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SUMMARY

Brain states are frequently represented using a unidimensional scale measuring the richness of 

subjective experience (level of consciousness). This description assumes a mapping between 

the high-dimensional space of whole-brain configurations and the trajectories of brain states 

associated with changes in consciousness, yet this mapping and its properties remain unclear. 

We combine whole-brain modeling, data augmentation, and deep learning for dimensionality 

reduction to determine a mapping representing states of consciousness in a low-dimensional 

space, where distances parallel similarities between states. An orderly trajectory from wakefulness 

to patients with brain injury is revealed in a latent space whose coordinates represent metrics 

related to functional modularity and structure-function coupling, increasing alongside loss of 

consciousness. Finally, we investigate the effects of model perturbations, providing geometrical 

interpretation for the stability and reversibility of states. We conclude that conscious awareness 

depends on functional patterns encoded as a low-dimensional trajectory within the vast space of 

brain configurations.

In brief
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Despite the microscale complexity, the brain self-organizes into a discrete number of global brain 

states characterized by specific behavioral patterns. Perl et al. use whole-brain models and deep 

learning algorithms to obtain a low-dimensional representation not only in terms of behavioral 

data but based on objective quantification of neuroimaging data.

Graphical Abstract

INTRODUCTION

The collective behavior of the human brain emerges from the non-linear interactions of 

billions of neurons interacting at trillions of time-dependent and highly specific synaptic 

connections.1,2 The emergent neural activity displays convergent signatures of complex 

behavior, including an ample repertoire of transitory states, long-range correlations in time 

and space, and a rapid re-organization upon perturbations, indicative of flexible and efficient 

information processing.3,4 Even though there is a vast number of degrees of freedom 

available to brain activity, the computations underlying cognitive function likely require this 

activity to be integrated, resulting in a lower effective number of relevant configurations.5,6 

Nevertheless, it is considered that brain activity should also be highly differentiated to 

account for the large repertoire of possible mental states, either subjectively experienced or 

influencing behavior beyond the scope of conscious awareness.5
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Despite the microscale complexity of the brain, integration contributes to the spontaneous 

self-organization of brain activity into a discrete number of global brain states characterized 

by specific behavioral patterns, capacity for cognitive processing, and reports of subjective 

experiences.7 Examples of these global states include everyday wakefulness and sleep, 

general anesthesia, and pathological conditions resulting from brain injury, such as coma 

or unresponsive wakefulness syndrome. These states are difficult to define in terms of 

the specific contents of first-person experience; instead, they involve overall reductions in 

the capacity to sustain consciousness, possibly to the point of becoming utterly devoid 

of subjective experiences. When assessed in terms of the accompanying behavior, it is 

important to note that global brain states can be characterized using the total score of 

unidimensional scales, with prominent examples given by the sleep staging criteria of the 

American Academy of Sleep Medicine (AASM),8 the coma recovery scale (CRS-R)9 for 

disorders of consciousness (DOCs), and the Ramsay scale for sedation and anesthesia.10 The 

level of arousal is frequently introduced as an additional dimension necessary to characterize 

global and temporally extended states of consciousness. For instance, deep sleep is generally 

considered a state of unconsciousness and low arousal, while high arousal can co-exist with 

reduced consciousness in certain patients with brain injury.11

As described above, the level of consciousness usually refers to a scalar index determined 

by observations of behavior but, at the same time, is used to characterize brain states with 

their distinct neurobiology and capacity to sustain subjective experience. Brain activity 

underlying different levels of consciousness (defined in this way) is multi-dimensional 

and ever-changing and thus seemingly incompatible with a unidimensional parametrization, 

resulting in an apparent mismatch between neurobiological and behavioral characterizations. 

The mapping from neural activity to behavioral metrics and to the intensity of reported 

subjective experience is inconclusive; for instance, the average local properties of single-cell 

dynamics (e.g., firing rates) sometime fail to correlate with the level of consciousness,12 

suggesting that this mapping is based on more complex properties of collective neural 

behavior. We hypothesize that brain activity implicated in the capacity to sustain conscious 

experiences is integrated in a way that reduces the effective number of degrees of 

freedom and allows a low-dimensional representation not only in terms of behavioral data 

and subjective reports but also based on objective quantification of neuroimaging data. 

Thus, as individuals transition from wakefulness into a state of reduced consciousness, a 

significant part of the variance in their brain activity fluctuations is organized alongside a 

low-dimensional trajectory encoding the level of consciousness. Moreover, we hypothesize 

that external perturbations are capable of reversing this trajectory, which constitutes a 

potential mechanism underlying the reversibility of certain states of unconsciousness.

To assess these hypotheses, we first turned to the problem of obtaining a low-dimensional 

latent space capable of spanning whole-brain functional connectivity patterns indicative 

of multiple states of consciousness, including wakefulness, three stages of non-rapid eye 

movement (REM) sleep (N1, N2, and N3 sleep; REM sleep data were not included due 

to technical constraints in measuring it), two doses of the general anesthetic propofol 

(sedation [S] and loss of consciousness [LOC]), and two groups of patients with brain 

injury diagnosed with DOCs of different severity (minimally conscious state [MCS] and 

unresponsive wakefulness syndrome [UWS]). Note that we introduced phenomenological 
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whole-brain models as a generative mechanism for data augmentation,13 considering the 

large amount of data required to successfully perform non-linear dimensionality reduction 

with deep variational autoencoders.14 To avoid overfitting during the data-driven discovery 

of this latent space, we examined whether only part of this data (i.e., wakefulness, N3 sleep, 

and patients in UWS) contained sufficient regularities for the adequate representation of 

all other brain states. We examined the relationship between the latent space encoding 

and previously introduced signatures of consciousness, such as metrics of functional 

integration15,16 and structure-function coupling.17,18 Finally, we addressed the stability of 

the latent space representation in terms of external perturbations,19 mainly in the context 

of known differences in the reversibility of unconscious states (for instance, sleep or S vs. 

patients in UWS).

RESULTS

Methodological overview

The procedure followed in this work is showcased in Figure 1. First, we implemented a 

whole-brain model with local dynamics given by the normal form of a Hopf bifurcation.20 

Depending on the bifurcation parameter (a), the dynamics present two qualitatively different 

behaviors: fixed-point dynamics (a < 0) and oscillations around a limit cycle (a > 0). When 

noise is added to the model, dynamics close to the bifurcation (a ≈ 0) change stochastically 

between both regimes, giving rise to oscillations with complex amplitude modulations.20 

Regional dynamics were coupled by the structural connectivity (SC) matrix obtained from 

diffusion tensor imaging (DTI) measurements. The model was used to directly simulate 

narrow band (0.04–0.07 Hz) fMRI time series; hence, the dominant oscillatory frequency 

of the model was inferred from the data.21 The whole-brain model has different bifurcation 

parameters in each region of the parcellation, which are constrained by the spatial maps 

of anatomical priors given by resting state networks (RSNs); thus, each RSN can add 

its own contribution to the regional bifurcation parameter.22 Following Ipina et al., these 

contributions are free parameters that were optimized using a genetic algorithm, with the 

functional connectivity (FC) matrix being the optimization target.22 Different FC matrices 

were considered, one for each of the following states of consciousness: wakefulness; 

N1, N2, and N3 sleep; anesthesia (S and LOC); and patients with DOCs (MCS and 

UWS). Afterward, we used the inferred parameters to simulate surrogate FC matrices that 

were encoded into a two-dimensional space using a deep learning architecture known as 

variational autoencoder (VAE). VAEs are autoencoders trained to map inputs to probability 

distributions in latent space, which can be regularized to produce meaningful outputs after 

the decoding step We characterized the latent space in terms of different FC metrics and 

then explored the effects of external perturbation given by wave stimulation (periodic 

perturbation delivered at the natural nodal frequency).19 After systematically applying the 

perturbations to all pairs of homotopic nodes and encoding the resulting FC matrices, 

we obtained low-dimensional perturbational landscapes consisting of trajectories in latent 

space parametrized by the stimulation intensity. In turn, these trajectories can be classified 

by geometrical metrics in latent space such as how closely they bring the dynamics to a 

predefined target state (in this case, conscious wakefulness).
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Latent space representation of brain states

Using the optimized whole-brain model, we generated 15,000 FC matrices for each brain 

state; next, we trained the VAE using an 80/20 split for training/testing (see STAR Methods 

for details on model training and evaluation). Note that since our goal is to determine 

how the different states of consciousness are organized in a low-dimensional space, we 

constructed such representation following a process that consisted of training a VAE with 

FC belonging to a reduced set of brain states representing the most extreme cases in term 

of consciousness (wakefulness [W] and UWS) plus one intermediate state (N3). In this way, 

we can avoid overfitting the VAE to all states of consciousness, which would result in a 

trivial result without any meaningful generalization between states. We then investigated 

how the latent space represented the complete set of intermediate states (which were not 

used as inputs to the VAE). Importantly, the inclusion of N3 as an intermediate state arises 

due to its similarity with LOC, S, and MCS in terms of several metrics, as found in 

previous work.19 After training, we encoded 300 FC matrices per state used for training, 

finding the results shown in Figure 2A (left). We then applied the trained autoencoder to 

simulated FC corresponding to all the remaining stages. This procedure generated separate 

clusters into the two-dimensional space organized according to the reduction of the level 

of consciousness (Figure 2A, middle). Advancing alongside the trajectory represented by a 

dashed line resulted in FC matrices associated with reduced consciousness.

We investigated the optimality of the two-dimensional representation by quantifying how 

this representation distinguishes the states compared with the original high-dimensional 

space of whole-brain FC, as well as with reduced spaces with dimensions higher than 

two. To do so, we trained a support vector machine (SVM) with polynomial kernel as 

implemented in the MATLAB function fitcecoc with the objective of distinguishing between 

eight class labels (each representing a state of consciousness). We subdivided the 300 

samples used for each state into training (90%) and validation (10%) sets and assessed 

model performance using a 10 k-fold scheme with four different sets of features: (1) the 

lower triangular part of the FC matrix in the original data dimension; (2) z1, standing 

for the encoding of the 300 matrices in one-dimensional latent space; (3) the z1,z2 pair 

representing the encoding of the FC matrices in the two-dimensional latent space; and (4) 

three dimensions representing the encoding of the FC matrices in the three-dimensional 

latent space. For each case, we repeated this procedure 100 times, and we assessed the 

statistical significance of each classifier by comparing it with the same SVM but trained 

using data with scrambled class labels as a null model. We then constructed an empirical p 

value by counting how many times the accuracy of the classifier with scrambled class labels 

was greater than that the original classifier, and we found p < 0.001 for the four cases. In 

terms of accuracy of the classifiers, we obtained the following values: 0.75 ± 0.01 (full data); 

0.77 ± 0.01 using one-dimensional latent dimension; 0.89 ± 0.01 using two-dimensional 

latent dimension; and 0.91 ± 0.01 using three-dimensional latent dimension (Figure S1). 

Thus, we established that latent space representations have better classification performance 

compared with the original high-dimensional data and that the classification performance 

increases with the dimension of the latent space representation. We also noted that the 

improvement in the performance is considerably higher when the latent space dimension 

changes from one to two than when the dimension increases from two to three, which 
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is comparatively very small and close to ceiling performance. Given that two dimensions 

resulted in an acceptable reproduction of the data and that the improvement in accuracy 

from two to three dimensions was relatively marginal, we decided on a bidimensional 

representation, which also allows straightforward visualization.

Characterization of FC decoded from the latent space

Applying a decoder network to all latent space coordinates in (z1, z2) visualizes the FC 

matrices that correspond to different regions of this space, in particular those that were 

visited when advancing in the trajectory that interpolates the encoded brain states (Figure 

2A, right). A sequence of matrices obtained in this way is shown in Figure 2B, both with 

(bottom) and without (top) normalization (i.e., all matrix entries add up to a fixed value). 

From the non-normalized matrices, it is clear that reductions in consciousness are paralleled 

by an overall decrease in FC values. The normalized matrices show that this decrease 

is not homogeneous but tends to be concentrated in certain pairs of off-diagonal entries 

corresponding to inter-modular connections. Based on previous work, we hypothesized that 

LOC would increase the FC-SC similarity17,18 Figure 2C shows how the decoded latent 

space coordinates are characterized in terms of the mean FC (left panel), the network 

modularity (middle panel), and the coupling between FC and SC (right panel). These 

plots converge in the presence of a gradient from the top left to the bottom right in the 

values of all metrics, which parallels the trajectory interpolating the encoded brain states. 

Finally, Figure 2D summarizes the value of these metrics for the 300 FC matrices encoded 

for each brain state, corroborating that LOC is associated with decreased mean FC (left), 

increased network modularity (middle), and increased FC-SC coupling (right). Moreover, 

these plots are monotonous with the exception of jumps in S (for modularity) and N3 (for 

FC-SC coupling). To further investigate the relationship between the latent variables and the 

dimensions of consciousness, we decoded all (z1, z2) pairs from the latent space within a 

5 × 5 grid to generate FC matrices. We then computed the mean across rows to obtain the 

nodal projection of the FC, i.e., the node connectivity strength, for each decoded FC matrix. 

We rendered the obtained functional networks for each pair into a brain surface (Figure 

S2). We noted that z1 latent space coordinate could be related to the W dimension, with 

unspecific increasing of all the functional connections (this is observed as a flattening of 

the node strength in the brain renders). While the interpretation of the other dimension, z2, 

seems to be more subtle, it represents a reconfiguration of the functional networks that could 

be related to the functional changes associated with LOC independent of the overall level of 

activation or arousal.

Perturbational analysis of the latent space trajectory of brain states

We investigated how each state of consciousness responded to an external perturbation 

modeled by the inclusion of a periodic forcing at the natural frequency of each node. 

Following previous work,19 we applied this perturbation at different pairs of homotopic 

brain regions, and we parametrized it by the strength of the forcing (F0). As a result, we 

obtained a sequence of FC matrices per region pair, which we encoded in the latent space to 

visualize the behavior of the system under the perturbation. Figure 3A (left panel) illustrates 

the outcome of increasing the forcing for the stimulation applied to a single region pair, 

while Figure 3A (middle panel) represents one trajectory per choice of homotopic brain 
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regions. In both cases, it is clear that the distance in latent space reaches an asymptotic value 

as the forcing keeps increasing. Averaging these terminal points across all region pairs, we 

estimate the mean displacements shown as arrows in Figure 3A (right panel). We note that 

all arrows point toward the top left corner of the latent space, which was associated with 

conscious W; thus, overall, the net result of the forcing is to displace the system toward this 

state.

To summarize the effect of the perturbation on the latent space geometry, we introduced the 

metrics shown in the left panel of Figure 3B. The distance to W measures the separation 

between the terminal state obtained for large forcing and the centroid of the W cluster 

(represented with blue circles in Figure 2A), while the distance to the origin measures 

the separation between the terminal state and the centroid of the brain state that is being 

stimulated. Note that to compute these metrics, we considered the latent space of VAEs to 

be Euclidean, which is the most parsimonious conjecture, following Kingma et al.23 (the 

Euclidian assumption of the latent space could be guaranteed by including an extension of 

VAE proposed by Chen and colleagues24). The right panel of Figure 3B shows that the 

stimulation fails to bridge the gap between pharmacological and pathological unconscious 

states and W. Also, it highlights that the least stable states (i.e., those with the largest 

distance to origin values) comprise intermediate sleep stages. As expected, patients with 

DOCs presented highly stable states. The asymptotic behavior of these two metrics vs. the 

forcing is shown in the two rightmost panels of Figure 3B. It is important to note that 

the 2D localization of perturbations in the latent space and its proximity to W provides 

more information than one-dimensional metrics such as the goodness of fit (GOF) between 

the perturbed FCs and the FC of W, including the trajectory of the perturbation (Figure 

S3). Finally, to further characterize the perturbative landscape, we leveraged the results 

obtained in Figure 2C, where we endowed the latent space with measures obtained from the 

decoded FC. Figure 3C confirms the observation that stimulation tends to displace the latent 

space encoding toward the region associated with conscious W, with mean FC increasing 

vs. the forcing amplitude and with modularity and SC-FC coupling decreasing vs. forcing 

amplitude. Overall, the metrics introduced in Figure 3B allow us to characterize brain states 

in terms of intuitive geometrical observations, which indicate the sensitivity to external 

perturbations and the directionality of this perturbed state.

Neuroanatomical representation of the response to external stimulation

Applying the stimulation to each pair of homotopic regions results in latent space 

trajectories, which can be characterized by the value of different metrics computed using 

the terminal FC matrix. Figure 4 represents the effect of stimulation applied to states of 

consciousness investigated in this study. In Figure 4A, we show that the top 20% regions, 

when perturbed, move the initial state closer to W, quantified as the geometrical measure 

called distance to W. Note that we displayed the difference between the maximum across 

regions and the single regional value to obtain a metric that higher values mean a better 

transition toward W. The radar plot shows the mean value across the top 20% regions for 

each state. Stimulation at regions located in posterior nodes of the default mode network 

(DMN) (i.e., precuneus) for all brain states (except S and early sleep) was more prone to 

generate trajectories closer to W. Frontal regions were also featured for all brain states, also 
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encompassing anterior midline DMN nodes (e.g., orbito-frontal cortex). We then extend the 

stimulation behavior assessment adding the following metrics: distance to origin, mean FC, 

modularity, and SC-FC coupling (in all panels, darker values indicate larger changes in the 

corresponding metric) (Figure 4B). Accordingly, similar regions were found for modularity 

and SC-FC coupling. In terms of mean FC and distance to origin, the maps were more 

diffuse, without clearly outlined regions that preferentially displace the dynamics toward W. 

The matrix in Figure S4 summarizes the similarity between the patterns rendered in Figure 

4. Diagonal blocks indicate consistent results when stimulation was applied to a specific 

brain state, while off-diagonal blocks show that similar patterns can be obtained even when 

the stimulation is applied to different states of consciousness.

DISCUSSION

Subjective experiences encompass a vast range of contents, yet the global and 

qualitative modifications of consciousness are usually described using few parameters. We 

demonstrated that several states of consciousness—from W to DOCs—can be meaningfully 

represented in a low-dimensional space where the gradual progression toward deep 

unconsciousness is manifest in a purely data-driven manner. We quantified the goodness 

of this representation by assessing the performance of SVM classifiers trained with full FC 

matrices and also with one-, two-, and three-dimensional FC matrices reconstructed from the 

corresponding latent space representations. We found that the two-dimensional latent space 

representation was optimal in terms of the balance between the discrimination accuracy of 

states of consciousness and the criterion of adopting the simplest model that adequately 

captures these states. By finding this representation, we lend support to the clinical practice 

of ordering these states along a unidimensional continuum based on behavioral assessments. 

This also suggests that non-linear compression via VAEs could represent an interesting 

method to infer scalar signatures of consciousness from neuroimaging data. Accordingly, 

other methods for dimensionality reduction have revealed consistent results when applied to 

neural activity measured during sleep and anesthesia.25–27

While previous computational efforts addressed the outcome of simulated perturbations in 

terms of the global state of the brain,14,19,22,28–32 our work provides a series of distinct 

insights. We demonstrated that the overall effect of stimulating the cortex of unconscious 

individuals is to displace the state toward conscious W, as clearly visualized by the arrows 

in the latent space of Figure 3A. Despite this, the dissimilarity of certain states of deep 

unconsciousness with respect to W prevented the full recovery of a conscious global brain 

state as a result of the stimulation. In dynamical terms, this could be explained by the 

saturation of the displacement trajectories as a function of the stimulation amplitude, F0. As 

expected, the states that could be displaced the largest distance from their original position 

in latent space included the intermediate sleep stages, N2 and N3, where awakenings are 

likely to occur due to external sensory input.8,19 Finally, the application of VAEs to the 

simulated dynamics allowed us to interpret the complex outcome of external perturbations 

by means of the latent space geometry. This development was fundamental for the heuristic 

assessment of the simulated perturbations, which otherwise result in multi-dimensional 

trajectories of difficult visualization.
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We highlight that several of our results were consistent with the previous literature, 

regardless of the phenomenological nature of the Hopf bifurcation model.25–27 It 

also worthwhile to point out that SC-FC similarity as a metric biases the results to 

Gaussian approximation of data cloud, pushing the model into the linear regime around 

a local minimum. Depth of unconsciousness correlated with decreased FC, increased 

modularity,15,16 and similarity between SC and FC.17,18 The relationship between these 

variables and the depth of unconsciousness was clear except for propofol-induced S, which 

should perhaps be re-assessed and placed closer to early/intermediate sleep. Also, the 

predicted regions that should be targeted to restore a state of awareness in the participants 

was consistent with previous reports, including highly connected hubs within posterior 

regions of the DMN as well as in midline frontal and prefrontal regions.19 Moreover, these 

spatial profiles were consistent between conditions, suggesting the presence of a universal 

dynamical mechanism underlying the restoration of W upon properly targeted external 

perturbations.

The notion of levels of consciousness is ubiquitous in clinical and translational 

neuroscience, yet it is also at odds with certain theoretical accounts and first-person reports. 

Experimental evidence suggests that conscious perception is determined as the outcome 

of an all-or-none bifurcation, which questions whether consciousness can be graded in 

terms of intensity.33 When it comes to subjective experience, even though the information 

conveyed by a certain percept can be graded, high-level perception itself appears to be 

binary.34 Accordingly, Bayne and colleagues have argued that consciousness should not be 

described in terms of “levels” that determine the degree or intensity of perception; instead, 

multiple dimensions are likely required to adequately express the changes in the nature of 

subjective experience across states of consciousness.35 We note that our finding does not 

contradict these observations: even though we were capable of finding a low-dimensional 

representation where the brain states are ordered within a unidimensional trajectory, this 

trajectory does not necessarily reflect the intensity of the contents of consciousness. Instead, 

it likely reflects a combination of multiple variables that is capable of explaining most of the 

variance in the characterization of progressively impaired consciousness. While our analysis 

conveyed a characterization of latent space variables in terms of metrics that have been 

implicated in the trajectory from W to unconsciousness (e.g., modularity), a more precise 

interpretation of these variables in terms of the phenomenology of conscious experience 

across brain states should be the target of a future investigation, likely requiring more 

complex experimental paradigms beyond the measurement of spontaneous brain activity.

It is also important to mention that variables related to consciousness are not necessarily 

behind the latent space organization reported in this study. While it is reasonable to expect 

that this is indeed the case, based on the proximity of states usually regarded as similar in 

terms of level of consciousness, other confounding factors could be behind this proximity. 

For example, states induced by propofol could be more similar (regardless of the level of 

consciousness) due to neurochemical changes associated with the drug that are independent 

of its modulation of conscious awareness.36 Similar considerations could apply to sleep and 

to patients with DOCs. This problem is difficult to avoid insofar as states of consciousness 

involve non-specific modulations of brain activity that encompass neural correlates of 

consciousness but are not limited to them. We also characterized the latent space variables 
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by exploring the functional networks changes that occur in the decoded FC matrices as a 

function of latent space coordinate pairs. We found that z1 could be related to the level of W, 

while z2 was related to a more complex reconfiguration of the networks, possibly related to 

the functional changes implicated with LOC. Nevertheless, the decoded FC matrices present 

a complex non-linear behavior as a function of the latent space coordinates, and a linear 

transformation between this space and a more biologically interpretable set of dimensions 

might not be possible.

The description of global brain states by means of a low-dimensional latent space using 

generative algorithms presents some interesting advantages. One example is the possibility 

of extrapolating the results in different directions of the latent space, for example generating 

FC matrices that would correspond to states of deeper unconsciousness than patients in 

UWS. Another is the possibility of interpolating between the represented states, yielding 

intermediate FC matrices that would correspond to intermediate levels of consciousness 

and thus be interpretable as the transition between the associated brain states. This is 

complemented by the computation of different metrics of interest per pair of latent state 

coordinates, which enables a simple visualization of how regions in such space relate to 

putative signatures of consciousness. Finally, the encoding of states obtained after simulated 

external perturbations can provide a simplified geometric interpretation of the outcome of 

complex collective changes in the brain state with clinical and translational implications.

The clinical perspective of our work is aligned with the current efforts of the scientific 

community to develop treatments for pathological states of reduced or absent consciousness. 

Several works have empirically demonstrated that external brain stimulation modulates the 

behavioral responsiveness in patients suffering from DOCs due to brain injury. Specifically, 

these works pursue the goal of finding possible interventions that allow or accelerate the 

recovery of consciousness as a therapeutic alternative in these patients. Invasive electrical 

stimulation, such as the deep brain stimulation (DBS) technique, has provided encouraging 

results, improving behavioral measures in patients with DOCs (i.e., CRS-S score37,38). Also, 

non-invasive electrical stimulation, such as transcranial direct current stimulation (tDCS), 

has been investigated as a potential method to improve the state of patients with DOCs.39–42 

A recent publication suggests a causal effect of tDCS intervention in electroencephalography 

(EEG) biomarkers proposed as a signature of consciousness in a large cohort of patients with 

DOCs.43 Also, brain stimulation in anesthetized non-human primates has proven effective 

to accelerate the recovery of consciousness.44 In parallel to these experimental results, in 

the last years, progress in computational neuroscience has allowed us to robustly define 

brain states and to study transitions between them in silico. While this has been used 

to provide insights into the diagnosis, prognosis, and potential treatment of pathological 

states, the empirical validation of these models remains to be systematically addressed.45 

One successful example in this direction is the application of semi-empirical models to 

the diagnostics and treatment of other neurologic conditions, such as epilepsy, which 

has received significant attention from clinical translational neuroscience.46 Our work 

points toward the same direction but from a broader perspective that is not focused on a 

particular disorder; instead, we focused on the more general concept of conscious states, 

thus providing potential tools to understand these states and to study the transitions between 

them. Nevertheless, to generate testable hypotheses and to increase the sensitivity of the 
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method to different pathologies, which could strengthen the translational impact of the 

approach, an individual-level perspective should be considered. One avenue to reach this 

objective is to include individualized sources of information such as individual SC, disease-

specific maps of gray and white matter atrophy, maps of receptor density, and transcriptomic 

data, among others. At the same time, to extend this approach to different pathologies, a 

pathology-based latent dimension determination should be considered as a way to guarantee 

their meaningful representation.

Obtaining a latent state representation using VAE requires a large amount of data from 

training, which is difficult to obtain considering the typically small sample size of fMRI 

experiments.47 We explored this using whole-brain computational models as a potential 

method for data augmentation, with encouraging results that prompt further research.13 We 

can also hypothesize that model-based training the VAE was more successful than using real 

data because model parameters could be more informative than direct fMRI observables. As 

an example, all regional parameters can be interpreted in terms of their influence in FC but 

also in relation to the (un)stability of regional dynamics, which highlights the mechanistic 

dimension of these features.48

We acknowledge that our results are based on the a priori selection of the phenomenological 

Hopf whole-brain model, which fits observables derived directly from fMRI recordings. 

The rationale behind the selection of the Hopf whole-brain model is based on the fact 

that it has been shown that emergent collective macroscopic behavior of brain models 

depends weakly on individual neuron behavior.49 Over the years, many different whole-

brain models with varying degrees of biophysical realism have been used, ranging from 

spiking networks to mean-field models to oscillatory Hopf models.20,50–54 The Hopf model 

represents a compromise between the correct reproduction of fMRI observables without the 

need to fine-tune parameters related to biophysical variables.20 Moreover, the Hopf model 

easily captures the oscillatory nature of band-pass-filtered fMRI signals, whereas spiking 

and mean-field models are asynchronous, and therefore the representation of oscillatory 

couplings is not straightforward. Still, it is possible to include oscillations in mean-field 

models, as we have done in recent work.55 The results show that the best fit for this 

oscillatory mean-field model is exactly at the Hopf bifurcation, highlighting that the use of 

a more complex model does not provide an obvious advantage while resulting in drawbacks 

related to higher computational demands. Nevertheless, future work should explore other 

detailed biophysical models, which might be necessary to test hypotheses related to specific 

biological interpretations of model parameters and their neurophysiological implications. 

For instance, future research could explore mean-field models, such as the dynamical 

mean field (DMF) model,51 which allows us to simulate pharmacological interventions 

by modeling the neuromodulator effect of the specific drugs.56 At the same time, it is 

natural to ask how this framework could be extended to other neuroimaging modalities, 

such as EEG, which is clinically the gold standard for identifying the level of consciousness 

in clinical settings and is also cheaper than fMRI and thus has the potential to generate 

massive amounts of data. In this sense, we can identify a set of limitations related to building 

whole-brain models to fit EEG data, such as the accuracy of source space localization and its 

relation to the SC obtained using a different methodology and that the whole-brain models 

generate brain signals of each region with a specific frequency to match the empirical 
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frequency of the fMRI data, yet EEG data present a heterogeneous power spectrum with 

multiple relevant frequency bands. However, an interesting future direction could be to adapt 

the framework to include EEG data by leveraging large amounts of recordings to train deep 

learning neural networks directly with empirical data.

In summary, we introduced computational methodologies to show that global brain states 

of impaired consciousness can be represented in a low-dimensional space, where distances 

parallel the known similarities between these states. All simulated perturbations displaced 

the encoded brain state toward W, but due to their original distance in latent space, some 

states (e.g., MCS, UWS) failed to approach conscious W. Our results highlight the presence 

of sufficient regularities across brain states to endow them with a low-dimensional and data-

driven characterization paralleling the level of consciousness, an informative and practical 

construct that should be the target of future investigations.

Limitations of the study

On the other hand, the technical caveats of this work can be based on the fact that we 

use anatomical connectivity estimated in a group of healthy participants to model patient 

data. However, considering that patients with brain injury may present heterogeneous lesion 

locations, the average healthy connectivity constitutes a reasonable first estimate. Finally, we 

opted to simulate the stimulation of homotopic regions only and with an external periodical 

forcing. This restriction ensures that the stimulation protocols explored in the model are 

experimentally possible. Future extensions of our work could include the development of 

multi-regional stimulation with different protocols.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact: Yonatan Sanz Perl (yonatan.sanz@upf.edu).

Materials availability—This study did not generate new material.

Data and code availability

• Sleep dataset is publicly available since the data of publication. The DOI 

is listed in the key resources table. Data of disorders of Consciousness and 

anesthesia cannot be shared publicly because contains data and information 

from a clinical population of patients, and are not publicly available 

due to constraints imposed by the currently approved ethics protocol, 

but are available upon request to Comitéd’É thique Hospitalo-Facultaire 

Universitaire de Liège (https://www.chuliege.be/jcms/c2_16986309/fr/comite-d-

ethique-hospitalo-facultaire-universitaire-de-liege/accueil): ethique@chuliege.be.

• All original code has been deposited at Zenodo and is publicly available as of 

the date of publication. DOIs are listed in the key resources table.The software 

dependencies are MATLAB (2018b); Python (3.6) and Keras.
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• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethic statement—Sleep data: written informed consent and the experimental protocol 

was approved by the local ethics committee “Ethik-Kommission des Fachbereichs Medizin 

der Goethe-Universität Frankfurt am Main, Germany” with the ethics application title 

“Visualisierung von Gehirnzuständen in Schlaf und Wachheit zum Verständnis der 

Abnormitäten bei Epilepsie und Narkolepsie” and the assigned number: 305/07 in Frankfurt 

(Germany). Propofol sedation and anesthesia dataset: written informed consent, approval by 

the Ethics Committee of the Medical School of the University of Liège. DoC dataset: written 

informed consent to participate in the study was obtained directly from healthy control 

participants and the legal surrogates of the patients, approval by the Ethics Committee of the 

Medical School of the University of Liège.

Experimental data—We analyzed fMRI recordings from 81 participants identified by 

their scanning site and experimental condition: Frankfurt (15 subjects during wakefulness 

and sleep) and Liège (14 healthy subjects during wakefulness and under propofol sedation 

and anesthesia, 16 patients diagnosed as MCS, 15 patients diagnosed as UWS, and 21 

healthy and awake controls).

Sleep dataset—Simultaneous fMRI and EEG was measured for a total of 73 subjects 

and a subgroup of 55 was considering (by excluding subjects who did not fall asleep) (36 

females, mean ± SD age of 23.4 ± 3.3 years). EEG via a cap (modified BrainCapMR, 

Easycap, Herrsching, Germany) was recorded continuously during fMRI acquisition (1505 

volumes of T2*-weighted echo planar images, TR/TE = 2080 m/30 m, matrix 64 × 64, voxel 

size 3 × 3 × 2 mm3, distance factor 50%; FOV 192 mm2) with a 3 T S Trio (Erlangen, 

Germany). EEG measurements allow the classification of sleep into 4 stages (wakefulness, 

N1, N2 and N3 sleep) according to the American Academy of Sleep Medicine (AASM) 

rules. To facilitate the sleep scoring during the fMRI acquisition, pulse oximetry and 

respiration were recorded via sensors from the Trio [sampling rate 50 Hz]) and MR scanner 

compatible devices (BrainAmp MR+, BrainAmpExG; Brain Products, Gilching, Germany). 

We selected 15 subjects who reached stage N3 sleep (deep sleep) and contiguous time series 

of least 200 volumes for all sleep stages. Written informed consent and the experimental 

protocol was approved by the local ethics committee “Ethik-Kommission des Fachbereichs 

Medizin der Goethe-Universität Frankfurt am Main, Germany” with the ethics application 

title “Visualisierung von Gehirnzuständen in Schlaf und Wachheit zum Verständnis der 

Abnormitäten bei Epilepsie und Narkolepsie” and the assigned number: 305/07 in Frankfurt 

(Germany). Previous publications based on this dataset can be consulted for further details.58

Propofol sedation and anesthesia—Resting-state fMRI of three different states 

following propofol injection: wakefulness, sedation and unconsciousness were acquired 

from 18 healthy right-handed volunteers (4 men and 14 women; age range, 18–31 years; 

mean age ±SD, 23.7 ± 3.7 years). Data acquisition was performed in Liège (Belgium). 

Subjects fasted for at least 6 h from solids and 2 h from liquids before sedation. During the 
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study and the recovery period, electrocardiogram, blood pressure, pulse oximetry (SpO2), 

and breathing frequency were continuously monitored (Magnitude 3150M; Invivo Research, 

Inc., Orlando, FL). The clinical evaluation of the level of consciousness was performed 

considering the scale used in. The investigator considered if the subject is fully awake 

if the response to verbal command (“squeeze my hand”) was clear and strong (Ramsay 

2), as sedated if the response to verbal command was clear but slow (Ramsay 3), and as 

unconscious, if there was no response to verbal command (Ramsay 5–6). This procedure 

was repeated twice for each consciousness level assessment. Functional MRI acquisition 

consisted of resting-state functional MRI volumes repeated in the three states: normal 

wakefulness (Ramsay 2), sedation (Ramsay 3), unconsciousness (Ramsay 5). The typical 

scan duration was half an hour for each condition, and the number of scans per session (200 

functional volumes) was matched across subjects to obtain a similar number of scans in all 

states. Functional images were acquired on a 3 T S Allegra scanner (Siemens AG, Munich, 

Germany; Echo Planar Imaging sequence using 32 slices; repetition time = 2460 ms, echo 

time = 40 ms, field of view = 220 mm, voxel size = 3.45 × 3.45 × 3 mm3, and matrix 

size = 64 × 64×32). Written informed consent, approval by the Ethics Committee of the 

Medical School of the University of Liège. For further details on acquisition of this dataset 

see previous publication.59

Disorders of consciousness—The cohort included 21 healthy controls (8 females; 

mean age, 45 ± 17 years), and 43 unsedated patients presenting DoC (25 in MCS 

and 18 in UWS; 12 females; mean age, 47 ± 18 years). Patients in UWS show signs 

of preserved vigilance, but do not exhibit non-reflex voluntary movements, and are 

incapable of establishing functional communication. Patients in MCS show more complex 

behavior indicative of awareness, such as visual pursuit, orientation response to pain, and 

non-systematic command following; nevertheless, these signs are consistent but may be 

manifested sporadically. The inclusion criteria for patients were brain damage at least 7 days 

after the acute brain insult and behavioral diagnosis of MCS or UWS performed through the 

best of at least five Coma Recovery Scale–Revised (CRS-R) behavioral assessments. The 

ethic committee of the University Hospital of Liège (Belgium) approved the study, where all 

data were collected. Written informed consents were obtained from all healthy subjects and 

the legal representative for DOC patients in accordance with the Declaration of Helsinki. 

3T Siemens TIM Trio MRI scanner (Siemens Medical Solutions, Erlangen, Germany) was 

used to acquire the data: 300 T2*-weighted images were acquired with a gradient-echo 

echoplanar imaging (EPI) sequence using axial slice orientation and covering the whole 

brain (32 slices; slice thickness, 3 mm; repetition time, 2000 ms; echo time, 30 ms; voxel 

size, 3 × 3 × 3 mm; flip angle, 78°; field of view, 192 mm by 192 mm). A structural 

T1 magnetization-prepared rapid gradient echo (MPRAGE) sequence (120 slices; repetition 

time, 2300 ms; echo time, 2.47 ms; voxel size, 1.0 × 1.0 × 1.2 mm; flip angle, 9°).60

METHOD DETAILS

fMRI pre-processing—We used FSL tools to extract and average the BOLD signals from 

all voxels for each participant in each brain state. The FSL pre-processing included a 5 

mm spatial smoothing (FWHM), bandpass filtering between 0.01 and 0.1 Hz, and brain 
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extraction (BET), followed by a transformation to a standard space (2 mm MNI brain) and 

down sampling for a final representation to a 2 mm voxel space.

The next steps were implemented in MATLAB, using in house developed scripts. First, 

we corrected the data by performing regressions between the displacement parameters, the 

average signals extracted from the white matter and ventricles, their first derivatives, and the 

voxel-wise BOLD signals, retaining the residuals for further analysis. In the second step, 

we applied volume censoring (scrubbing) and discarded subjects who presented significant 

relative head displacements in more than 20% of the recorded frames, with a criterion for 

movement significance set as a displacement between consecutive frames exceeding 0.5 

mm.61 Finally, we averaged all voxels within each ROI defined in the automated anatomical 

labeling (AAL) atlas, considering only the 90 cortical and subcortical non-cerebellar brain 

regions to obtain one BOLD signal per ROIs.62 During pre-processing, 4 subjects were 

removed from the anesthesia dataset, as well as 9 patients in MCS and 3 patients in UWS.

Structural connectivity—Diffusion tensor imaging (DTI) to diffusion weighted imaging 

(DWI) recordings from 16 healthy right-handed participants (11 men and 5 women; mean 

age: 24.75 ± 2.54 years) recruited online at Aarhus University, (Denmark) were considered 

for the computation of the structural connectome. We used FSL diffusion toodbox (Fdt) with 

the default parameters to perform the data pre-processing. We used the probtrackx tool in 

Fdt to provide automatic estimation of crossing fibers within each voxel, which has been 

shown to significantly improve the tracking sensitivity of non-dominant fiber populations 

in the human brain. The proportion of fibers passing through voxel i that reached voxel 

j (sampling of 5000 streamlines per voxel63) defines the connectivity probability from a 

seed voxel i to another voxel j. The connectivity probability P ij from region i to region j
was calculated as the number of sampled fibers in region i that connected the two regions 

normalized by the number of streamlines per voxel (5000) times the amount of voxel in the 

region i. All the voxels in each AAL parcel were seeded (i.e. gray and white matter voxels 

were considered). The resulting SC matrices were computed as the average across voxels 

within each ROI in the AAL thresholded at 0.1% (i.e. a minimum of five streamlines) and 

normalized by the number of voxels in each ROI. Finally, the data were averaged across 

participants.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational model—Whole-brain models have been widely used to describe the most 

important features of empirical brain dynamics. These models are based on the assumption 

that macroscopic collective brain behavior is an emergent behavior of millions of interacting 

units, and that this emergent behavior can be modeled and analyzed regardless of the 

microscale details. One example behavior consists of the transition between asynchronous 

noisy fluctuations to synchronous oscillations. The simplest dynamical system capable to 

present both behaviors is the described by a Stuart Landau non-linear oscillator, which is 

mathematically described by the normal form of a supercritical Hopf bifurcation20:

dz
dt = (a + iω)z − z |z|2
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(Equation 1)

where z is a complex-valued variable z = x + iy , ω is the intrinsic frequency of the 

oscillator. The bifurcation parameter a changes qualitatively the nature of the solutions 

of the system: if a>0 the system engages in a limit cycle and thus presents self-sustained 

oscillations (oscillating or supercritical regime), and when a<0 the dynamics decay to a 

stable fixed point (noisy or subcritical regime).64

The collective dynamics of resting state activity can be modeled by introducing coupling 

between oscillators. Several previous studies have demonstrated that whole-brain models 

based on Stuart Landau oscillators ruling the local dynamical behavior coupled by the 

anatomical structural connectivity are useful to describe static and dynamic features of brain 

dynamics captured by neuroimaging recordings.20,22,47 The dynamics of region (node i) in 

the coupled whole-brain system is described in cartesian coordinates as follows:

dRe zi
dt = dxi

dt = aixi + xi
2 + yi

2 −xi − ωiyi + G ∑
j = 1

N
Cij xj t − xi + νiηi t

(Equation 2)

dlm zi
dt = dyi

dt = aiyi − xi
2 + yi

2 +yi − ωixi + G ∑
j = 1

N
Cij yj t − yi + νiηi t

Where ηi t  is an additive Gaussian noise with standard deviation v and G is a factor 

that scales the strength of the coupling equally for all the nodes. This whole-brain model 

has been shown to reproduce important features of brain dynamics observed in different 

neuroimaging recordings65

Grand average FC fitting procedure—We fitted this whole-brain model to the grand 

average functional connectivity of each state of consciousness. To this end we applied the 

same signal processing to all fMRI recordings. The signals were detrended and demeaned 

before band-pass filtering in the 0.04–0.07 Hz range. This frequency range was chosen 

because when mapped to the gray matter, this band was shown to contain more reliable 

and functionally relevant information.21,66 After that, we transformed the filtered time series 

to z-scores and computed the FC matrix as the matrix of Pearson correlations between the 

fMRI signals of all pairs of regions of interest (ROIs) in the AAL template. Fisher’s R-to-z 

transform was applied to the correlation values before averaging over participants within 

each state of consciousness.

We then computed the Goodness of Fit (GoF) of the fitting between the empirical and 

simulated grand average FC using the structure similarity index22,67 (SSIM), a metric that 

balances sensitivity to absolute and relative differences between the FC matrices. Thus, the 

SSIM can be considered a trade-off between the Euclidean and correlation distances, which 

are two of the most common metrics used to compare simulated and empirical FC.
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We proposed to reduce the complexity of the model by grouping brain regions into well-

studied functional networks, known as resting state networks (RSNs).22 We encoded the 90 

bifurcation parameters (aj) into six parameters representing the contribution of each RSN to 

the local dynamics by the following linear combination:

ai = ∑
j = 1

N
Δi, jMi, j

(Equation 3)

Where the grouping matrix Mi, j is 1 in its i, j entry if the region i is in group j and zero 

otherwise (note that groups could be overlapping). Each RSN j contributes an independent 

coefficient to the bifurcation parameter of region i, given by Δi, j. Following our previous 

studies, we fixed the coupling strength parameters at G = 0.5 and optimized the Δi, j to 

minimized 1-GoF implementing a genetic algorithm inspired in biological evolution.

The algorithm starts with a generation of 20 sets of parameters (“individuals”) chosen 

randomly with values close to zero, to then generate a population of outputs with their 

corresponding GoF. Afterward, a group of individuals is chosen based on this score and is 

transmitted to the next generation based on three operations: 1) elite selection occurs when 

an individual of a generation shows an extraordinarily high GoF in comparison to the other 

individuals, thus this solution is replicated without changes in the next generation; 2) the 

crossover operator consists of combining two selected parents to obtain a new individual 

that carries information from each parent to the next generation; 3) the mutation operator 

changes one selected parent to induce a random alteration in an individual of the next 

generation. In our implementation, 20% of the new generation was created by elite selection, 

60% by crossover of the parents and 20% by mutation. A new population is thus generated 

(“offspring”) that is used iteratively as the next generation until at least one of the following 

halting criteria is met: 1) 200 generations are reached (i.e. limit of iterations), 2) the best 

solution of the population remains constant for 50 generations, 3) the average GoF across 

the last 50 generation is less than 10 6. Finally, the output of the genetic algorithm contains 

the simulated FC with the highest GoF, and the optimal coefficients Δi, j.

In silico perturbation—We simulated a stimulation protocol to induce transitions 

between reduced states of consciousness toward wakefulness and delineate the 

perturbational landscape in the latent space. As in previous work,19 all stimulations were 

systematically applied to pairs of homotopic nodes exploring different strength forcing 

amplitude. The stimulation corresponds to an additive periodic forcing term incorporated to 

the equation of the nodes, given by F0cos ω0t , where F0 is the forcing amplitude and ω0 the 

natural frequency of the nodes. We then varied the forcing amplitude F0 from 0 to 0.2 in 

order to parametrize the perturbation as a function of the forcing.

Variational autoencoder (VAE) training—We implemented a VAE to encode the FC 

matrices in a low-dimensional representation. VAE map inputs to probability distributions 

in latent space, which can be regularized during the training process to produce meaningful 
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outputs after the decoding step, allowing to decode latent space coordinates. The architecture 

of the implemented VAE (shown in Figure 1) consisted of three parts: the encoder network, 

the middle variational layer, and the decoder network. The encoder is a deep neural network 

with rectified linear units (ReLu) as activation functions and two dense layers. This part 

of the network bottlenecks into the two-dimensional variational layer, with units z1 and 

z2 spanning the latent space. The encoder network applies a nonlinear transformation to 

map the FC into Gaussian probability distributions in latent space, and the decoder network 

mirrors the encoder architecture to produce reconstructed matrices from samples of these 

distributions.14

Network training consists of error backpropagation via gradient descent to minimize a 

loss function composed of two terms: a standard reconstruction error term (computed 

from the units in the output layer of the decoder), and a regularization term computed 

as the Kullback-Leibler divergence between the distribution in latent space and a standard 

Gaussian distribution. This last term ensures continuity and completeness in the latent space, 

i.e. that similar values are decoded into similar outputs, and that those outputs represent 

meaningful combinations of the encoded inputs.

We generated 15000 FC matrices corresponding to controls, W, N3 and UWS, using the 

model optimized as described in the previous subsection. We then created 80/20 random 

splits into training and test sets, using the training set to optimize the VAE parameters. The 

training procedure consisted of batches with 128 samples and 50 training epochs using an 

Adam optimizer and the loss function described in the previous paragraph.

STATISTICAL ANALYSES

We applied the Wilcoxon rank-sum method to test the significance on Supplementary 

material analyses and additionally, we applied the False Discovery Rate (FDR) at the 0.05 

level of significance to correct multiple comparisons.68

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The brain spontaneously self-organizes into a discrete number of global brain 

states

• Level of consciousness refers to a scalar index determined by the behavior of 

those states

• Whole-brain model and deep learning allow algorithmic dimension reduction 

of brain states

• Low-dimensional space reveals an orderly organization of brain states and its 

transitions
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Figure 1. Methodological overview
A whole-brain model with local dynamics given by Hopf bifurcations was implemented 

at nodes defined by the AAL parcellation, coupled with the anatomical connectome. We 

included spatial heterogeneity based on RSN in the model parameters. The model was 

tuned to reproduce the empirical FC for each condition, and the resulting parameters were 

used to generate a surrogate database of simulated FC matrices that were represented in a 

latent space using a VAE. Finally, perturbations were introduced in the model as an external 

periodic force, resulting in a set of trajectories in latent space (one per pair of homotopic 

AAL regions) parameterized accordingly the amplitude of the forcing parameter.
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Figure 2. Latent space encoding of whole-brain FC reflects loss of consciousness alongside a 
low-dimensional trajectory
(A) We trained the VAE using simulated FC matrices corresponding to states W, N3, and 

UWS (left panel). We then applied the trained autoencoder to FC matrices corresponding 

to all other brain states, obtaining clusters of points organized alongside a low-dimensional 

trajectory (dashed line) representing progressive loss (legend continued on next page) of 

consciousness (middle panel). Applying the decoder to the latent space coordinates, we 

illustrate the FC matrices corresponding to each part of the latent space, including those 

included in the trajectory (right panel).
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(B) FC matrices sampled homogeneously along the trajectory identified in (A), middle 

(indicated with red stars), both for matrices with (up) and without (bottom) normalization.

(C) Characterization of the latent space in terms of mean FC (left panel), network 

modularity (middle panel), and SC-FC coupling (right panel).

(D) Mean FC (left panel), network modularity (middle panel), and SC-FC coupling (right 

panel) for the 300 encoded FC matrices corresponding to each brain state(mean ± SD) 

(W, wakefulness; N1, N2, and N3, stages from light to deep sleep; S, sedation; LOC, 

loss of consciousness; MCS, minimally conscious state; UWS, unresponsive wakefulness 

syndrome).
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Figure 3. Perturbational analysis of stability and reversibility of brain states
(A) Left panel: example trajectory obtained by encoding in latent space the outcome of 

introducing periodic forcing in the model at a single pair of homotopic regions. Middle 

panel: same as in the left panel but showing trajectories corresponding to all pairs 

of homotopic regions. Right panel: average maximal displacements for all brain states 

represented in the latent space.

(B) Left panel: geometric definitions of distance to wakefulness and distance to origin. 

Middle panel: the two metrics defined in the left panel for all brain states.

Perl et al. Page 28

Cell Rep. Author manuscript; available in PMC 2024 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Right panel: parametric behavior of these metrics per brain state as a function of the forcing 

amplitude.

(C) Mean FC (left panel), modularity (middle panel), and SC-FC coupling (right panel) 

for each state as a function of the perturbation strength (W, wakefulness; N1,N2, and N3, 

stages from light to deep sleep; S, sedation; LOC, loss of consciousness; MCS, minimally 

conscious state; UWS, unresponsive wakefulness syndrome).
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Figure 4. Neuroanatomical representation of the response to external stimulation
(A) The top 20% in terms of distance to wakefulness are rendered in brains for each 

investigated state of consciousness. The mean values across the top 20% are represented in 

the radar plot. Importantly, we represent the maximum value across brain regions minus the 

single value region to obtain a metric that increases when the transition toward wakefulness 

is better.

(B) We extend the analysis to the other proposed metrics in latent space. Each row 

corresponds to a different metric. Columns contain three-dimensional renderings where the 

regions are colored depending on how the corresponding metric behaves asymptotically with 

the perturbation strength when applied to that region pair (W, wakefulness; N1, N2, and N3, 

stages from light to deep sleep; S, sedation; LOC, loss of consciousness; MCS, minimally 

conscious state; UWS, unresponsive wakefulness syndrome).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Processed fMRI data University of Liege and University of 
Kiel

https://doi.org/10.5281/zenodo.7806006

Software and algorithms

Whole-brain modeling & Variational 
Autoencoder

Custom software https://doi.org/10.5281/zenodo.7806006

MATLAB 2020b MathWorks https://www.mathworks.com

SPM Wellcome Department of Cognitive 
Neurology, London, UK

https://www.fil.ion.ucl.ac.uk/spm/

FSL FMRIB Software Library https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Connectome Workbench Marcus et al.57 https://www.humanconnectome.org/software/connectome-
workbench

Python 3.10.3 Python https://www.python.org/
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