pioneering research in understanding and
predicting solubility in triglycerides has been conducted
utilizing various modeling techniques and features such as
two-dimensional (2D) and three-dimensional (3D) descrip-
tors, as well as solvation parameters.11−14 Different classes of
descriptors portray molecular properties in different formats,
and there is arguably not one set of “best” descriptors that
captures all drivers of solubilization in lipids.15

Previous works on predicting drug solubility in medium-
chain triglycerides (MCTs) focused on 2D and 3D descriptors
to construct linear regression models via partial least-squares
regression modeling.12 It was found that descriptors related to
the solid state, in the form of calculated ideal solubility, as well
as the polarity, size, and shape of the molecule, are of relevance
to predicting solubility in MCTs. While chemical representa-
tions of molecules in the form of topological polar surface area
(TPSA) and charge distribution certainly facilitate a better
understanding of the factors driving solvation, such global
molecular determinants have limited application to providing
an atomistic understanding of the factors at play. For example,
the number of nitrogen atoms was previously identified to be
of relevance; however, such count-based descriptors convey
shortcomings in terms of accounting for mesomeric and
inductive effects exerted by chemical proximity.11,12

Studies focusing on more mechanistic aspects of drug
solubility and partitioning in lipidic excipients used Abraham
solvation parameters for the construction of linear free energy
relationships (LFER).14,16 These descriptors comprise a
collection of five numerical values that encode a molecular
structure by considering its molar volume, solute H-bond
acidity and basicity, as well as excess molar refraction and
polarity/polarizability.17 The application of these descriptors as
Abraham-type LFER equations successfully demonstrated their
effectiveness in predicting solubility enhancement by fasted-
state-simulated intestinal fluid.18 The ease of employing
Abraham descriptors and their succinct way to represent
molecular properties has facilitated widespread use to model
several partition equilibria and biological properties.15,17,19

Most of the descriptors mentioned above assign chemical
information (i.e., polarity or H-bonding strength) to structural
characteristics. However, molecular fingerprints, such as
extended connectivity fingerprints (ECFPs), describe atomic
environments based on the presence or absence of
substructures within a predefined bond length. This encoding
method captures the connectivity aspects of molecules.20

While the predominant application of ECFPs focuses on
similarity searching, recently, ECFPs have been utilized to
predict drug solubility in organic solvents and water.21,22

A more complex class of geometrical fingerprints focused on
atomic densities has recently seen a surge of applications in the
field of materials modeling.23 These descriptors create
parametrizable descriptions of the local spatial regions
composing an atomistic system, providing accurate structural
information on their targets common molecular fingerprints.
The smooth overlap of atomic position descriptors (SOAP) in
particular has performed convincingly in many prediction tasks
oriented at characterizing the stability of organic compounds,
both in condensed and gas phase applications,24,25 with
remarkable generalization performances.26 The constructed
regression model assigned stability attributes to local spatial
regions within a molecule through physicochemically moti-
vated machine learning.27

One notable advantage of utilizing such encodings lies in the
direct interpretability of the atom-centered regression weights
in the context of their impact on the target property under
investigation. Unlike approaches that interpret global molec-
ular determinants, such as calculated logP, this method
facilitates an understanding of how spatial regions of a
molecule contribute to the modeled property. This aspect
gains particular significance within the domain of advancing
explainable artificial intelligence (AI).6,28 Models that offer
explanations regarding the mapping of input features to the
target property are more widely accepted and trusted by users
and may be utilized to better understand the property being
investigated.
There are many different ways to represent molecular

structures. These encompass a broad spectrum of attributes,
spanning from physicochemical characteristics to complex
geometric descriptions. By leveraging the data resources
available from preclinical profiling repositories, machine
learning holds the potential to improve predictive capabilities,
provide novel insights into the governing principles of
solubility in MCTs, and thereby further supplement the
current understanding of the underlying factors at play.5

The objective of this study was to compare and evaluate
various descriptor sets with a specific emphasis on SOAP
descriptors. The predictive accuracy, interpretability, and
uncertainty of each set were assessed using an extended data
set of solubility values in MCTs. This approach offers the
opportunity to move away from local models and instead
uncover global trends in solubility by capturing a larger

Table 1. Descriptive Statistics of Common Physicochemical Properties (n = 182)

statistics mean std min 25%a median 75%a max

TPSA [Å2]b 71.81 31.98 6.48 46.53 71.85 90.84 182.83
clogPc 3.78 1.73 −1.04 2.73 3.67 4.71 8.90
Mw [g mol−1]

b 396.08 111.88 151.17 314.77 389.37 458.31 764.95
MP [°C] 175.14 54.13 55.47 138.12 172.35 216.90 302.00
logS [M] −2.30 1.02 −4.98 −3.02 −2.33 −1.56 0.04

a25th and 75th percentile. bCalculated by RDKit. cCalculated by RDKit according to Wildman and Crippen.31
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chemical space.29 This approach allows for a more
comprehensive understanding and broader practical insights.

■ MATERIALS AND METHODS
Materials. Miglyol 812 N (MCT; IOI Oleo GmbH,

Hamburg, Germany) was purchased from Warner Graham.
The excipient complies with the quality specifications of the
European Pharmacopoeia. The solvents used for the ultra-
performance liquid chromatography (UPLC) quantification
were of UPLC grade.

Data Set Characteristics. For this study, a data set of
solubility values for 182 crystalline drugs in MCTs was curated.
Out of the 182 molecules, 51 violate the rule of five defined by
Lipinski et al.,30 and 72 molecules correspond to development
compounds by F. Hoffmann-La Roche Ltd. The solubility is
provided as the decadic logarithm of the molar solubility
(logS). Descriptive statistics of common physicochemical
properties and their underlying distribution are presented in
Table 1. The data set does not contain any multicomponent
crystals, e.g., salts, hydrates, or solvates. The experimental data
for the compounds used in this study (MP, solubility in
MCTs) can be found in the Supporting Information.

Methods. Solubility Measurements and Data Curation.
Drug solubility in MCTs was determined by (a) mixing the
samples for 24 h at room temperature by using a miniaturized
96-well assay for solubility and residual solid screening
(SORESOS),32 (b) employing a miniaturized version of the
shake-flask method in 2 mL glass vials,33 or (c) collecting data
from the literature.12,34 Each of the employed assays involved
residual solid-state screenings by powder X-ray diffraction to
identify potential solid-state changes during solubility screen-
ings.

Thermophysical Analysis. The melting point of the drugs
was determined as the onset of the melting endotherm by
differential scanning calorimetry (DSC), recorded with a DSC
I instrument from Mettler-Toledo AG (Greifensee, Switzer-
land). Thermogravimetric analysis (TGA) was employed to
confirm the absence of solvates or hydrates and to ensure that
no degradation occurs during the DSC heat ramps. Samples
were analyzed with a TGA/DSC 1 STARe system from
Mettler-Toledo AG (Greifensee, Switzerland). Both DSC and
TGA measurements were performed as described previously.35

Descriptor Calculation and Model Construction.
RDKit�Mol File Generation and ECFP Calculation. RDKit
is an open-source cheminformatics software which provides a
range of functions for working with chemical structures and
data.36 RDKit (Version 2022.9.5) was employed for the
calculation of ECFPs via the Morgan algorithm, creation of
mol files, molecular embedding, and chemical structure
representation. Mol files were obtained based on simplified
molecular-input-line-entry system sequences (SMILES).37

ECFPs are a class of connectivity fingerprints that encode
structural fragments of a molecule, considering attached bonds
and atoms within a defined circular bond distance.20 Each
molecule was encoded, considering a distance of 2 or 3 bonds
as 2048 bits. ECFP fingerprints are frequently utilized for
similarity analysis of compound libraries; however, to the best
of the authors’ knowledge, this set of features has never been
introduced to model drug solubility in lipids.

Mordred�2D and 3D Descriptors. 2D and 3D descriptors
were calculated with Mordred, an open-source descriptor
software (Version 1.2.0),38 based on previously generated .mol
files via RDKit, 1826 2D and 3D descriptors were calculated.

The success of these calculations relies on the specific SMILES
sequence provided as input. In certain cases, the calculation
process did not calculate all descriptors successfully. For that
reason, non-numeric features were excluded from the data-
frame, which resulted in 1218 descriptors that were further
preprocessed. Collinear descriptors can be assumed to contain
redundant information. To address modeling issues arising
from collinearity, a threshold of ≥95% was applied, leading to
the exclusion of features surpassing this threshold. It is
important to emphasize that the identification of cross-
correlated features was performed by using statistics from the
training set and then extended to the test set. This approach
was adopted to avoid any potential bias introduced by train-
test leakage.6

DScribe�Smooth Overlap of Atomic Positions Descrip-
tor. DScribe is an open-source Python package, initially
developed for material sciences purposes, which allows for
the transformation of atomic structures to numerical finger-
prints.39,40 Throughout this study, it was used to calculate the
SOAP descriptor (DScribe version 2.0.0). The SOAP
descriptor encodes the atomic environment of each atom in
a molecule by estimating the probability density of other atoms
residing at specific distances relative to a focal atom, yielding a
geometrical fingerprint for each atom within a molecule. The
granularity of this description depends highly on its para-
metrization and should be optimized by a target-adapted
regression approach to adequately reflect the properties
influencing the dependent variable. Spatial geometries for
each atom within a molecule are iteratively encoded by
optimizing the parameters rcut, lmax, nmax, σ, and the averaging
mode. The rcut parameter represents a cutoff radius in Å, which
takes the contribution of each atomic species to the
environment for each focal atom into account. Any atom
residing outside the defined radius is neglected during the
calculation. The nmax and lmax parameters predominantly define
the dimensionality of the descriptor, specifying the local
expansion, and correspond to the number of radial basis
functions and the maximum degree of spherical harmonics
used to describe the atomic environments, respectively. This
can be considered as the resolution of the environment defined
within the cutoff rcut. Finally, the σ value represents the width
of a Gaussian that represents the atomic density fields for each
atom in the system. Within this study, values for rcut from 5 to
20 (increment = 1), for nmax and lmax from 2 to 10 (increment =
2), and σ from 0.1 to 1.5 (increment = 0.1) comparable to
Barnard et al.41 were evaluated. For each of these
combinations, a separate model was trained. The generated
features represent a tensor that must be averaged to be suitable
for the algorithms employed herein. Every molecule within the
data set was embedded to assign each atom to 3D coordinates.
The .xyz files were read with the Atomic Simulation
Environment (ASE) (Version 3.22.1) and passed to DScribe
for further processing.42 The optimal SOAP parameters were
determined as part of a 10-fold cross-validation scheme on the
training set. The model with the lowest root mean squared
error (RMSE) obtained on average within 10-fold was chosen
for further evaluation.

AbSolv�Abraham Solvation Parameters. For the calcu-
lation of Abraham solvation parameters (AbSolv Descriptors),
the software Percepta, implemented in ACD Laboratories
(Advanced Chemistry Development, Inc. Toronto, Canada)
was utilized [ACD/Laboratories Release 2021.2.2 (Build 3535.
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Seventeen Dec 2021)]. The calculation was based on SMILES
sequences.

Model Building Procedure. Each model was constructed
using scikit-learn, an open-source machine learning library.43

To develop and evaluate the models, a consistent train-test
split was used. The dataframe was sorted by log solubility (mol
L−1), prior to assigning every fourth compound to the test set,
resulting in a training set consisting of 75% of the data. This
guaranteed that the chemical features influencing solubility
were distributed evenly in both sets. Within this study, the
feature matrices included the melting point as a variable to
address the impact of solid-state characteristics on solubility.
Each model was trained using K-fold cross-validation (K =

10) on the training set to optimize the hyperparameters of
each model. Scikit-learn pipelines and grid searches were
utilized to avoid train-test leakage. To ensure that the features
and models compared are assessed equally, shuffling within the
cross-validation scheme was conducted with the same random
seed. Preprocessing steps were fitted to the training set and
used to transform the data in the test set. These involved the
evaluation of different scaling methods, such as the
MinMaxScaler, StandardScaler, and RobustScaler43 and skew-
ness transformation via the yeo-johnson method, which
effectively maps features to normal distributions.44 The
selection of the final estimator for further evaluation was
guided by choosing the model that achieved the lowest RMSE
within the cross-validation scheme. This estimator was finally
evaluated on the yet unseen test set. This approach was
adopted to mitigate the potential influence of a fortuitous
train-test split on the model selection process. By prioritizing
the estimator with the lowest cross-validated RMSE, which
accounts for performance across multiple train-validation splits,
a more reliable and robust evaluation of the model’s
generalization ability and predictive performance was obtained.
To address modeling challenges posed by the high

dimensionality of the data set, regularized linear methods,
i.e., least absolute shrinkage and selection operator (lasso),
ridge, and elastic net regression were evaluated. Lasso is a
linear regression, technique that applies an L1 penalty term
during optimization. This term facilitates sparsity in the model
by shrinking the coefficients, resulting in few nonzero
coefficients. It is an effective method to prevent overfitting
and efficiently select the most predictive features, which
promotes a more interpretable and compact model.45,46

Similarly, ridge regression promotes shrinking the coefficients
by applying an L2 penalty term, lowering the coefficients but
never forcing them to be zero.47 While lasso is particularly
suited for feature selection purposes, the ridge L2 penalty
offers an effective strategy to deal with high collinearity. Both
methods are combined in the elastic net model, which employs
both the L1 and L2 penalties, offering more flexibility in
controlling the sparsity and overall complexity of the resulting
model.46,48,49 The tunable hyperparameters of the models are
the α value, which controls the regularization strength, as well
as the L1 to L2 ratio for the elastic net model. This study aims
to obtain useful models regarding predictive accuracy while
targeting meaningful descriptors for drug solubility in lipids,
rather than aiming to exhaustively test different algorithms. For
this reason, relatively simple but interpretable regression
frameworks have been investigated that allow good comparison
between models while being computationally inexpensive.
Although ridge is well suited for dealing with multicollinearity,
highly correlated features were excluded from the feature frame

based on training set statistics when utilizing 2D and 3D
descriptors. To evaluate the model performance, RMSE, mean
absolute error (MAE), and R2 were considered. The same
metrics were calculated and reported for a leave-one-out cross
validation (LOOCV) on the training set. The external test set
was used for final estimator evaluation only and remained
unseen during training.

Uncertainty and Applicability Domain Estimation. To
estimate uncertainties associated with the input variables,
several models were aggregated based on different subsamples
of the training data.23 For a total of 1000 iterations, each
model with its predetermined hyperparameters was fitted to a
ratio of 90% of the training data. This partition was sampled at
random from the training set without replacement. The
different fits on the subset were utilized to predict the test
instances to derive a point estimate with an associated standard
deviation. This corresponds to the uncertainty of the model for
a given instance and reflects an estimate of the feature space
where the model is likely to inter- and extrapolate. The
generation of subsamples was conducted by using the numpy
random.choice function.50 A calibration of uncertainties as well
as rescaling of the predicted distribution was conducted
according to Imbalzano et al.51 Ultimately, this approach
enabled the quantification of uncertainties associated with each
model’s predictions, providing insights into the reliability and
applicability domain (AD) of each model and descriptor set.
As highlighted by Musil et al.,52 such an approach facilitates
deriving conclusions on a feature or molecular space, in which
the training set lacks sufficient input space to derive highly
reliable predictions.

■ RESULTS AND DISCUSSION
In this study, the performance of four different descriptor sets
to predict solubility in MCTs was evaluated by the application
of three regularized regression approaches and various
preprocessing schemes on a data set consisting of 182
experimental solubility values. To accommodate the impact
of solid-state contributions to solubility, MP was included as a
feature in all descriptor sets under evaluation. The results for
the obtained models are summarized in Table 2. Based on the
test set statistics, the features show comparable predictive
performance. However, when both cross-validation results and

Table 2. Performance for the Best Model per Descriptor
Seta

feature performance

feature 2D and 3D SOAP Abraham ECFP4

Train Performance
R2 0.82 0.92 0.70 0.88
RMSE 0.42 0.28 0.55 0.35
MAE 0.33 0.21 0.42 0.27

Test Performance
R2 0.77 0.78 0.77 0.68
RMSE 0.50 0.49 0.50 0.59
MAE 0.41 0.42 0.38 0.45

LOOCV on Training Set
Q2 0.68 0.72 0.66 0.65
RMSE 0.57 0.53 0.58 0.60
MAE 0.43 0.42 0.44 0.45

aModel type and hyperparameters can be inferred from Table S2.
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interpretability are considered, the SOAP descriptor emerges
as the most suitable choice for predicting solubility in MCTs.

Modeling with 2D and 3D Descriptors. 2D and 3D
descriptors are among the most abundantly used features for
QSPR modeling and have demonstrated successful application
in modeling various properties.18,21,22,53,54 Application of the
Mordred open-source descriptor library followed by the
previously outlined preprocessing methodology resulted in a
performance of R2 = 0.77 and an RMSE = 0.50 on the test set
(Table 2). A parity plot, displayed in Figure 1a illustrates the
performance of the model on the training and test splits.
Clearly, the model accurately predicts drug solubility in MCTs.
Yet, it is notable that the model exhibited a lower degree of
accuracy in predicting the solubility of compounds with a low
solubility in MCTs. This is evident by an overprediction of
solubility for those compounds. Conducting leave-one-out
cross-validation on the training set resulted in an RMSE of
0.57, which is overall in agreement with the test performance,
both indicating good generalizability on unseen data. The
previously described preprocessing scheme resulted in a model
input consisting of 822 features after removing cross-correlated
features based on training set statistics. As a part of the
constructed machine learning pipeline, the impact of skewed
variables and the effects of scaling and centering were assessed.
The pipeline that resulted in the most robust cross-validated
accuracy on the training set was chosen. Among the models
tested on 2D and 3D descriptors, the elastic net model with
prior feature transformation via the MinMaxScaler yielded the
highest performance. The MinMaxScaler transforms the scale

of each feature to values between 0 and 1. Skewness
transformation by employing the yeo-johnson transformer did
not result in superior robustness, as indicated by a higher
RMSE during cross-validation. Hyperparameter tuning re-
sulted in an α-value of 11.51 × 10−3 and an L1 ratio of 0.75.
For a full overview of the model performance, the reader is
directed to Table 2.
An assessment of feature importance was conducted by

considering the coefficient values of the model across a 10-fold
cross-validation scheme on the training set. Figure 2 illustrates
which solute properties influence solubility in MCTs by
considering the models’ regression weights. It is well known
that the solid-state properties of the drugs are a major driving
force for solubility in lipid excipients such as MCTs, which is
further reaffirmed by the negative coefficient value.8 The
solute’s melting point, serving as a surrogate for the crystal
lattice energy required for the molecule’s dissociation from the
crystal, constitutes the most prominent predictor with a
negative influence in the elastic net model. The molecule’s
polarity, expressed as TPSA, had a negative influence but was
of lower priority.55 This is further reflected by the effect of
various electrotopological state (E-State) indices that represent
numerical values comprising topology and local electron
accessibility of the molecular structures.56 Essentially, the van
der Waals surface area (VSA) number to the E-State index can
be considered as the surface contribution of a certain part of
the molecule to the global E-State index of the molecule. The
number of aromatic five-membered rings (n5aRing) represents
the feature with the fourth highest predictivity when

Figure 1. Parity plots illustrate the comparison between the predicted and measured solubility for 182 drugs in MCTs by the application of
different descriptors and machine learning pipelines. The gray dotted lines represent a deviation of ±0.5 log10 units from the identity line. The line
of best fit on the test set is plotted to assess the models’ average deviation from unity.
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considering the coefficients of the model. Five-membered rings
are often encountered as nitrogen-containing heterocycles that
introduce further polarity into the molecule, which may
consequently lead to a negative impact on solubility in lipids.
Further indicators of the relevance of polarity and electro-
topology included the “Burden Chemical Abstract Service
University of Texas” (BCUT) descriptors weighted by
Gasteiger-Marsilli partial charges or partial equalization of
orbital electronegativity (PEOE).57−60

The importance of the polarity of the solute to predict lipid
solubility aligns with observations using a linear regression

approach for a set of 34 drugs based on 2D and 3D
descriptors.11,12 Among the most predictive models, the TPSA
(tot) and the melting point were identified as important
features, alongside the number of double bonds and the
number of nitrogen atoms. Additionally, the JGI6 descriptor
positively influenced lipid solubility, which is a topological
descriptor reflecting the global charge transfer within a
molecule.12,61,62 Although other descriptors representing
electrotopology were identified by the discussed machine
learning model, it can be concluded that similar trends were
observed.
The machine learning model developed in this study exhibits

a marginally lower level of accuracy than the model developed
by Alskar̈ et al.12 for predicting solubility in MCTs when
considering the RMSE on the test set (RMSE = 0.50 (n = 46)
vs RMSE = 0.37 (n = 6)). This may be linked to the larger
chemical diversity present in the current data set (n = 182 vs n
= 35) and also the larger solubility interval. Another
explanation may be that only the melting point was utilized
as a proxy for solid-state contributions and not the ideal
solubility, which accounts for the entropy of fusion calculated
based on the enthalpy of fusion and the melting point.12 A
previous study by the same authors resulted in a model with a
weaker RMSE of 0.75 (n = 8) when only MP was included as
an additional feature.11

Modeling with Smooth Overlap of Atomic Position
Descriptors. The SOAP descriptor encodes the local atomic
environment of each atomic species encountered within a
molecule.63 Depending on its parametrization, the descriptor
can offer a highly granular view on atomic topology and
connectivity and has been recently applied to predict diverse
properties such as aqueous solubility and the stability of
organic molecular crystals.27,41 The SOAP descriptor was
initially designed for material sciences purposes, and its utility
to model solubility in pharmaceutically relevant solvents has
yet to be explored.
The construction of a SOAP tensor starts with a 3D

embedding of a molecular structure, which is followed by an
extraction of atomic species present within a molecule. For
each atom within the molecule a probability density of locating
other atoms in a user defined proximity of each focal atom is

Figure 2. Coefficient values across a 10-fold cross-validation on the
training set of the transformed features. The 15 most influential
features for solubility in MCTs are displayed. Most features exhibit a
negative influence on solubility. Solid-state properties, reflected by the
melting point, appear to be most influential for the trained model. An
explanation of the used abbreviations can be inferred from the
Supporting Information (Table S2).

Figure 3. Contribution maps for the model drugs a) glibenclamide and b) carvedilol. Atoms highlighted in green demonstrate a positive impact on
solubility in lipids, while red atoms contribute negatively. The contributions are indexed by the predicted solubility for the molecules, which
constitutes the average of all atomic predictions.
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being calculated (rcut in Å). The parameters lmax and nmax define
the resolution of the encoded 3D space that falls within the
vector length of rcut. Finally, each atom is represented by the
standard deviation of the Gaussian used to expand the atomic
density. A more detailed explanation of the descriptor is
provided by Himanen et al.39 and Bartoḱ et al.63 The
calculation of the SOAP descriptor yielded tensors of different
dimensionality, dependent on the choice of parameters. The
maximum accuracy in this study was achieved by summing the
values of the computed tensor over each atom. The parameters
for the SOAP descriptor that rendered the highest predictive
performance are rcut = 5, nmax = 8, lmax = 2, and σ = 0.3, which
resulted in 6240 values describing local atomic environments
of each atom.
Among the different regularized models evaluated, the lasso

algorithm yielded the highest accuracy within the 10-fold
cross-validation scheme (α-value = 2.95 × 10−2). The resulting
feature matrix, including MP, was scaled by the StandardScaler,
which involved removing the mean and scaling to unit
variance. A parity plot is shown in Figure 1b that presents
the relationship between measured and predicted drug
solubility in MCTs.
Important in any data driven approach is not only the

performance on new unseen data but also the causal inferences
that can be drawn between features and target properties.28 As
the SOAP descriptors encode local environments for each
atom in a molecule, it allows iteratively decomposing a global
property such as solubility to atomic contributions. This can
provide insights into solute−lipid interactions on an atomistic
level. For this purpose, a separate model was built and fitted on
the average of the descriptors associated with its individual
atomic species. The local atomic environment for each atomic
species was used as an input to predict the contribution of each
atom toward the total solubility. These contribution values
were indexed by subtracting the total solubility value, enabling
the identification of atomic environments that positively or
negatively impacted the solubility.
Figure 3a,b presents highlighted contributions for two

different molecules by utilizing the RDKits GetSimilarityMap-
FromWeights function.36 The example for the model drug

glibenclamide (Figure 3a) clearly shows that atomic environ-
ments inducing polarity negatively influenced the solubility in
lipids. The sulfonylurea substructure of glibenclamide consid-
erably influences solubility, likely owing to the presence of free
electron pairs within the functional group and its NH-acidic
character. The machine learning model successfully recognized
patterns in the atomic environments, as reflected by the
negative contributions of adjacent substructures. For example,
the neighboring benzene moiety appears to be influenced by
the sulfonylurea structure, resulting in a reduction of its
positive effect. This demonstrates the model’s ability to capture
complex relationships and interactions of atomic environments
within a molecule.
As a consequence, atoms in the ortho position exhibit no

discernible effect, which sets them apart from other benzene
rings. The amide functional group of glibenclamide exerted a
similar negative contribution. Interestingly, the amide adjacent
to the ethyl group constitutes a negative impact, most likely
attributed to the polarity of the amide. It should be noted that
the SOAP descriptor was calculated on a 3D embedding of the
molecule. Considering the 2D structure of the molecule, it can
be observed that due to the presence of a rotatable bond, the
amide structure and ethyl moiety may exhibit spacial proximity
that might have been taken into account during the prediction.
This is confirmed by the conformation of the embedded
molecule (not shown). The cyclohexane moiety, as well as a
high share of the benzene moieties, had a positive influence on
solubility, which is most likely attributed to the increased
lipophilicity these functional groups trigger. It should be noted
that the machine learning model used the MP as a feature that
results in challenges to deconvolute properties from solvation
or solid-state limited solubility. It can be suspected that the MP
accounted for a high proportion of the crystal lattice energy
term that must be surmounted for the molecule to dissociate
from the crystal. For that reason, the model predominantly
identified solute−solvent interactions, as opposed to dissoci-
ation of solute−solute interactions.
As an example of another drug, carvedilol was chosen to

represent atomic contributions, which are visualized in Figure
3b. The strong negative contribution resulting from the

Figure 4. Boxplot depicting the average normalized contributions to solubility per functional group. The box spans from the first to the third
quartile, with a median line, and whiskers that extend 1.5 times the interquartile range. The observed high variability may be due to electron
delocalization and contrasting contributions from overlapping atomic environments. Only functional groups appearing in two or more molecules
were included in the analysis.
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diethylamine moiety exhibits a considerably higher contribu-
tion compared to the H-bond donor of the carbazole system as
the free electron pair is likely to delocalize into the ring system.
Attributing these contributions to structural motifs further
underscores the potential of local decompositions of a global
property such as solubility.
To make the results more widely applicable, an attempt was

made to delineate the atomic contributions by functional
group, although the examples of glibenclamide and carvedilol
show that the atomic geometries influencing solubility overlap.
A list of SMILES arbitrary target specification (SMARTS)
patterns was utilized to extract the atomic contributions
driving solubility via substructure matching. The contributions
per functional group were averaged. A descriptive analysis of
the obtained results is depicted in Figure 4.
The contributions of substructures showed noticeable

variability, mainly due to the diverse proximal environment
of these functional groups, which was highlighted based on the
examples carvedilol and glibenclamide. Nevertheless, a clear
differentiation between substructures that enhance solubility
and those that hinder solubility was evident. The positive
influence of benzene rings and hydrocarbons is reaffirmed by
the model’s indication that benzene, ethyl, and methyl are
located within the solubility-enhancing region of the boxplot.
Considering the contributions per atomic species, it was
noticeable that halogens appeared to have a favorable impact
on solubility in MCTs, particularly chlorine and fluorine
(Figure 5).

Both of these atoms were sufficiently represented in the
molecular structures, as opposed to bromine. Substituting
hydrogens with fluorine atoms is a concept frequently utilized
in drug discovery to enhance permeability through lipid
membranes by increasing lipophilicity while minimizing the
increase in atomic radius.64 Hence, the positive impact may be
attributed to the increase in lipophilicity facilitated by the
introduction of these atoms. An evident negative impact was
observed for tetrazole rings, arylamines, carbamides, and amide
moieties. While this finding highlights the importance of
nitrogen atoms that were previously identified to negatively

impact solubility,11,12 the atomistic perspective provided by the
application of the SOAP descriptor demonstrated the short-
comings of this approach as it appears that nitrogen atoms can
exert very diverse properties, depending on their atomic
environment, which is reflected by the high variation.

Modeling with Abraham Solvation Parameters.
Abraham solvation parameters have shown great promise for
mechanistic investigations of drug partitioning and solubility in
MCTs.13,14,16 However, they have never been utilized for a
data-driven assessment of drug solubility in MCTs. The
underlying theory of the Abraham solvation parameters is
related to the framework of the cavity model, which describes
solute−solvent interactions.65 This study does not aim to build
classical linear free energy relationships but rather utilizes the 5
Abraham parameters and includes MP to reflect solid-state
properties as a part of the previously described machine
learning pipeline. The best model obtained with this descriptor
set was a ridge regression model with an α-value of ≈0.494 and
preprocessing steps involving the previously elaborated
MinMaxScaler and skewness transformation via the yeo-johnson
method, which effectively transforms skewed variables to
normal distributions.
The performance metrics of this approach are displayed in

Table 2 and Figure 1c. Contrary to expectations, the utilization
of Abraham solvation descriptors resulted in a lower
performance on the training set, with an RMSE of 0.55,
compared to an RMSE of 0.50 on the test set. This finding may
be attributed to a fortuitous train-test split, resulting in features
and weights that favor generalizing to the test set. It should
also be noted that the computation of Abraham solvation
parameters relies on the availability of established molecular
fragments with well-defined associated values. Yet, in the case
of development compounds featuring novel molecular motifs,
certain fragments may be inadequately represented during the
descriptor calculation. Consequently, there is a possibility that
the used values for these novel fragments are imprecise,
thereby failing to accurately capture the properties of these
groups. This could falsify the overall value for a certain feature.
In fact, the ACD/Laboratories AbSolv algorithm is based on
group contributions developed by Platts et al.66 with additional
optimizations, and it was previously noted that particular
substructures led to larger prediction errors when modeling
solvent/water partition coefficients.67 Especially, halogenated
and bridged compounds led to larger prediction errors, which
highlights the shortcomings of descriptors calculated based on
group contribution approaches, where insufficient calibrations
might not be available.15

Apart from the McGowan volume, all feature importances
suggested a negative impact on solubility in lipids based on the
coefficients of the model (data not shown). Most relevant were
the H-bonding basicity and the solid-state properties reflected
by the MP. Hydrogen bond acidity influenced solubility in
lipids to a lower magnitude. This may be attributed to a trade-
off between the polarity that arises from the atoms constituting
the donor of the molecule and a previously reported beneficial
impact on partitioning into lipidic excipients by solute−solvent
complexation between the esters of glyceride moieties and
drugs.13

Overall, the Abraham solvation parameters rendered similar
predictivity compared to the 2D and 3D descriptors
considering the RMSE during CV. In Figure 6, a PCA of the
Abraham solvation descriptors, including MP, color-mapped

Figure 5. Boxplot of average contributions to lipid solubility per atom,
normalized and highlighted by the number of molecules in the data
set that contain each atom.
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by solubility of the molecule, is provided. The figure reveals a
good differentiation between highly and poorly soluble drugs.

Modeling with Extended Connectivity Fingerprints.
ECFPs are widely used for similarity searching of drug-like
molecular libraries and have also been explored for predicting
drug properties, including solubility in aqueous and organic
solvents.20−22 These descriptors can be parametrized by
different cutoff values that specify the bond length considered
to assign bits to neighboring structural attributes. The resulting
2048 bit values specify whether a particular substructure is
present or not. In most cases, bit radii of two or three are
considered that correspond to ECFP4 and ECFP6, respec-
tively.
The best-performing model utilizing ECFPs was an elastic

net model without feature scaling or transformations (Figure
1d). The model employed an α-value of 2.95 × 10−2 and an L1
ratio of 0.25. Despite applying a penalty function, the relatively
low L1 ratio may have contributed to slight overfitting and
inadequate regularization, as evidenced by the high perform-
ance on the training set and comparatively lower performance
on the testing set (Table 2). The low L1 ratio might also be
explained by the limited chemical information that these
features convey, which implies a rather limited need for
regularization. The achieved R2 value of 0.68 on the test set
was lower than the R2 obtained using other descriptors in this
study. Moreover, the cross-validated RMSE showed higher
values and greater fluctuation, suggesting that the features used
in this model may lack robust predictability. The utilization of
ECFP6 did not yield a higher predictive performance
compared to ECFP4 (data not shown). In conclusion, while
ECFPs have proven useful for similarity searching of drug-like
molecules, their efficacy for predicting drug properties, such as
solubility in MCTs, appears limited when compared to
alternative descriptors. This is underscored by a recent study
attempting aqueous solubility prediction with ECFPs, which
concluded that many common machine learning algorithms do

not construct metavariables, in the form of hidden layers that
could capture more complex interfeature relationships and
relate them to solubility.22 It can be assumed that the
predictive capabilities for ECFPs will only be notable when
considering larger data sets. Statistical inferences drawn
between the presence or absence of a substructure and its
corresponding effect are more difficult to assign when training
on binary features compared to continuous descriptors, as
reflected by the performance metrics obtained with 2D and 3D
descriptors. It should be noted that the decomposition of a
global molecular property such as solubility of solutes in lipids
by considering molecular fragments lacks an adequate
description of effects arising from inductive and mesomeric
effects as well as different conformations, which is inferior to
the SOAP descriptor. Additionally, ECFPs contain only one
identifier per fragment, which could lead to an insufficient
representation of repeated fragments.20

Uncertainty and Applicability Domain Estimation. To
gauge the uncertainties associated with each model and
establish an estimate for their applicability domains, we
aggregated a collection of 1000 models was aggregated.
These models were fitted using subsampling on the training
data, with hyperparameters specified, as outlined in Table S1.
Subsequently, this ensemble of models was used to make
predictions for the test set. Figure 7a−d illustrates the
performance of the bagged models by plotting the predicted
mean for each instance derived from the 1000 different fits and
mapping the standard deviation for each prediction to each
instance after calibration and rescaling.51

The results demonstrate that the aggregated models were
successful in generalizing to the test set. High standard
deviations for a given molecule reflect that the corresponding
feature space may be underrepresented in the training set, as
might be the case for molecules with a relatively distinctive
chemical structure. This serves as a surrogate for the
underlying applicability domain and potential extrapolations
of the model.
The results obtained based on the bagged models on 2D and

3D descriptors are depicted in Figure 7a, and an overview on
the relation between uncertainty and absolute error is
illustrated in Figure 7e. A certain degree of uncertainty is
inherent to a model as it can always be considered as a local
construct. The five molecules with the highest uncertainties for
each model/descriptor are depicted in Figure S1. Notably, high
prediction uncertainties were associated with molecules such as
digitoxin, hydrochlorothiazide, and colchicine, which exhibit
relatively distinctive chemical structures. This underscores the
connection between training set diversity and the model’s
ability to make reliable predictions, highlighting areas where
the model’s applicability domain may be limited.
For the model built on the SOAP descriptor, overall higher

uncertainties were obtained, as depicted in Figure 7b,f, with
three outliers present. It appears that the model constructed on
SOAP descriptors is more sensitive to training data selection
and that within certain feature spaces; more training data
would be required to provide more reliable predictions.
However, as indicated by the low absolute error associated
with these structures, the bag of models was still capable of
predicting the solubility value for the provided structures
successfully. Notably, among the structures with the highest
uncertainty were again hydrochlorothiazide and digitoxin,
which is comparable to the model built on 2D and 3D
descriptors, in addition to RO5114497-000 and RO5014449-

Figure 6. First two principal components of the PCA explain 76.03%
of the variance in the data. This decomposition allows for the
identification of a clear trend for solubility in lipids based on Abraham
solvation parameters and MP.
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000, two research compounds. The high uncertainties obtained
from the model based on SOAP descriptors may be attributed
to the fact that the SOAP descriptor provides the most
granular description of an atomic system among the
descriptors investigated. If the algorithm was not provided

with adequate information on these particular systems during
subsampling, it may inherently fail to capture these instances
while generalizing on unseen data.
As illustrated in Figure S1, the model built on Abraham

Solvation descriptors was in agreement with these results, as

Figure 7. (a−d) Parity plots illustrating the performance of bagged models on the test set, each trained on subsamples of the training data. The
uncertainties are expressed as standard deviation around the mean value and visualized using color mapping. It is important to note the differing
scales of the colorbars, emphasizing the degree of uncertainty among the models. (e−h) Uncertainty plotted over the absolute error.
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the highest uncertainties were again associated with digitoxin
as well as the same two research compounds. The analysis of
the model using ECFP4 descriptors indicated that the
uncertainties associated with predictions for different com-
pounds were relatively consistent for a specific lead series
within the data set. This may suggest a model bias toward
these instances, potentially due to their prevalent representa-
tion in the training set.
A point of concern arises with compounds exhibiting low

uncertainty yet displaying high absolute errors in their
predictions. This discrepancy could indicate that, while the
model suggests it gives a reliable prediction for certain
chemical spaces, which are well represented in the training
set, it may not accurately capture the true solubility values,
particularly when these values deviate significantly in the test
set. Such observations might suggest a need to reassess the
model’s regularization and, by that, investigate potential
overfitting. This was also indicated by the considerable
difference between the train and test performance in Table 2
for the ECFP4 features. The estimation of uncertainties
highlights the importance of not only evaluating model
performance based on average accuracy metrics but also
examining individual prediction uncertainties and errors to
uncover subtle biases and areas for model improvement.
Building separate models and different clusters of the data may
also display merits going forward, once sufficient amounts of
data are available.26 Generally, such uncertainty estimations
can be utilized to further refine a model by providing it with
more data in the chemical space it may be lacking, thereby
providing a potential avenue for active learning.52

Comparison of Machine Learning Approaches to
Thermodynamic Modeling and Quantum Chemistry.
Finally, the predictive performance of the results above should
be compared to predictive models outside of data-driven
methodologies. Recent works on the application of thermody-
namic modeling via the perturbed-chain statistical associating
fluid theory (PC-SAFT) demonstrated successful application
to identify more complex formulation compositions that were
mostly in agreement with experimental categorization accord-
ing to the lipid-based classification system.68−70 A recent study
employed the conductor-like screening model for real solvents
(COSMO-RS) theory, utilizing the COSMOquick software.34

An MAE of 0.576 on a logarithmic scale by using a simplified
lipid approach was achieved. The results in Table 2 emphasize
the promising prospects of data-driven methodologies for
predicting pharmaceutically relevant properties by machine
learning, as the models reported herein surpass the predictive
performance obtained from more complex polarization charge
densities derived from statistical thermodynamics and
quantum chemistry.

■ CONCLUSIONS
This study provides a novel atomistic view of structural
characteristics involved in solute−triglyceride interactions by
the utilization of machine learning. The decomposition of the
global solute property solubility was achieved by assigning
solvation contributions to atomic environments by an atom-
centered regression approach using the SOAP descriptor. This
sheds light on the interplay between molecular structure and
solubility behavior. Benchmarking the SOAP descriptor against
more conventional descriptors further highlights their advant-
age in facilitating an understanding of solubility. The
estimation of uncertainties by the utilization of a committee

of models highlights in which chemical space the models may
give less reliable predictions and whether they may inter- or
extrapolate, which may increase the trust of users in the model.
The findings of this study pave the way for more informed
decision-making in the development of solubility-tailored
formulations. Further applications of the SOAP descriptor
could be considered to investigate additional pharmaceutically
relevant properties, as it offers novel perspectives beyond 2D
and 3D descriptors. It is recommended to extend its use to
calculate spatial atomic geometries within periodic systems
such as molecular crystals as a model input that could show
promise in reducing the strong reliance on solid-state
characteristics such as MP.
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