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Abstract 

Background  For women in the first trimester, amniocentesis or chorionic villus sampling is recommended 
for screening. Machine learning has shown increased accuracy over time and finds numerous applications in enhanc-
ing decision-making, patient care, and service quality in nursing and midwifery. This study aims to develop an optimal 
learning model utilizing machine learning techniques, particularly neural networks, to predict chromosomal abnor-
malities and evaluate their predictive efficacy.

Methods/ design  This cross-sectional study will be conducted in midwifery clinics in Mashhad, Iran in 2024. The 
data will be collected from 350 pregnant women in the high-risk group who underwent screening tests in the first 
trimester (between 11-14 weeks) of pregnancy. Information collected includes maternal age, BMI, smoking habits, his-
tory of trisomy 21 and other chromosomal disorders, CRL and NT levels, PAPP-A and B-HCG levels, presence of insulin-
dependent diabetes, and whether the pregnancy resulted from IVF. The study follows up with the women during their 
clinic visits and tracks the results of amniocentesis. Sampling is based on Convenience Sampling, and data is gathered 
using a checklist of characteristics and screening/amniocentesis results. After preprocessing, feature extraction is con-
ducted to identify and predict relevant features. The model is trained and evaluated using K-fold cross-validation.

Discussion  There is a growing interest in utilizing artificial intelligence methods, like machine learning and deep 
learning, in nursing and midwifery. This underscores the critical necessity for nurses and midwives to be well-versed 
in artificial intelligence methods and their healthcare applications. It can be beneficial to develop a machine learning 
model, specifically focusing on neural networks, for predicting chromosomal abnormalities.
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Plain English Summary 

Approximately 3% of newborns are affected by congenital abnormalities and genetic diseases, leading to dis-
ability and death. Among live births, around 3000 cases of Down syndrome (trisomy 21) can be expected based 
on the country’s birth rate. Pregnant women carrying fetuses with Down syndrome face an increased risk of preg-
nancy complications. Artificial intelligence methods, such as machine learning and deep learning, are being used 
in nursing and midwifery to improve decision-making, patient care, and research. Nurses need to actively participate 
in the development and implementation of AI-based decision support systems. Additionally, nurses and midwives 
should play a key role in evaluating the effectiveness of artificial intelligence-based technologies in professional 
practice.

Background
Congenital abnormalities and genetic diseases lead to 
disability and death in approximately 3% of newborns 
[1]. Chromosomal disorders, including trisomy 21, tri-
somy 18, trisomy 13, and sex chromosome disorders, 
affect about 1 in 150 live births [2]. These disorders can 
lead to physical and psychological challenges in affected 
children and an increased risk of pregnancy complica-
tions for pregnant women [3–6]. The screening tests for 
aneuploidy involve assessing certain hormone levels and 
using ultrasound to measure nuchal translucency [7–9]. 
Screening in the first trimester of pregnancy includes two 
biochemical markers: human chorionic gonadotropin 
(βhCG Free) and plasma protein A concentration (PAPP-
A), along with the measurement of nuchal translucency 
by ultrasound, which is performed between the 11th and 
14th weeks of pregnancy [3]. High-risk individuals may 
undergo invasive procedures like amniocentesis or cho-
rionic villus sampling. However, these procedures can 
have complications and may increase stress and anxiety 
levels among mothers [10–12]. Additionally, studies have 
shown that a small percentage of cases identified as high-
risk actually have aneuploidy [1, 13]. Midwives play a cru-
cial role in providing advice and care to mothers during 
pregnancy, delivery, and postpartum, offering emotional 
support to reduce anxiety and stress [14]. In recent times, 
there has been a surge of interest in artificial intelligence 
(AI) methods such as machine learning and deep learning 
worldwide. These methods are being integrated into nurs-
ing and midwifery to enhance decision-making, patient 
care, service delivery, and research studies. It is essen-
tial for nurses to be actively engaged in the development 
and implementation of AI-based decision support sys-
tems, particularly when these systems impact their direct 
patient care. Additionally, nurses and midwives should 
play a more active role in conducting detailed and inter-
disciplinary research to assess the clinical, ethical, and 
legal implications of AI-based technologies in professional 
practice [15–17]. Machine learning, a subset of computer 
science and AI, focuses on deploying data and algorithms 
to imitate human learning and steadily improve accuracy. 

This technique involves developing algorithms that can 
learn from experience to enhance system performance, 
using data as the source of experience to build predictive 
models [18–20]. Nurses and midwives should be actively 
involved in the development and implementation of AI-
based decision support systems. Machine learning aims to 
create machines that can learn and make decisions with-
out direct programming, and it can help predict chromo-
somal abnormalities, potentially aiding in decisions about 
procedures for pregnant mothers. The aim of the present 
study is to create a machine-learning model, focusing on 
neural networks, to predict chromosomal abnormalities.

Main goal
Predicting chromosomal abnormalities during the first 
three months of pregnancy through machine-learning 
techniques.

Specific objectives:

1.	 Assessing the sensitivity of the optimized neural net-
work in predicting chromosomal abnormalities dur-
ing the first-trimester screening.

2.	 Identifying the key characteristics of the optimized 
neural network for predicting chromosomal abnor-
malities during the first-trimester screening.

3.	 Contrasting the performance of the optimized neural 
network with decision trees in diagnosing chromosome 
abnormalities during the first-trimester screening.

4.	 Contrasting the performance of the optimized neu-
ral network with random forest in diagnosing chro-
mosome abnormalities during the first-trimester 
screening.

Research inquiries:

1.	 How sensitive are optimized neural networks in pre-
dicting chromosomal abnormalities during first-tri-
mester screening?
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2.	 What are the distinguishing features of an optimized 
neural network in predicting chromosomal abnor-
malities during first-trimester screening?

3.	 Is there a significant difference between the results of 
the optimized neural network and the decision tree 
in diagnosing chromosomal abnormalities during the 
first three months?

4.	 Do the optimized neural network results differ from 
random forest results in detecting chromosomal 
abnormalities during first-trimester screening?

Methods/design
Study design
In this study, a cross-sectional approach will be used. It 
involves data from 350 pregnant women who underwent the 
first-trimester screening test at 11 to 14 weeks of pregnancy 
at the Mashhad clinic and were classified as high-risk. After 
receiving approval from the Medical Ethics Committee of 
the University of Sciences Mashhad Medicine and a letter 
of recommendation from the faculty of Midwifery Nursing 
of Mashhad, the researcher contacted the research cent-
ers, obtained necessary permissions, and began sampling 
at midwifery clinics each day. Data collection entails assess-
ing factors such as the mother’s age, BMI, maternal smok-
ing, trisomy 21 history, CRL level, NT, PAPP-A, B-HCG, 
presence of insulin-dependent diabetes, and IVF pregnancy 
status. This data is gathered during visits to obstetric clin-
ics for first-trimester screening results, with follow-up 
amniocentesis for those deemed high-risk. The study aims 
to diagnose chromosomal abnormalities accurately using 
first-trimester screening parameters to reduce stress asso-
ciated with unnecessary amniocentesis testing. Initially, the 
required data is collected with a designated sample size and 
undergoes pre-processing. This involves managing missing 
values, eliminating anomalies, and standardizing the data. 
Subsequently, the researcher conducts statistical analyses 
on all input characteristics in the first phase to unveil sig-
nificant relationships with the response variable, specifi-
cally regarding chromosomal abnormalities 13, 18, and 21. 
Moving on to the second phase, a predictive model is con-
structed employing machine learning techniques. In this 
study, two model variants are developed using all input fea-
tures and influential features for decision-making. While 
the first model utilizes data gathered from pregnant women 
in its entirety, the second model employs filter-based fea-
ture selection methods to pinpoint essential features for 
building a prediction model. The process of model creation 
encompasses training and evaluation stages where K-fold 
cross-validation is employed to gauge model efficiency and 
performance. The model’s decisions are juxtaposed with 
actual patient data from the dataset to compute model error, 
aiming to minimize it. Furthermore, the study will focus on 
constructing a model based on Artificial Neural Networks 

(ANN), seeking to optimize the network’s structure and 
parameters. Given the pivotal role of structure and hyperpa-
rameters in network performance and prediction accuracy, 
an optimization approach such as Particle Swarm Optimi-
zation (PSO) will be leveraged to pinpoint optimal hyper-
parameter values and network structure. This optimization 
process is envisaged to enhance the accuracy of the predic-
tion model in identifying chromosomal abnormalities post 
the initial screening, alongside other methodologies. Addi-
tionally, machine learning techniques like decision trees will 
be utilized for comparative analysis of results.

Sample size and sampling method
In machine learning methods, sample size is typically 
not fixed; the more data available, the more efficient to 
enhance model effectiveness. With a significance level of 
0.07 confidence level of 99% (i.e., z = 2.58), and precision 
of 0.05, a minimum of 173 individuals were calculated 
using the formula. The final sample size was set at 190 
individuals, accounting for a ten percent dropout rate. 
While this calculation is customary in statistical meth-
ods, for machine learning models, a larger dataset of at 
least 350 individuals is necessary for more precise model 
design and comprehensive evaluation.

Inclusion criteria
First-trimester screening and NT ultrasound between 
11-14 weeks of pregnancy, along with amniocentesis.

Exclusion criteria
Mother’s unwillingness to participate, presence of twins 
or multiples, failure to undergo amniocentesis for high-
risk screening cases.

Study implementation platform and data collection 
locations
Midwifery clinics in Mashhad hospitals served as the 
research setting.

Recruitment approach
Researchers conducted sampling in selected centers, con-
venience sampling, and collected necessary data after 
obtaining participants’ consent.

Data analysis
To ensure a reliable and standardized assessment of the 
prediction model, we employ the K-fold cross-validation 
method. This approach gauges the model’s ability to 

z = 2/58 p = 0/07 d = 0/05

N =

z2 × p× (1− p)

d2
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generalize to new data by partitioning the dataset into k 
subsets. Training and evaluation are conducted on these 
subsets, enhancing system reliability through the assess-
ment of varied random batches. Subsequently, results for 
accuracy, precision, sensitivity, and specificity are pro-
vided to assess the model’s predictive capacity effectively.

Discussion
Aneuploidy screening tests are divided into three catego-
ries: first-trimester screening, second-trimester screening, 
and combined first and second-trimester screening. First-
trimester screening involves evaluating human chorionic 
gonadotropin (βhCG Free) and plasma protein A con-
centration (PAPP-A) and measuring nuchal translucency 
using ultrasound between the 11th and 14th weeks of 
pregnancy [7–9]. After first-trimester screening, high-risk 
individuals are recommended to undergo amniocentesis 
or chorionic villus sampling. However, these invasive pro-
cedures are time-consuming and expensive. Studies show 
that common complications of amniocentesis include 
fetal death, bleeding, and amniotic fluid leakage, prema-
ture rupture of membranes, amnionitis, and spontaneous 
abortion [7, 21, 22]. Research also suggests that amniocen-
tesis can lead to increased stress and anxiety levels among 
mother [14] .According to a study by Hassanzadeh et al., 
only 10% of high-risk cases identified through first-trimes-
ter screening were confirmed as aneuploidy by amnio-
centesis [1]. Additionally, a study by Delkhosh et al. found 
that 5.2% of cases suspected of trisomy 21 during first and 
second-trimester screenings through amniocentesis were 
found to have aneuploidy [13]. Midwives play a crucial 
role in advising and caring for mothers during pregnancy, 
delivery, and postpartum. They provide emotional support 
to reduce mothers’ anxiety and stress, ensuring the health 
of both mother and fetus and making pregnancy safe. The 
role of Utilizing artificial intelligence methods, such as 
machine learning and deep learning, in nursing and mid-
wifery to greatly improve decision-making, patient care, 
service delivery, and research studies can be significant. It 
is imperative that nurses and midwives actively engage in 
the development and implementation of AI-based deci-
sion support systems. Machine learning aims to create 
machines that can learn and make decisions without direct 
programming, and it has the potential to accurately predict 
chromosomal abnormalities, thereby playing a crucial role 
in decisions about procedures for pregnant mothers.
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