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Abstract
The progression of lung adenocarcinoma (LUAD) from atypical adenomatous hyper-
plasia (AAH) to invasive adenocarcinoma (IAC) involves a complex evolution of tumour 
cell clusters, the mechanisms of which remain largely unknown. By integrating single-
cell datasets and using inferCNV, we identified and analysed tumour cell clusters to 
explore their heterogeneity and changes in abundance throughout LUAD progression. 
We applied gene set variation analysis (GSVA), pseudotime analysis, scMetabolism, and 
Cytotrace scores to study biological functions, metabolic profiles and stemness traits. A 
predictive model for prognosis, based on key cluster marker genes, was developed using 
CoxBoost and plsRcox (CPM), and validated across multiple cohorts for its prognostic 
prediction capabilities, tumour microenvironment characterization, mutation landscape 
and immunotherapy response. We identified nine distinct tumour cell clusters, with 
Cluster 6 indicating an early developmental stage, high stemness and proliferative po-
tential. The abundance of Clusters 0 and 6 increased from AAH to IAC, correlating 
with prognosis. The CPM model effectively distinguished prognosis in immunotherapy 
cohorts and predicted genomic alterations, chemotherapy drug sensitivity, and immu-
notherapy responsiveness. Key gene S100A16 in the CPM model was validated as an 
oncogene, enhancing LUAD cell proliferation, invasion and migration. The CPM model 
emerges as a novel biomarker for predicting prognosis and immunotherapy response in 
LUAD patients, with S100A16 identified as a potential therapeutic target.
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1  |  INTRODUC TION

Lung cancer (LC) is a common malignant tumour and one of the lead-
ing causes of cancer-related deaths worldwide.1 It is typically classi-
fied into non-small cell lung cancer (NSCLC) and small cell lung cancer 

(SCLC), with NSCLC accounting for approximately 85% of all LC cases. 
Among NSCLCs, lung adenocarcinoma (LUAD) is the most prevalent 
subtype.2 Many patients with LUAD have a poor prognosis because 
they are diagnosed at an advanced stage, underscoring the impor-
tance of improving early detection rates to extend patient survival.3
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The development of LUAD can be broadly divided into four 
stages: atypical adenomatous hyperplasia (AAH), adenocarcinoma 
in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive 
adenocarcinoma (IAC).4 Studies have shown that surgical resection 
of tumours in the first three stages results in nearly 100% 10-year 
recurrence-free survival and overall survival (OS) rates. However, 
the prognosis significantly declines when LUAD progresses to the 
IAC stage, which is the most common form found in postoperative 
pathology.5,6 Traditional methods are not effective in accurately 
identifying the stage of LUAD. While thin-section CT scanning and 
low-dose CT can detect small early-stage LUADs, evaluating the 
stage of LUAD based solely on radiographic parameters remains 
challenging.7 Moreover, preoperative biopsies pose risks of localiza-
tion difficulties and sampling failures.8,9 Single-cell sequencing tech-
nology can reveal the molecular mechanisms of cancer development 
at the genetic level, identify diagnostic and prognostic markers, and 
has been widely used in tumour research. This technology may pro-
vide early support for staging LUAD.10,11

The biological mechanisms underlying the evolution of LUAD 
are still unclear, and the key factors driving tumour progression and 
markers for identifying tumour staging are poorly understood.12 
Traditional research has mostly focused on the bulk level, using ge-
nomic, transcriptomic and proteomic approaches to understand the 
development of premalignant lesions into cancer.13 However, de-
tailed cell populations and genes involved in the invasive progression 
of LUAD from AAH to IAC remain largely unknown.14,15 Single-cell 
sequencing technology offers a higher resolution analytical tool that 
allows researchers to observe cancer at the molecular level, offering 
a deeper understanding of LUAD.16

This study integrated three high-throughput single-cell sequenc-
ing datasets from patients with LUAD. Malignant epithelial cells 
were extracted and classified into AAH, AIS, MIA and IAC based on 
their progression, exploring the heterogeneity of different stages 
of cancer tissues in LUAD. The study aimed to identify risk factors 
influencing the continuous progression of LUAD and to discover bio-
markers aiding in identifying LUAD staging.

2  |  METHOD

2.1  |  Dataset source

For the analysis, two Single-Cell RNA Sequencing (scRNA-seq) 
datasets were sourced from the Gene Expression Omnibus (GEO) 
database (GSE150938 and GSE189357, http://​www.​ncbi.​nlm.​nih.​
gov/​geo), and another from the Genome Sequence Archive (GSA) 
in the BIG Data Center (HRA001130). LUAD transcriptomic, meth-
ylation, copy number variation (CNV), mutation, and clinical data 
were successfully retrieved from The Cancer Genome Atlas (TCGA) 
database (https://​portal.​gdc.​cancer.​gov). Six transcriptome data-
sets for model validation were also acquired from GEO, including 
GSE1321317 (n = 119), GSE2693918 (n = 115), GSE2901619 (n = 39), 

GSE3021920 (n = 86), GSE3121021 (n = 227) and GSE4212722 
(n = 134). Additionally, 296 cases of immunotherapy-treated LUAD 
were analysed from OAK and POPLAR, two major clinical trials 
focusing on chemotherapy and immunotherapy for NSCLC. To en-
sure the uniformity and comparability of the data, gene expression 
data were first converted into transcripts per million (TPM) format. 
Following this, the ‘combat’ function from the ‘sva’ package was uti-
lized to address potential batch effects. Additionally, log transforma-
tion was carried out on all datasets sourced from both TCGA and 
GEO databases, thus establishing a standardized data format from 
the outset of the analysis.

2.2  |  Single-cell RNA sequencing data analysis

The initial single-cell gene expression matrix underwent preproc-
essing utilizing the Seurat R package (version 4.2.0). Inclusion crite-
ria for genes mandated expression in a minimum of 10 cells. Quality 
control measures led to the exclusion of cells with either more 
than 5000 or fewer than 200 expressed genes, or those with over 
10% of their unique molecular identifiers (UMIs) originating from 
mitochondrial gene. These steps resulted in a refined single-cell 
transcriptomic expression matrix. Batch effects were addressed 
through integration using the Harmony R package. Dimensionality 
reduction to visualize the data were achieved through t-distributed 
Stochastic Neighbour Embedding (t-SNE). The ‘FindAllMarkers’ 
function facilitated the identification of differentially expressed 
genes (DEGs) across each cellular subpopulation.

2.3  |  Analysing tumour cell developmental 
trajectories and metabolic pathway activity

The Monocle2 algorithm was deployed for developmental trajectory 
analysis on inferred tumour cells, utilizing a gene-cell matrix derived 
from UMI counts, which was normalized within a subset of Seurat. 
A novel ‘cell data set’ function was employed to create an object, 
setting the expression family parameter to the Negative Binomial 
distribution size. Following dimensionality reduction and ordering of 
units, cell trajectories were deduced using standard parameters. The 
CytoTRACE package23 was utilized to evaluate the stemness and 
differentiation potential across various tumour cell subpopulations. 
Furthermore, the scMetabolism package24 was employed to assess 
metabolic pathway activity within distinct subtypes of tumour epi-
thelial cells.

2.4  |  Identifying key prognostic signatures in LUAD 
using machine learning algorithms

The GSVA25 package was utilized to determine the prevalence of 
specific tumour clusters in LUAD specimens. A univariate Cox 
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regression analysis assessed the influence of pivotal genes within 
these clusters on LUAD patient survival. Following this, a compre-
hensive evaluation employing 10-fold cross-validation was con-
ducted, incorporating a suite of 10 machine learning algorithms, 
including stepwise Cox, Lasso, Ridge, Cox partial least squares 
regression (plsRcox), CoxBoost, random survival forest (RSF), 
Generalized Boosted Regression Models (GBM), Elastic Net (Enet), 
Supervised Principal Components (SuperPC) and Survival Support 
Vector Machine (survival-SVM). This methodology aimed to pinpoint 
the most critical prognostic signature, distinguished by the highest 
concordance index (C-index).

2.5  |  Analysing immune cell composition

Seven diverse algorithms for assessing immune cell infiltration—
EPIC, TIMMER, CIBERSORT, CIBERSORT-ABS, MCPCounter, 
QUANTISEQ and XCELL—were applied to evaluate the immune cell 
composition. Furthermore, the estimate package26 was strategi-
cally used to calculate immune, stromal and ESTIMATE scores for 
patients with TCGA-LUAD, facilitating an in-depth analysis of the 
tumour microenvironment (TME).

2.6  |  Cultivation of human lung adenocarcinoma 
cell lines

A549 and H1299, human LUAD cell lines, were acquired from the 
Shanghai Life Sciences Institute's Cell Resource Center. These cells 
were propagated in either F12K or RPMI-1640 medium (Gibco BRL, 
USA), enriched with 10% fetal bovine serum (FBS) and 1% antibiotics 
(streptomycin and penicillin from Gibco, Invitrogen, Waltham, MA, 
USA). Cultivation was performed at 37°C in an atmosphere contain-
ing 5% CO2 and 95% relative humidity.

2.7  |  Silencing of S100A16 via siRNA transfection

To knock down S100A16 expression, small interfering RNA (siRNA) 
targeting S100A16 (siS100A16) was utilized alongside a negative 
control (NC) siRNA. Cells were plated at a density ensuring 50% con-
fluency in 6-well plates and transfected using Lipofectamine 3000 
(Invitrogen, USA) following the manufacturer's instructions.

2.8  |  Colony formation ability post-transfection

For colony formation assays, 1 × 103 transfected cells were plated 
per well in 6-well plates and cultured for 14 days. Following cul-
ture, cells were fixed with 4% paraformaldehyde for 15 min and 
stained with crystal violet (Solarbio, China) after being washed 
twice with PBS.

2.9  |  Monitoring cell migration via 
wound-healing assay

To assay cell migration, transfected cells were grown in 6-well plates 
until 95% confluency was reached. A sterile 20 μL pipette tip was 
used to create a uniform scratch across the cell monolayer. After 
scratching, cells were rinsed twice with PBS to remove detached 
cells. Wound closure was documented at 0 and 48 h post-scratch 
using ImageJ software for scratch width measurement.

2.10  |  Evaluating cell invasion and migration with 
transwell assay

The transwell assay was employed to examine the invasive and mi-
gratory properties of A549 and H1299 cells post-treatment. Cells 
(2 × 105) were placed in the top chamber of 24-well plates, with or 
without a Matrigel coating, for 48 h. Post-incubation, non-invading 
cells were removed from the top layer, while cells that migrated to 
the bottom were fixed with 4% paraformaldehyde and stained with 
0.1% crystal violet (Solarbio, China).

2.11  |  Statistical methodologies for data analysis

Statistical analyses, data manipulation and graphical representa-
tions were carried out using R software, version 4.2.0. The Kaplan–
Meier estimator and log-rank test were employed to compare OS 
among different subtypes. For assessing variance in continuous data 
between groups, either the Wilcoxon rank-sum test or Student's 
t-test was used. Categorical data analysis utilized either the chi-
squared test or Fisher's exact test. To account for multiple testing, 
p-values were adjusted using the false discovery rate (FDR) method. 
Pearson's correlation coefficient was employed to explore variable 
relationships. All statistical analyses were two-sided, with a signifi-
cance level set at p < 0.05.

3  |  RESULTS

3.1  |  Cell classification and CNV analysis

Figure  1 outlined the workflow for the entire analysis. Canonical 
marker genes (Figure S1A–C) were utilized to classify all sampled 
cells from datasets GSE150938, GSE189357 and HRA001130 into 
various cell types, as depicted in the t-SNE plots (Figure  2A–C). 
Epithelial and endothelial cells from all datasets were extracted for 
reference, and a comprehensive analysis of CNVs across every chro-
mosome in all cells was conducted using the InferCNV algorithm, as 
shown in Figure 2D. The analysis revealed that the majority of epi-
thelial cells exhibited higher levels of CNVs compared to endothelial 
cells. Figure 2E displayed the variance in CNV scores across eight 
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identified cell clusters, with Clusters 1 and 2 showing relatively lower 
CNVs, thus being designated as normal cells, while the remaining 
clusters were categorized as tumour cells. Subsequently, all tumour 
cells underwent re-clustering. This process led to the identification 
of nine distinct clusters, as illustrated in Figure 2F, highlighting the 
varying abundance of different tumour cell clusters across samples 
(Figure 2G).

3.2  |  Dynamic gene expression and pathway 
enrichment in tumour cell clusters

The enrichment analysis of nine tumour cell clusters in key gene sets, 
as shown in Figure 3A, reveals a notable pattern. Specifically, the 
sixth group of cells demonstrates significant enrichment in biologi-
cal pathways related to cell cycle processes and DNA repair mecha-
nisms. Additionally, this cell cluster exhibits strong activity in the 
MYC target pathways V1 and V2, highlighting the potential pivotal 
role of MYC in driving the transcriptional programs of these tumour 
cells (Figure 3A). The heatmap delineates the gene expression pro-
files along a pseudotemporal continuum, as depicted in Figure 3B. 
Pseudotime mapping delineates the ontogenetic evolution of dis-
parate neoplastic clusters. Intriguingly, Clusters 0 and 6 localize to 
the nascent stages of development, with a subsequent diminution 
in prevalence over time, as illustrated in Figure 3C. This trend may 

be indicative of an inherent propensity for stemness and differentia-
tion potential within Clusters 0 and 6. Following this, GO enrichment 
analysis of pseudotime-correlated genes underscores the salient 
pathways enriched across biological processes, cellular constituents 
and molecular functionalities, as delineated in Figure 3D. Red font 
underscores the enrichment of genes that are overexpressed in the 
initial stages, predominantly implicated in the cell cycle, DNA re-
pair and protein metabolic processes. In contrast, green font details 
the enrichment of genes that are overexpressed in the culminating 
stages, primarily involved in biological processes such as ‘organelle 
organization’, ‘exosome’ and ‘extracellular vesicle’ pathways.

3.3  |  Metabolic profiling and stemness potential of 
tumour cell clusters

Figure 4A illustrates the metabolic activity levels in distinct tumour 
cell clusters, ranging from Cluster 0 to Cluster 8. Notably, Cluster 6 
shows significantly heightened activity in metabolic pathways such 
as amino sugar and nucleotide metabolism, glycolysis, gluconeogen-
esis, the citric acid cycle, glycerophosphate metabolism, and several 
amino acid metabolism pathways. This metabolic profile may be 
associated with Cluster 6's biological characteristics, including pro-
liferative capacity, response to environmental stress, and potential 
stem cell-like properties. Importantly, there is a significant statistical 

F I G U R E  1 Utilizing single-cell data, we analysed the heterogeneity of different subgroups of tumour cells in lung adenocarcinoma and 
constructed a model using machine learning. Ultimately, through experimental validation, S100A16 was identified as a potential therapeutic 
target for lung adenocarcinoma.

F I G U R E  2 Cellular heterogeneity and genomic alterations in single-cell analyses. (A–C) t-distributed stochastic neighbour embedding 
(tSNE) visualizations highlight cell type distributions within HRA00113, GSE150938 and GSE189357 scRNA-seq cohorts. (D) A heatmap 
delineates cell-wise genomic copy number variations (CNVs), calculated from gene expression proximal to chromosomal loci, with 
amplifications in red and deletions in blue. (E) Box plots reveal CNV patterns across eight identified clusters. (F) tSNE plot illustrates the 
spatial distribution of tumour subgroups. (G) The relative abundance of nine tumour cell clusters across various samples is depicted.
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variance in Cytotrace scores between groups, with Cluster 0 and 6 
exhibiting the highest stemness (Figure 4B), supporting their poten-
tial for enhanced proliferation and differentiation capabilities, con-
sistent with previous pseudotime analyses.

3.4  |  Correlation between tumour cell cluster 
abundance and survival

Figure  5A delineates the cellular proportions within each cluster 
corresponding to distinct histopathological patterns: AAH, AIS, MIA 
and IAC. Notably, Clusters 0 and 4 exhibit variability in cell abun-
dance across these histopathological states, with Cluster 0 showing 
an incremental increase in abundance with advancing malignancy. 
Complementarily, Figure  5B corroborates the progressive rise of 
Cluster 0 through the stages of malignancy, with a similar trend 
observed in Cluster 6. Consequently, leveraging the single-sample 
Gene Set Enrichment Analysis (ssGSEA) algorithm, we quantitatively 
assessed the abundance of Clusters 0 and 6 in TCGA LUAD samples. 
Intriguingly, patients with a higher abundance of these clusters dem-
onstrated poorer survival outcomes (Figure 5C,D). This suggests a 
potential prognostic relevance of these clusters in the context of 
LUAD progression and patient survival.

3.5  |  Development of a prognostic and 
immunotherapy-related signature using machine 
learning algorithms

Leveraging the marker genes from tumour cell Clusters 0 and 6, we 
have devised a prognostic and immunotherapy-related signature 
utilizing a machine learning composite algorithm. The TCGA dataset 
was employed as the training cohort, with six GEO datasets utilized 
for validation purposes. The criterion for model selection was based 
on the average c-index across the six validation cohorts. Ultimately, 
the CoxBoost and plsRcox algorithms were selected as the optimal 
composite prognostic model (CPM) (Figure  6A). The CPM score 
successfully stratified patient prognoses across all seven cohorts 
(Figure 6B–H), with patients in the high CPM group demonstrating 
poorer survival outcomes compared to those in the low CPM group. 
Additionally, extrapolating the CPM scores to the immunotherapy 
cohort using the model's formula revealed that the CPM scores con-
tinued to effectively discriminate prognostic outcomes (Figure 6I), 
suggesting its potential utility in predicting responses to immuno-
therapy treatments.

3.6  |  Superior prognostic efficacy of the CPM 
across multiple datasets

Patients with elevated CPM scores exhibited significantly poorer 
prognoses in LUAD, consistently observed across seven datasets: 
TCGA, GSE13213, GSE26939, GSE29016, GSE30219, GSE31210 
and GSE42127. The area under the curve (AUC) values for 1-, 3- and 
5-year OS demonstrated the robust predictive capability of the CPM 
score in these datasets: TCGA (0.68, 0.68, 0.64), GSE13213 (0.95, 
0.71, 0.72), GSE26939 (0.79, 0.68, 0.66), GSE29016 (0.65, 0.74, 
0.70), GSE30219 (0.71, 0.81, 0.79), GSE31210 (NA, 0.75, 0.81) and 
GSE42127 (0.69, 0.67, 0.70) (Figure 7A–G). To further evaluate the 
prognostic efficacy of the CPM score, we included a panel of 144 
signatures and compared the concordance index (C-index) across 
the seven datasets. The results indicated that our CPM score out-
performed the majority of previously published signatures in all 
seven datasets (Figure 7A–G).

3.7  |  Immune landscape and correlation with CPM

To elucidate the immunological landscape as depicted by the CPM 
score, we conducted an analysis to ascertain the relationship be-
tween the CPM score and the degree of immune cell infiltration, as 
well as the expression of immune-related genes. We utilized seven 
distinct analytical methodologies to calculate the immune infiltra-
tion scores within the TCGA dataset. Heatmap analysis revealed that 
a more substantial degree of immune cell infiltration was observed 
in cohorts with lower CPM scores (Figure 8A). Further comprehen-
sive analysis indicated an inverse correlation between CPM scores 
and matrix scores, immune scores and ESTIMATE scores, which sug-
gests stromal and immune cell presence in tumour tissue; however, 
a direct correlation was noted with tumour purity (Figure  8C). In 
assessing the association between CPM scores and immune gene 
expression, it was observed that the expression levels of immune-
related genes were relatively diminished in cohorts with higher CPM 
scores, denoting a heightened level of immune suppression in these 
groups (Figure 8B).

3.8  |  Validating the oncogenic role of S100A16

Among all the genes in the model, S100A16 exhibits a signifi-
cant positive correlation with the model score (R = 0.59, p < 0.01, 
Figure S2), underscoring its prominent impact on the prognosis of 

F I G U R E  3 Decoding tumour cell cluster dynamics. (A) Enrichment analysis across distinct tumour cell clusters using Gene Set Variation 
Analysis (GSVA), visualized through a heatmap. (B) Expression dynamics across pseudotime are depicted in a heatmap, showcasing gene 
expression intensity variations. (C) Developmental trajectories of various tumour cell clusters are illustrated via pseudotime analysis, with 
cells colour-coded based on tumour clusters or progression through pseudotime. (D) Gene ontology (GO) enrichment analysis identifies and 
highlights enriched pathways in genes from Clusters 1 and 2 as shown in (B), covering aspects of biological process (BP), cellular component 
(CC) and molecular function (MF).
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LUAD. To elucidate the oncogenic role of S100A16 in LUAD, we 
employed siRNA to downregulate the expression of S100A16 in 
A549 and H1299 cell lines (Figure 9A). Colony formation assays 
demonstrated that suppression of S100A16 markedly inhibited 
the proliferation and DNA replication capabilities of LUAD cells 
(Figure  9B,C). Wound healing assays were conducted to assess 
cellular migration capacity. The findings indicated a substantial re-
duction in the wound closure rate of A549 and H1299 cells post-
S100A16 knockdown compared to the control group (Figure 9D,E). 
Furthermore, transwell assays revealed a decrease in the number 
of cells invading the lower chamber following S100A16 knock-
down (Figure 9F–H). Collectively, these outcomes suggest a tumo-
rigenic role for S100A16 in LUAD cells.

4  |  DISCUSSION

Based on the updated classification of LUAD, the survival rates 
for AAH, AIS and MIA are nearly 100%. However, as the disease 

progresses to IAC, the difficulty of treatment increases, along with 
the risk of tumour recurrence and metastasis, leading to a significant 
decline in treatment efficacy and survival rates.5,6 Therefore, early 
diagnosis and intervention are crucial for improving the prognosis 
of LUAD patients, highlighting the importance of further under-
standing the evolutionary trajectory from precancerous lesions to 
invasive LUAD. Single-cell sequencing technology allows for high-
resolution analysis of cellular origins, gene molecular specificity, im-
munogenicity and other aspects, dissecting the transcriptional and 
immunological changes associated with tumour progression, which 
is of significant importance in identifying biomarkers closely related 
to tumour progression.16,27

In this study, we conducted extensive clustering analysis of ma-
lignant epithelial tissues in three single-cell sequencing datasets, 
identifying specific cell clusters that synchronize with the evolu-
tionary trajectory from AAH to AIS, MIA and IAC, and confirming 
the impact of these cell clusters on LUAD prognosis. Based on the 
identifying genes of the cell clusters, we constructed a prognostic 
prediction model for LUAD using machine learning algorithms, and 

F I G U R E  4 Metabolic heterogeneity and stemness potential across tumour clusters. (A) Bubble chart illustrating metabolic heterogeneity 
across various tumour clusters, highlighting differential metabolic activity within the tumour microenvironment. (B) Cytotrace analysis 
depicting Cytotrace scores for different tumour clusters, where higher scores indicate cells with greater stemness and differentiation 
potential.
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F I G U R E  5 Analysing tumour cluster dynamics and survival impact in LUAD progression. (A) Proportional variations of different tumour 
clusters throughout the progression of LUAD (from atypical adenomatous hyperplasia [AAH] to adenocarcinoma in situ [AIS], minimally 
invasive adenocarcinoma [MIA] and finally to invasive adenocarcinoma [IAC]). (B) The prevalence of distinct tumour cell clusters during the 
progression stages. (C, D) Single-sample Gene Set Enrichment Analysis (ssGSEA) assessing the impact of the abundance of Clusters 0 and 6 
on the survival of patients with LUAD, where higher abundance indicates poorer prognosis.



10 of 15  |     ZHANG et al.

validated the predictive ability of the model using multiple datasets. 
Subsequently, we explored the differences in immune infiltration and 
immune regulation between high- and low-CPM groups. Finally, we 
experimentally validated the influence of the model gene S100A16. 
Based on these findings, we believe that the model constructed in 
this study can accurately predict the prognosis of LUAD patients.

Previous studies have shown that driver gene mutations contrib-
ute to the occurrence and development of LUAD.28 De Bruinet al. 

found that mutations in APOBEC genes are important factors influ-
encing intratumoral heterogeneity in LUAD and contribute to the 
progression from AIS/MIA to IAC.29,30 The study by Chen et al. re-
vealed a significant increase in the mutation frequency of APOBEC, 
TP53 and HLA LOH from the preinvasive stage to the invasive stage, 
highlighting the crucial regulatory role of TP53 in LUAD invasive-
ness, consistent with the functional association between TP53 mu-
tations and the invasive potential of cancer previously discovered.31 

F I G U R E  6 Construction and validation of the prognostic model. (A) Development of the prognostic model utilizing 10 machine learning 
approaches, with the concordance index (C-index) serving as the evaluation metric; the CoxBoost and plsRcox algorithms were identified 
as the superior composite prognostic model (CPM). (B–H) Survival curves for patients categorized into high versus low CPM groups across 
seven cohorts, with p-values determined using the log-rank method to assess statistical significance. (I) Calculation of CPM scores within the 
immunotherapy cohort using the model's formula, followed by an assessment of their prognostic relevance.
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It is worth noting that although we have depicted the evolutionary 
trajectory from AAH to AIS, MIA and IAC based on high-throughput 
data from LUAD samples and identified specific genes and signalling 

pathways involved in this process, we have not analysed the muta-
tion frequencies of the relevant genes during the development from 
precancerous lesions to invasive LUAD.

F I G U R E  7 Comparative prognostic performance of CPM against established models. (A–G) receiver operating characteristic (ROC) 
curves evaluating the CPM within the TCGA, GSE13213, GSE26939, GSE29016, GSE30219, GSE31210 and GSE42127 LUAD datasets. 
When benchmarked against 144 previously published prognostic models for LUAD, the CPM showcases enhanced prognostic accuracy.
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F I G U R E  8 Assessment of immune infiltration and correlation with CPM scores in LUAD. (A) A heatmap illustrating the variance in 
immune infiltration scores between groups with high and low CPM scores. (B) Analysis depicting the relationship between CPM scores 
and the expression of immune-related genes. (C) Scatter plots revealing the associations between CPM scores and various tumour 
microenvironment metrics, including stromal scores, immune scores, ESTIMATE scores and tumour purity.
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F I G U R E  9 Validation of S100A16's oncogenic role in LUAD through targeted knockdown. (A) Reduction in S100A16 expression in A549 
and H1299 cells post-S100A16 knockdown. (B, C) Colony formation assays demonstrating that S100A16 knockdown notably inhibits LUAD 
cell proliferation. (D, E) Wound healing assays assess the migratory potential of A549 and H1299 cells following si-S100A16 transfection. 
(F-H) Transwell assays evaluate the migration and invasion capabilities of S100A16-knockdown A549 and H1299 cells.



14 of 15  |     ZHANG et al.

S100A16, as a prognostic marker for LUAD, has been confirmed 
in previous studies and is closely related to the malignant transfor-
mation of tissues.32–34 Previous studies have found that S100A16 
promotes EMT transformation of various cancer cells, including 
LUAD, which is an important mechanism leading to lymph node in-
vasion and metastasis in LUAD.35–40 Chen et al. analysed the OS data 
of 502 LUAD patients and found that high expression of S100A16 is 
associated with poorer OS.41 Li et al. constructed a prognostic model 
for LUAD based on seven immune hypoxia-related genes, including 
S100A16, S100P, PGK1, TNFSF11, ARRB1, NCR3 and TSLP, which 
can evaluate the immune status and predict the prognosis of LUAD 
patients.42 In this study, we found high expression of S100A16 in 
LUAD, which indicates a shorter OS. Knocking down the S100A16 
gene significantly inhibited the proliferation, invasion, and DNA rep-
lication ability of LUAD cells. Therefore, we believe that S100A16 
plays a critical role in the progression of LUAD.

However, this study also has some limitations. Firstly, the bio-
logical mechanisms by which model genes influence the progression 
of LUAD from precancerous lesions to invasive cancer need further 
in-depth research. Second, the specific presentation of mutation 
frequencies of relevant genes during tumour progression was not 
analysed. Third, the model requires more in vitro experiments and 
clinical validation.

In summary, our investigation provides a comprehensive molec-
ular and functional characterization of tumour cell heterogeneity 
in LUAD. Through integrating insights from cell classification, CNV 
analysis, dynamic gene expression profiling, pathway enrichment 
studies, and machine learning-derived CPM, we offer a nuanced un-
derstanding of cancer biology complexities and their implications for 
prognosis and therapeutic interventions. This integrated approach 
not only advances our knowledge of LUAD but also lays the ground-
work for the development of more effective diagnostic and thera-
peutic approaches, ultimately enhancing personalized oncology and 
improving patient care outcomes.
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