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Abstract
The	progression	of	 lung	 adenocarcinoma	 (LUAD)	 from	atypical	 adenomatous	hyper-
plasia	(AAH)	to	invasive	adenocarcinoma	(IAC)	involves	a	complex	evolution	of	tumour	
cell	clusters,	the	mechanisms	of	which	remain	largely	unknown.	By	integrating	single-	
cell datasets and using inferCNV, we identified and analysed tumour cell clusters to 
explore	their	heterogeneity	and	changes	in	abundance	throughout	LUAD	progression.	
We	applied	gene	set	variation	analysis	(GSVA),	pseudotime	analysis,	scMetabolism,	and	
Cytotrace	scores	to	study	biological	functions,	metabolic	profiles	and	stemness	traits.	A	
predictive model for prognosis, based on key cluster marker genes, was developed using 
CoxBoost	and	plsRcox	(CPM),	and	validated	across	multiple	cohorts	for	its	prognostic	
prediction capabilities, tumour microenvironment characterization, mutation landscape 
and	 immunotherapy	 response.	We	 identified	nine	distinct	 tumour	 cell	 clusters,	with	
Cluster 6 indicating an early developmental stage, high stemness and proliferative po-
tential.	 The	 abundance	of	Clusters	0	 and	6	 increased	 from	AAH	 to	 IAC,	 correlating	
with prognosis. The CPM model effectively distinguished prognosis in immunotherapy 
cohorts and predicted genomic alterations, chemotherapy drug sensitivity, and immu-
notherapy	responsiveness.	Key	gene	S100A16	in	the	CPM	model	was	validated	as	an	
oncogene,	enhancing	LUAD	cell	proliferation,	invasion	and	migration.	The	CPM	model	
emerges as a novel biomarker for predicting prognosis and immunotherapy response in 
LUAD	patients,	with	S100A16	identified	as	a	potential	therapeutic	target.

K E Y W O R D S
immunotherapy	response,	lung	adenocarcinoma,	machine	learning,	S100A16,	single-	cell	analysis

1  |  INTRODUC TION

Lung	cancer	(LC)	is	a	common	malignant	tumour	and	one	of	the	lead-
ing causes of cancer- related deaths worldwide.1 It is typically classi-
fied	into	non-	small	cell	lung	cancer	(NSCLC)	and	small	cell	lung	cancer	

(SCLC),	with	NSCLC	accounting	for	approximately	85%	of	all	LC	cases.	
Among	NSCLCs,	lung	adenocarcinoma	(LUAD)	is	the	most	prevalent	
subtype.2	Many	patients	with	LUAD	have	a	poor	prognosis	because	
they are diagnosed at an advanced stage, underscoring the impor-
tance	of	improving	early	detection	rates	to	extend	patient	survival.3
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The	 development	 of	 LUAD	 can	 be	 broadly	 divided	 into	 four	
stages:	 atypical	 adenomatous	 hyperplasia	 (AAH),	 adenocarcinoma	
in	situ	(AIS),	minimally	invasive	adenocarcinoma	(MIA),	and	invasive	
adenocarcinoma	(IAC).4	Studies	have	shown	that	surgical	resection	
of	tumours	in	the	first	three	stages	results	in	nearly	100%	10-	year	
recurrence-	free	 survival	 and	 overall	 survival	 (OS)	 rates.	 However,	
the	prognosis	 significantly	declines	when	LUAD	progresses	 to	 the	
IAC	stage,	which	is	the	most	common	form	found	in	postoperative	
pathology.5,6 Traditional methods are not effective in accurately 
identifying	the	stage	of	LUAD.	While	thin-	section	CT	scanning	and	
low-	dose	 CT	 can	 detect	 small	 early-	stage	 LUADs,	 evaluating	 the	
stage	 of	 LUAD	 based	 solely	 on	 radiographic	 parameters	 remains	
challenging.7 Moreover, preoperative biopsies pose risks of localiza-
tion difficulties and sampling failures.8,9	Single-	cell	sequencing	tech-
nology can reveal the molecular mechanisms of cancer development 
at the genetic level, identify diagnostic and prognostic markers, and 
has been widely used in tumour research. This technology may pro-
vide	early	support	for	staging	LUAD.10,11

The	 biological	 mechanisms	 underlying	 the	 evolution	 of	 LUAD	
are still unclear, and the key factors driving tumour progression and 
markers for identifying tumour staging are poorly understood.12 
Traditional research has mostly focused on the bulk level, using ge-
nomic, transcriptomic and proteomic approaches to understand the 
development of premalignant lesions into cancer.13 However, de-
tailed cell populations and genes involved in the invasive progression 
of	LUAD	from	AAH	to	IAC	remain	largely	unknown.14,15	Single-	cell	
sequencing	technology	offers	a	higher	resolution	analytical	tool	that	
allows researchers to observe cancer at the molecular level, offering 
a	deeper	understanding	of	LUAD.16

This	study	integrated	three	high-	throughput	single-	cell	sequenc-
ing	 datasets	 from	 patients	 with	 LUAD.	 Malignant	 epithelial	 cells	
were	extracted	and	classified	into	AAH,	AIS,	MIA	and	IAC	based	on	
their	 progression,	 exploring	 the	 heterogeneity	 of	 different	 stages	
of	cancer	tissues	in	LUAD.	The	study	aimed	to	identify	risk	factors	
influencing	the	continuous	progression	of	LUAD	and	to	discover	bio-
markers	aiding	in	identifying	LUAD	staging.

2  |  METHOD

2.1  |  Dataset source

For	 the	 analysis,	 two	 Single-	Cell	 RNA	 Sequencing	 (scRNA-	seq)	
datasets	were	 sourced	 from	 the	Gene	Expression	Omnibus	 (GEO)	
database	 (GSE150938	 and	 GSE189357,	 http:// www. ncbi. nlm. nih. 
gov/ geo),	 and	 another	 from	 the	Genome	 Sequence	Archive	 (GSA)	
in	the	BIG	Data	Center	(HRA001130).	LUAD	transcriptomic,	meth-
ylation,	 copy	 number	 variation	 (CNV),	 mutation,	 and	 clinical	 data	
were	successfully	retrieved	from	The	Cancer	Genome	Atlas	(TCGA)	
database	 (https:// portal. gdc. cancer. gov).	 Six	 transcriptome	 data-
sets	 for	model	 validation	were	 also	 acquired	 from	GEO,	 including	
GSE1321317	 (n = 119),	 GSE2693918	 (n = 115),	 GSE2901619	 (n = 39),	

GSE3021920	 (n = 86),	 GSE3121021	 (n = 227)	 and	 GSE4212722 
(n = 134).	Additionally,	296	cases	of	 immunotherapy-	treated	LUAD	
were	 analysed	 from	 OAK	 and	 POPLAR,	 two	 major	 clinical	 trials	
focusing	on	chemotherapy	and	 immunotherapy	for	NSCLC.	To	en-
sure	the	uniformity	and	comparability	of	the	data,	gene	expression	
data	were	first	converted	into	transcripts	per	million	(TPM)	format.	
Following this, the ‘combat’ function from the ‘sva’ package was uti-
lized	to	address	potential	batch	effects.	Additionally,	log	transforma-
tion	was	carried	out	on	all	datasets	 sourced	 from	both	TCGA	and	
GEO databases, thus establishing a standardized data format from 
the outset of the analysis.

2.2  |  Single- cell RNA sequencing data analysis

The	initial	single-	cell	gene	expression	matrix	underwent	preproc-
essing	utilizing	the	Seurat	R	package	(version	4.2.0).	Inclusion	crite-
ria	for	genes	mandated	expression	in	a	minimum	of	10	cells.	Quality	
control	 measures	 led	 to	 the	 exclusion	 of	 cells	 with	 either	 more	
than	5000	or	fewer	than	200	expressed	genes,	or	those	with	over	
10%	of	their	unique	molecular	 identifiers	 (UMIs)	originating	from	
mitochondrial gene. These steps resulted in a refined single- cell 
transcriptomic	 expression	 matrix.	 Batch	 effects	 were	 addressed	
through integration using the Harmony R package. Dimensionality 
reduction to visualize the data were achieved through t- distributed 
Stochastic	 Neighbour	 Embedding	 (t-	SNE).	 The	 ‘FindAllMarkers’	
function	 facilitated	 the	 identification	 of	 differentially	 expressed	
genes	(DEGs)	across	each	cellular	subpopulation.

2.3  |  Analysing tumour cell developmental 
trajectories and metabolic pathway activity

The Monocle2 algorithm was deployed for developmental trajectory 
analysis	on	inferred	tumour	cells,	utilizing	a	gene-	cell	matrix	derived	
from	UMI	counts,	which	was	normalized	within	a	subset	of	Seurat.	
A	novel	 ‘cell	data	 set’	 function	was	employed	 to	create	an	object,	
setting	 the	 expression	 family	 parameter	 to	 the	Negative	Binomial	
distribution size. Following dimensionality reduction and ordering of 
units, cell trajectories were deduced using standard parameters. The 
CytoTRACE	 package23 was utilized to evaluate the stemness and 
differentiation potential across various tumour cell subpopulations. 
Furthermore, the scMetabolism package24 was employed to assess 
metabolic pathway activity within distinct subtypes of tumour epi-
thelial cells.

2.4  |  Identifying key prognostic signatures in LUAD 
using machine learning algorithms

The	GSVA25 package was utilized to determine the prevalence of 
specific	 tumour	 clusters	 in	 LUAD	 specimens.	 A	 univariate	 Cox	
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regression analysis assessed the influence of pivotal genes within 
these	clusters	on	LUAD	patient	survival.	Following	this,	a	compre-
hensive evaluation employing 10- fold cross- validation was con-
ducted, incorporating a suite of 10 machine learning algorithms, 
including	 stepwise	 Cox,	 Lasso,	 Ridge,	 Cox	 partial	 least	 squares	
regression	 (plsRcox),	 CoxBoost,	 random	 survival	 forest	 (RSF),	
Generalized	Boosted	Regression	Models	 (GBM),	Elastic	Net	 (Enet),	
Supervised	Principal	Components	 (SuperPC)	 and	Survival	 Support	
Vector	Machine	(survival-	SVM).	This	methodology	aimed	to	pinpoint	
the most critical prognostic signature, distinguished by the highest 
concordance	index	(C-	index).

2.5  |  Analysing immune cell composition

Seven	 diverse	 algorithms	 for	 assessing	 immune	 cell	 infiltration—
EPIC,	 TIMMER,	 CIBERSORT,	 CIBERSORT-	ABS,	 MCPCounter,	
QUANTISEQ	and	XCELL—were	applied	to	evaluate	the	immune	cell	
composition. Furthermore, the estimate package26 was strategi-
cally	used	 to	 calculate	 immune,	 stromal	 and	ESTIMATE	scores	 for	
patients	with	 TCGA-	LUAD,	 facilitating	 an	 in-	depth	 analysis	 of	 the	
tumour	microenvironment	(TME).

2.6  |  Cultivation of human lung adenocarcinoma 
cell lines

A549	and	H1299,	human	LUAD	cell	 lines,	were	acquired	 from	the	
Shanghai	Life	Sciences	Institute's	Cell	Resource	Center.	These	cells	
were	propagated	in	either	F12K	or	RPMI-	1640	medium	(Gibco	BRL,	
USA),	enriched	with	10%	fetal	bovine	serum	(FBS)	and	1%	antibiotics	
(streptomycin	and	penicillin	from	Gibco,	 Invitrogen,	Waltham,	MA,	
USA).	Cultivation	was	performed	at	37°C	in	an	atmosphere	contain-
ing	5%	CO2	and	95%	relative	humidity.

2.7  |  Silencing of S100A16 via siRNA transfection

To	knock	down	S100A16	expression,	small	interfering	RNA	(siRNA)	
targeting	 S100A16	 (siS100A16)	 was	 utilized	 alongside	 a	 negative	
control	(NC)	siRNA.	Cells	were	plated	at	a	density	ensuring	50%	con-
fluency in 6- well plates and transfected using Lipofectamine 3000 
(Invitrogen,	USA)	following	the	manufacturer's	instructions.

2.8  |  Colony formation ability post- transfection

For	colony	formation	assays,	1 × 103 transfected cells were plated 
per	well	 in	6-	well	 plates	 and	 cultured	 for	14 days.	 Following	 cul-
ture,	 cells	were	 fixed	with	 4%	 paraformaldehyde	 for	 15 min	 and	
stained	 with	 crystal	 violet	 (Solarbio,	 China)	 after	 being	 washed	
twice	with	PBS.

2.9  |  Monitoring cell migration via 
wound- healing assay

To assay cell migration, transfected cells were grown in 6- well plates 
until	 95%	confluency	was	 reached.	A	 sterile	20 μL pipette tip was 
used	 to	 create	 a	 uniform	 scratch	 across	 the	 cell	monolayer.	 After	
scratching,	 cells	 were	 rinsed	 twice	with	 PBS	 to	 remove	 detached	
cells.	Wound	 closure	was	 documented	 at	 0	 and	 48 h	 post-	scratch	
using	ImageJ	software	for	scratch	width	measurement.

2.10  |  Evaluating cell invasion and migration with 
transwell assay

The	transwell	assay	was	employed	to	examine	the	invasive	and	mi-
gratory	properties	of	A549	and	H1299	 cells	 post-	treatment.	Cells	
(2 × 105)	were	placed	in	the	top	chamber	of	24-	well	plates,	with	or	
without	a	Matrigel	coating,	for	48 h.	Post-	incubation,	non-	invading	
cells were removed from the top layer, while cells that migrated to 
the	bottom	were	fixed	with	4%	paraformaldehyde	and	stained	with	
0.1%	crystal	violet	(Solarbio,	China).

2.11  |  Statistical methodologies for data analysis

Statistical	 analyses,	 data	 manipulation	 and	 graphical	 representa-
tions were carried out using R software, version 4.2.0. The Kaplan–
Meier	 estimator	 and	 log-	rank	 test	were	 employed	 to	 compare	OS	
among different subtypes. For assessing variance in continuous data 
between	 groups,	 either	 the	Wilcoxon	 rank-	sum	 test	 or	 Student's	
t- test was used. Categorical data analysis utilized either the chi- 
squared	test	or	Fisher's	exact	test.	To	account	for	multiple	testing,	
p-	values	were	adjusted	using	the	false	discovery	rate	(FDR)	method.	
Pearson's	correlation	coefficient	was	employed	to	explore	variable	
relationships.	All	statistical	analyses	were	two-	sided,	with	a	signifi-
cance level set at p < 0.05.

3  |  RESULTS

3.1  |  Cell classification and CNV analysis

Figure 1 outlined the workflow for the entire analysis. Canonical 
marker	 genes	 (Figure S1A–C)	were	 utilized	 to	 classify	 all	 sampled	
cells	from	datasets	GSE150938,	GSE189357	and	HRA001130	into	
various	 cell	 types,	 as	 depicted	 in	 the	 t-	SNE	 plots	 (Figure 2A–C).	
Epithelial	and	endothelial	cells	from	all	datasets	were	extracted	for	
reference, and a comprehensive analysis of CNVs across every chro-
mosome in all cells was conducted using the InferCNV algorithm, as 
shown in Figure 2D. The analysis revealed that the majority of epi-
thelial	cells	exhibited	higher	levels	of	CNVs	compared	to	endothelial	
cells. Figure 2E displayed the variance in CNV scores across eight 
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identified cell clusters, with Clusters 1 and 2 showing relatively lower 
CNVs, thus being designated as normal cells, while the remaining 
clusters	were	categorized	as	tumour	cells.	Subsequently,	all	tumour	
cells underwent re- clustering. This process led to the identification 
of nine distinct clusters, as illustrated in Figure 2F, highlighting the 
varying abundance of different tumour cell clusters across samples 
(Figure 2G).

3.2  |  Dynamic gene expression and pathway 
enrichment in tumour cell clusters

The enrichment analysis of nine tumour cell clusters in key gene sets, 
as shown in Figure 3A,	 reveals	 a	notable	pattern.	 Specifically,	 the	
sixth	group	of	cells	demonstrates	significant	enrichment	in	biologi-
cal	pathways	related	to	cell	cycle	processes	and	DNA	repair	mecha-
nisms.	 Additionally,	 this	 cell	 cluster	 exhibits	 strong	 activity	 in	 the	
MYC	target	pathways	V1	and	V2,	highlighting	the	potential	pivotal	
role	of	MYC	in	driving	the	transcriptional	programs	of	these	tumour	
cells	(Figure 3A).	The	heatmap	delineates	the	gene	expression	pro-
files along a pseudotemporal continuum, as depicted in Figure 3B. 
Pseudotime mapping delineates the ontogenetic evolution of dis-
parate neoplastic clusters. Intriguingly, Clusters 0 and 6 localize to 
the	nascent	stages	of	development,	with	a	subsequent	diminution	
in prevalence over time, as illustrated in Figure 3C. This trend may 

be indicative of an inherent propensity for stemness and differentia-
tion potential within Clusters 0 and 6. Following this, GO enrichment 
analysis of pseudotime- correlated genes underscores the salient 
pathways enriched across biological processes, cellular constituents 
and molecular functionalities, as delineated in Figure 3D. Red font 
underscores	the	enrichment	of	genes	that	are	overexpressed	in	the	
initial	 stages,	 predominantly	 implicated	 in	 the	 cell	 cycle,	 DNA	 re-
pair and protein metabolic processes. In contrast, green font details 
the	enrichment	of	genes	that	are	overexpressed	in	the	culminating	
stages, primarily involved in biological processes such as ‘organelle 
organization’,	‘exosome’	and	‘extracellular	vesicle’	pathways.

3.3  |  Metabolic profiling and stemness potential of 
tumour cell clusters

Figure 4A illustrates the metabolic activity levels in distinct tumour 
cell clusters, ranging from Cluster 0 to Cluster 8. Notably, Cluster 6 
shows significantly heightened activity in metabolic pathways such 
as amino sugar and nucleotide metabolism, glycolysis, gluconeogen-
esis, the citric acid cycle, glycerophosphate metabolism, and several 
amino acid metabolism pathways. This metabolic profile may be 
associated with Cluster 6's biological characteristics, including pro-
liferative capacity, response to environmental stress, and potential 
stem cell- like properties. Importantly, there is a significant statistical 

F I G U R E  1 Utilizing	single-	cell	data,	we	analysed	the	heterogeneity	of	different	subgroups	of	tumour	cells	in	lung	adenocarcinoma	and	
constructed	a	model	using	machine	learning.	Ultimately,	through	experimental	validation,	S100A16	was	identified	as	a	potential	therapeutic	
target for lung adenocarcinoma.

F I G U R E  2 Cellular	heterogeneity	and	genomic	alterations	in	single-	cell	analyses.	(A–C)	t-	distributed	stochastic	neighbour	embedding	
(tSNE)	visualizations	highlight	cell	type	distributions	within	HRA00113,	GSE150938	and	GSE189357	scRNA-	seq	cohorts.	(D)	A	heatmap	
delineates	cell-	wise	genomic	copy	number	variations	(CNVs),	calculated	from	gene	expression	proximal	to	chromosomal	loci,	with	
amplifications	in	red	and	deletions	in	blue.	(E)	Box	plots	reveal	CNV	patterns	across	eight	identified	clusters.	(F)	tSNE	plot	illustrates	the	
spatial	distribution	of	tumour	subgroups.	(G)	The	relative	abundance	of	nine	tumour	cell	clusters	across	various	samples	is	depicted.
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variance in Cytotrace scores between groups, with Cluster 0 and 6 
exhibiting	the	highest	stemness	(Figure 4B),	supporting	their	poten-
tial for enhanced proliferation and differentiation capabilities, con-
sistent with previous pseudotime analyses.

3.4  |  Correlation between tumour cell cluster 
abundance and survival

Figure 5A delineates the cellular proportions within each cluster 
corresponding	to	distinct	histopathological	patterns:	AAH,	AIS,	MIA	
and	 IAC.	Notably,	Clusters	0	and	4	exhibit	variability	 in	cell	 abun-
dance across these histopathological states, with Cluster 0 showing 
an incremental increase in abundance with advancing malignancy. 
Complementarily, Figure 5B corroborates the progressive rise of 
Cluster 0 through the stages of malignancy, with a similar trend 
observed	 in	Cluster	6.	Consequently,	 leveraging	 the	 single-	sample	
Gene	Set	Enrichment	Analysis	(ssGSEA)	algorithm,	we	quantitatively	
assessed	the	abundance	of	Clusters	0	and	6	in	TCGA	LUAD	samples.	
Intriguingly, patients with a higher abundance of these clusters dem-
onstrated	poorer	survival	outcomes	 (Figure 5C,D).	This	suggests	a	
potential	 prognostic	 relevance	 of	 these	 clusters	 in	 the	 context	 of	
LUAD	progression	and	patient	survival.

3.5  |  Development of a prognostic and 
immunotherapy- related signature using machine 
learning algorithms

Leveraging the marker genes from tumour cell Clusters 0 and 6, we 
have devised a prognostic and immunotherapy- related signature 
utilizing	a	machine	learning	composite	algorithm.	The	TCGA	dataset	
was	employed	as	the	training	cohort,	with	six	GEO	datasets	utilized	
for validation purposes. The criterion for model selection was based 
on	the	average	c-	index	across	the	six	validation	cohorts.	Ultimately,	
the	CoxBoost	and	plsRcox	algorithms	were	selected	as	the	optimal	
composite	 prognostic	 model	 (CPM)	 (Figure 6A).	 The	 CPM	 score	
successfully stratified patient prognoses across all seven cohorts 
(Figure 6B–H),	with	patients	in	the	high	CPM	group	demonstrating	
poorer survival outcomes compared to those in the low CPM group. 
Additionally,	 extrapolating	 the	CPM	scores	 to	 the	 immunotherapy	
cohort using the model's formula revealed that the CPM scores con-
tinued	 to	effectively	discriminate	prognostic	outcomes	 (Figure 6I),	
suggesting its potential utility in predicting responses to immuno-
therapy treatments.

3.6  |  Superior prognostic efficacy of the CPM 
across multiple datasets

Patients	 with	 elevated	 CPM	 scores	 exhibited	 significantly	 poorer	
prognoses	 in	 LUAD,	 consistently	 observed	 across	 seven	 datasets:	
TCGA,	 GSE13213,	 GSE26939,	 GSE29016,	 GSE30219,	 GSE31210	
and	GSE42127.	The	area	under	the	curve	(AUC)	values	for	1-	,	3-		and	
5-	year	OS	demonstrated	the	robust	predictive	capability	of	the	CPM	
score	 in	 these	datasets:	TCGA	 (0.68,	0.68,	0.64),	GSE13213	 (0.95,	
0.71,	 0.72),	 GSE26939	 (0.79,	 0.68,	 0.66),	 GSE29016	 (0.65,	 0.74,	
0.70),	GSE30219	(0.71,	0.81,	0.79),	GSE31210	(NA,	0.75,	0.81)	and	
GSE42127	(0.69,	0.67,	0.70)	(Figure 7A–G).	To	further	evaluate	the	
prognostic efficacy of the CPM score, we included a panel of 144 
signatures	 and	 compared	 the	 concordance	 index	 (C-	index)	 across	
the seven datasets. The results indicated that our CPM score out-
performed the majority of previously published signatures in all 
seven	datasets	(Figure 7A–G).

3.7  |  Immune landscape and correlation with CPM

To elucidate the immunological landscape as depicted by the CPM 
score, we conducted an analysis to ascertain the relationship be-
tween the CPM score and the degree of immune cell infiltration, as 
well	as	the	expression	of	immune-	related	genes.	We	utilized	seven	
distinct analytical methodologies to calculate the immune infiltra-
tion	scores	within	the	TCGA	dataset.	Heatmap	analysis	revealed	that	
a more substantial degree of immune cell infiltration was observed 
in	cohorts	with	lower	CPM	scores	(Figure 8A).	Further	comprehen-
sive analysis indicated an inverse correlation between CPM scores 
and	matrix	scores,	immune	scores	and	ESTIMATE	scores,	which	sug-
gests stromal and immune cell presence in tumour tissue; however, 
a	 direct	 correlation	was	 noted	with	 tumour	 purity	 (Figure 8C).	 In	
assessing the association between CPM scores and immune gene 
expression,	 it	was	observed	that	the	expression	 levels	of	 immune-	
related genes were relatively diminished in cohorts with higher CPM 
scores, denoting a heightened level of immune suppression in these 
groups	(Figure 8B).

3.8  |  Validating the oncogenic role of S100A16

Among	 all	 the	 genes	 in	 the	 model,	 S100A16	 exhibits	 a	 signifi-
cant	positive	correlation	with	the	model	score	(R = 0.59,	p < 0.01,	
Figure S2),	underscoring	its	prominent	impact	on	the	prognosis	of	

F I G U R E  3 Decoding	tumour	cell	cluster	dynamics.	(A)	Enrichment	analysis	across	distinct	tumour	cell	clusters	using	Gene	Set	Variation	
Analysis	(GSVA),	visualized	through	a	heatmap.	(B)	Expression	dynamics	across	pseudotime	are	depicted	in	a	heatmap,	showcasing	gene	
expression	intensity	variations.	(C)	Developmental	trajectories	of	various	tumour	cell	clusters	are	illustrated	via	pseudotime	analysis,	with	
cells	colour-	coded	based	on	tumour	clusters	or	progression	through	pseudotime.	(D)	Gene	ontology	(GO)	enrichment	analysis	identifies	and	
highlights	enriched	pathways	in	genes	from	Clusters	1	and	2	as	shown	in	(B),	covering	aspects	of	biological	process	(BP),	cellular	component	
(CC)	and	molecular	function	(MF).
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LUAD.	To	elucidate	 the	oncogenic	 role	of	S100A16	 in	LUAD,	we	
employed	 siRNA	 to	downregulate	 the	 expression	of	 S100A16	 in	
A549	and	H1299	cell	 lines	 (Figure 9A).	Colony	 formation	assays	
demonstrated	 that	 suppression	 of	 S100A16	 markedly	 inhibited	
the	 proliferation	 and	DNA	 replication	 capabilities	 of	 LUAD	 cells	
(Figure 9B,C).	 Wound	 healing	 assays	 were	 conducted	 to	 assess	
cellular migration capacity. The findings indicated a substantial re-
duction	in	the	wound	closure	rate	of	A549	and	H1299	cells	post-	
S100A16	knockdown	compared	to	the	control	group	(Figure 9D,E).	
Furthermore, transwell assays revealed a decrease in the number 
of	 cells	 invading	 the	 lower	 chamber	 following	 S100A16	 knock-
down	(Figure 9F–H).	Collectively,	these	outcomes	suggest	a	tumo-
rigenic	role	for	S100A16	in	LUAD	cells.

4  |  DISCUSSION

Based	 on	 the	 updated	 classification	 of	 LUAD,	 the	 survival	 rates	
for	AAH,	AIS	 and	MIA	 are	 nearly	 100%.	However,	 as	 the	 disease	

progresses	to	IAC,	the	difficulty	of	treatment	increases,	along	with	
the risk of tumour recurrence and metastasis, leading to a significant 
decline in treatment efficacy and survival rates.5,6 Therefore, early 
diagnosis and intervention are crucial for improving the prognosis 
of	 LUAD	 patients,	 highlighting	 the	 importance	 of	 further	 under-
standing the evolutionary trajectory from precancerous lesions to 
invasive	 LUAD.	Single-	cell	 sequencing	 technology	 allows	 for	high-	
resolution analysis of cellular origins, gene molecular specificity, im-
munogenicity and other aspects, dissecting the transcriptional and 
immunological changes associated with tumour progression, which 
is of significant importance in identifying biomarkers closely related 
to tumour progression.16,27

In	this	study,	we	conducted	extensive	clustering	analysis	of	ma-
lignant	 epithelial	 tissues	 in	 three	 single-	cell	 sequencing	 datasets,	
identifying specific cell clusters that synchronize with the evolu-
tionary	 trajectory	 from	AAH	to	AIS,	MIA	and	 IAC,	and	confirming	
the	impact	of	these	cell	clusters	on	LUAD	prognosis.	Based	on	the	
identifying genes of the cell clusters, we constructed a prognostic 
prediction	model	for	LUAD	using	machine	learning	algorithms,	and	

F I G U R E  4 Metabolic	heterogeneity	and	stemness	potential	across	tumour	clusters.	(A)	Bubble	chart	illustrating	metabolic	heterogeneity	
across	various	tumour	clusters,	highlighting	differential	metabolic	activity	within	the	tumour	microenvironment.	(B)	Cytotrace	analysis	
depicting Cytotrace scores for different tumour clusters, where higher scores indicate cells with greater stemness and differentiation 
potential.
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F I G U R E  5 Analysing	tumour	cluster	dynamics	and	survival	impact	in	LUAD	progression.	(A)	Proportional	variations	of	different	tumour	
clusters	throughout	the	progression	of	LUAD	(from	atypical	adenomatous	hyperplasia	[AAH]	to	adenocarcinoma	in	situ	[AIS],	minimally	
invasive	adenocarcinoma	[MIA]	and	finally	to	invasive	adenocarcinoma	[IAC]).	(B)	The	prevalence	of	distinct	tumour	cell	clusters	during	the	
progression	stages.	(C,	D)	Single-	sample	Gene	Set	Enrichment	Analysis	(ssGSEA)	assessing	the	impact	of	the	abundance	of	Clusters	0	and	6	
on	the	survival	of	patients	with	LUAD,	where	higher	abundance	indicates	poorer	prognosis.
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validated the predictive ability of the model using multiple datasets. 
Subsequently,	we	explored	the	differences	in	immune	infiltration	and	
immune regulation between high-  and low- CPM groups. Finally, we 
experimentally	validated	the	influence	of	the	model	gene	S100A16.	
Based	on	these	findings,	we	believe	that	the	model	constructed	in	
this	study	can	accurately	predict	the	prognosis	of	LUAD	patients.

Previous studies have shown that driver gene mutations contrib-
ute	to	the	occurrence	and	development	of	LUAD.28	De	Bruinet	al.	

found	that	mutations	in	APOBEC	genes	are	important	factors	influ-
encing	 intratumoral	 heterogeneity	 in	 LUAD	 and	 contribute	 to	 the	
progression	from	AIS/MIA	to	IAC.29,30 The study by Chen et al. re-
vealed	a	significant	increase	in	the	mutation	frequency	of	APOBEC,	
TP53	and	HLA	LOH	from	the	preinvasive	stage	to	the	invasive	stage,	
highlighting	 the	 crucial	 regulatory	 role	 of	 TP53	 in	 LUAD	 invasive-
ness, consistent with the functional association between TP53 mu-
tations and the invasive potential of cancer previously discovered.31 

F I G U R E  6 Construction	and	validation	of	the	prognostic	model.	(A)	Development	of	the	prognostic	model	utilizing	10	machine	learning	
approaches,	with	the	concordance	index	(C-	index)	serving	as	the	evaluation	metric;	the	CoxBoost	and	plsRcox	algorithms	were	identified	
as	the	superior	composite	prognostic	model	(CPM).	(B–H)	Survival	curves	for	patients	categorized	into	high	versus	low	CPM	groups	across	
seven cohorts, with p-	values	determined	using	the	log-	rank	method	to	assess	statistical	significance.	(I)	Calculation	of	CPM	scores	within	the	
immunotherapy cohort using the model's formula, followed by an assessment of their prognostic relevance.
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It is worth noting that although we have depicted the evolutionary 
trajectory	from	AAH	to	AIS,	MIA	and	IAC	based	on	high-	throughput	
data	from	LUAD	samples	and	identified	specific	genes	and	signalling	

pathways involved in this process, we have not analysed the muta-
tion	frequencies	of	the	relevant	genes	during	the	development	from	
precancerous	lesions	to	invasive	LUAD.

F I G U R E  7 Comparative	prognostic	performance	of	CPM	against	established	models.	(A–G)	receiver	operating	characteristic	(ROC)	
curves	evaluating	the	CPM	within	the	TCGA,	GSE13213,	GSE26939,	GSE29016,	GSE30219,	GSE31210	and	GSE42127	LUAD	datasets.	
When	benchmarked	against	144	previously	published	prognostic	models	for	LUAD,	the	CPM	showcases	enhanced	prognostic	accuracy.
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F I G U R E  8 Assessment	of	immune	infiltration	and	correlation	with	CPM	scores	in	LUAD.	(A)	A	heatmap	illustrating	the	variance	in	
immune	infiltration	scores	between	groups	with	high	and	low	CPM	scores.	(B)	Analysis	depicting	the	relationship	between	CPM	scores	
and	the	expression	of	immune-	related	genes.	(C)	Scatter	plots	revealing	the	associations	between	CPM	scores	and	various	tumour	
microenvironment	metrics,	including	stromal	scores,	immune	scores,	ESTIMATE	scores	and	tumour	purity.
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F I G U R E  9 Validation	of	S100A16's	oncogenic	role	in	LUAD	through	targeted	knockdown.	(A)	Reduction	in	S100A16	expression	in	A549	
and	H1299	cells	post-	S100A16	knockdown.	(B,	C)	Colony	formation	assays	demonstrating	that	S100A16	knockdown	notably	inhibits	LUAD	
cell	proliferation.	(D,	E)	Wound	healing	assays	assess	the	migratory	potential	of	A549	and	H1299	cells	following	si-	S100A16	transfection.	
(F-	H)	Transwell	assays	evaluate	the	migration	and	invasion	capabilities	of	S100A16-	knockdown	A549	and	H1299	cells.
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S100A16,	as	a	prognostic	marker	for	LUAD,	has	been	confirmed	
in previous studies and is closely related to the malignant transfor-
mation of tissues.32–34	 Previous	 studies	 have	 found	 that	 S100A16	
promotes EMT transformation of various cancer cells, including 
LUAD,	which	is	an	important	mechanism	leading	to	lymph	node	in-
vasion	and	metastasis	in	LUAD.35–40	Chen	et	al.	analysed	the	OS	data	
of	502	LUAD	patients	and	found	that	high	expression	of	S100A16	is	
associated	with	poorer	OS.41 Li et al. constructed a prognostic model 
for	LUAD	based	on	seven	immune	hypoxia-	related	genes,	including	
S100A16,	S100P,	PGK1,	TNFSF11,	ARRB1,	NCR3	and	TSLP,	which	
can	evaluate	the	immune	status	and	predict	the	prognosis	of	LUAD	
patients.42	 In	 this	 study,	we	 found	high	 expression	of	 S100A16	 in	
LUAD,	which	indicates	a	shorter	OS.	Knocking	down	the	S100A16	
gene	significantly	inhibited	the	proliferation,	invasion,	and	DNA	rep-
lication	ability	of	LUAD	cells.	Therefore,	we	believe	 that	S100A16	
plays	a	critical	role	in	the	progression	of	LUAD.

However, this study also has some limitations. Firstly, the bio-
logical mechanisms by which model genes influence the progression 
of	LUAD	from	precancerous	lesions	to	invasive	cancer	need	further	
in-	depth	 research.	 Second,	 the	 specific	 presentation	 of	 mutation	
frequencies	 of	 relevant	 genes	 during	 tumour	 progression	was	 not	
analysed.	Third,	the	model	requires	more	 in	vitro	experiments	and	
clinical validation.

In summary, our investigation provides a comprehensive molec-
ular and functional characterization of tumour cell heterogeneity 
in	LUAD.	Through	integrating	insights	from	cell	classification,	CNV	
analysis,	 dynamic	 gene	 expression	 profiling,	 pathway	 enrichment	
studies, and machine learning- derived CPM, we offer a nuanced un-
derstanding	of	cancer	biology	complexities	and	their	implications	for	
prognosis and therapeutic interventions. This integrated approach 
not	only	advances	our	knowledge	of	LUAD	but	also	lays	the	ground-
work for the development of more effective diagnostic and thera-
peutic approaches, ultimately enhancing personalized oncology and 
improving patient care outcomes.
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