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Abstract

(R,S)-methadone ((R,S)-MTD) is a μ-opioid receptor (MOR) agonist comprised of (R)-MTD and 

(S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-

methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD 

and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike 

(R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce 

locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects 

of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the 

MOR-galanin (Gal1) receptor heteromer, a key mediator of the dopaminergic effects of opioids. In 

sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its 

potential mechanism of action and therapeutic use.

One-sentence summary

(S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the 

MOR-Gal1R heteromer, decreasing its abuse liability.
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Opioid medications are potent and efficacious analgesics, but their use can be associated 

with serious adverse effects such as tolerance, dependence, and respiratory depression. 

(R,S)-methadone ((R,S)-MTD) is an opioid medication used as an analgesic and a 

maintenance therapy for opioid use disorder (OUD) 1, 2. (R,S)-MTD is a long-acting 

μ-opioid receptor (MOR) agonist that is comprised of equal amounts of (R)-MTD and (S)-

MTD enantiomers. The therapeutic properties of (R,S)-MTD are believed to be mediated by 

the pharmacological actions of (R)-MTD 3, which is also prescribed alone as a maintenance 

therapy for OUD4.

(S)-MTD, historically considered the inactive enantiomer of (R,S)-MTD, is now under 

clinical development as a treatment for depression5–7. Although its precise in vivo 
pharmacology is not well understood, (S)-MTD’s antidepressant mechanism of action 

is attributed to N-methyl-D-aspartate receptor (NMDAR) antagonism5–9. Specifically, (S)-

MTD has ~2.6–7.4 μM affinity at NMDARs10 and produces behavioral and neurochemical 

effects in rodents that are similar to those produced by ketamine6, 7, a known NMDAR 

antagonist and effective antidepressant. However, recent evidence implicates MOR agonism 

as a relevant mechanism for ketamine’s antidepressant effects, its abuse liability, and in vivo 
pharmacology11–14. Furthermore, (S)-MTD’s affinity for the MOR is ~300 times greater 
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than its affinity for the NMDAR10, 15. Finally, (S)-MTD is an established MOR agonist, 

whereas its NMDAR actions involve noncompetitive antagonism10.

(R,S)-MTD and its enantiomers are classified as Schedule II controlled substances by 

the United States Drug Enforcement Administration (DEA). Nevertheless, (R,S)-MTD 

produces weaker activation of midbrain dopamine systems and has lower abuse liability 

when compared to other opioids16. The reduced dopaminergic effects of (R,S)-MTD are 

dependent on its unique, weak interaction with MOR-galanin 1 receptor (Gal1R) heteromers 

specifically expressed in the ventral tegmental area (VTA). MOR-Gal1R in the VTA are 

known to mediate the activation of the dopaminergic system by opioids16, but the effects of 

(R) and (S) enantiomers of MTD at these heteromers are unknown.

In order to explore the analgesic and abuse liability profiles of (R,S)-MTD and its 

enantiomers, and to address the gaps in knowledge about these compounds, we performed 

an in-depth in vitro, in vivo and in silico pharmacological characterization of (R,S)-MTD, 

(R)-MTD and (S)-MTD. In contrast to prior studies, we conclusively show that (S)-MTD 

does not act at NMDARs at doses that produce antidepressant-like effects, analgesia, or 

reinforcement. We also show that despite its agonism at MOR, (S)-MTD is predicted to have 

low abuse liability. Additionally, we report a unique pharmacodynamic effect of (S)-MTD 

at the MOR-Gal1R, distinct from that of (R)-MTD, which explains (R,S)-MTD’s unique 

actions at the MOR-Gal1R 16. This finding is particularly novel as it represents a rare 

example of enantiomers acting in opposition at the same pharmacological target. Taken 

together, our findings provide a novel mechanistic explanation for the differential in vitro 
and in vivo properties of the enantiomers, which may impact on their clinical utility.

Results

(R)-MTD and (S)-MTD preferentially bind and activate MOR

Each enantiomer was tested for its ability to competitively inhibit binding or activity at 

a panel of 98 receptors and enzymes that are known targets for drugs of abuse and CNS 

medications. At 10 μM, (R)-MTD inhibited binding at several receptors (Fig. 1A), while 

at 100 nM, (R)-MTD inhibited binding only at MOR (98%) and SERT (68%). At 10 

μM, (S)-MTD inhibited binding at several receptors, while at 100 nM, (S)-MTD inhibited 

binding only at MOR (79%). We derived each enantiomer’s affinity at MOR or NMDAR 

by measuring the binding of [3H]DAMGO or [3H]MK-801, respectively, in rat brain tissue. 

The Ki values obtained for MOR were 15.6 ± 0.1 nM for (R,S)-MTD, 7.5 ± 0.1 nM for 

(R)-MTD, and 60.5 ± 0.1 nM for (S)-MTD (Fig. 1B). The Ki values for NMDAR were 

higher – 1.96 ± 0.07 μM for (R,S)-MTD, 1.44 ± 0.07 μM for (R)-MTD, and 2.73 ± 0.07 μM 

for (S)-MTD (fig. S1) and approximated the Ki values reported in prior work10.

Agonist-stimulated [35S]GTPγS autoradiography in rat brain sections was used to examine 

the ability of (R,S)-MTD and its enantiomers to activate MOR (Fig. 1C). At 100 nM, only 

(R)-MTD increased [35S]GTPγS recruitment in the caudate putamen (CPu) (171%) and 

nucleus accumbens (NAc) (151%) (Fig. 1D, E). By contrast, at 1 μM all drugs increased 

[35S]GTPγS recruitment in CPu (R,S: 199%; R: 270%; S: 144%) and NAc (R,S: 145%; R: 

164%; S: 120%) (Fig. 1D, E). At the 1 μM concentration, (R)-MTD showed significantly 
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greater [35S]GTPγS recruitment compared to (R,S)-MTD (P = 0.01) and (S)-MTD (P < 

0.001) in CPu. Additionally, (R,S)-MTD showed greater [35S]GTPγS recruitment compared 

to (S)-MTD (P = 0.028). Finally, the regional distribution of (S)-MTD-induced (1μM, Fig. 

1C) and (R)-MTD-induced (100 nM, fig. S1) [35S]GTPγS recruitment was blocked by 

naloxone (10 μM) indicating opioid receptor involvement.

(S)-MTD exhibits similar analgesic efficacy as (R)-MTD and (R,S)-MTD

We next evaluated analgesic, cataleptic, and hypothermic effects in the same rats. In the 

hotplate, (R,S)-MTD, (R)-MTD, and (S)-MTD demonstrated full agonistic activity, with 

ED50 values (%MPE, maximum possible effect) of 1.2, 0.5 and 17.9 mg/kg, respectively 

(Figs. 2A, S2). The catalepsy score provides a measure of the motor and postural changes 

associated with high-dose opioid administration in rats. Unlike in the hot plate, when 

evaluating catalepsy score in rats, (S)-MTD behaved as a partial agonist, unable to achieve 

maximal cataleptic effects, even at 100 mg/kg. The high-dose effect was ~60% of the 

maximal cataleptic effects of both (R)-MTD and (R,S)-MTD, which were observed at 3 and 

10 mg/kg, respectively (Figs. 2B, S2). The cataleptic ED50 values (%MPE) for (R,S)-MTD, 

(R)-MTD and (S)-MTD were 2.1, 0.9 and 59.4 mg/kg, respectively, which were two- to 

three-fold higher than their analgesic ED50 values. MOR agonists have biphasic effects 

on body temperature – at low doses these drugs tend to raise body temperature, but at 

high doses they produce hypothermia. For the three drugs, the maximal cataleptic effect 

corresponded to the minimal dose required to produce significant hypothermia (fig. S2). 

(S)-MTD-induced catalepsy did not observably saturate, and toxic higher doses were not 

employed. Overall, these experiments demonstrate a MOR agonistic profile of (S)-MTD, 

with a lower potency and a possibly lower intrinsic efficacy compared to (R)-MTD. Finally, 

(R)-MTD and (S)-MTD did not differ in their propensity to interact with efflux transporters 

or in relation to CYP-dependent metabolism (fig. S3), indicating that the two enantiomers 

would demonstrate similar metabolic profiles in vivo.

(S)-MTD exhibits lower abuse liability than (R)-MTD and (R,S)-MTD

There is evidence that (R,S)-MTD is self-administered in humans17 and rats18. However, the 

intravenous self-administration (IVSA) of (R)-MTD and (S)-MTD has not been reported. 

Moreover, depending on the dose administered, (R,S)-MTD can have either rewarding or 

aversive effects in rats19. IVSA, the standard preclinical approach for predicting abuse 

liability of drugs in humans20, was used to evaluate the reinforcing effects of (R,S)-MTD 

and its enantiomers in rats. First, we performed dose finding experiments to determine the 

dose of each drug that maintained IVSA. Rats exposed to various doses of (R)-MTD readily 

self-administered 50 μg/kg/infusion and consumed a maximum of ~2 mg/kg at the highest 

dose (fig. S4). Rats exposed to (S)-MTD never acquired IVSA, even at high unit doses, 

and did not show any evidence of dose response. Nevertheless, when (R)-MTD-trained rats 

were switched to (S)-MTD, they showed reliable IVSA at 500 μg/kg/infusion (S)-MTD. The 

switched rats consumed a cumulative dose of ~30 mg/kg at the highest (S)-MTD dose (fig. 

S4).

Next, we performed IVSA studies on another cohort of rats trained on either (R)-MTD (50 

μg/kg/infusion), (R,S)-MTD (100 μg/kg/infusion), or (S)-MTD (500 μg/kg/infusion) (Fig. 
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2C–E). For the first 10 days of training, rats were on a fixed-ratio 1 (FR1) schedule. During 

this time, rats in all three groups learned to discriminate the active from inactive lever. On 

the 11th session, the schedule was increased to FR5 (5 presses for 1 infusion). Whereas 

rats trained on (R)- and (R,S)-MTD adjusted lever press rates to maintain stable infusion 

rates, rats trained on (S)-MTD did not. We then performed a dose response assessment of 

IVSA (Fig. 2F). Rats trained on (R)- or (R,S)-MTD displayed the typical inverted-U shaped 

dose-response curve, but rats trained on (S)-MTD showed no evidence of dose response. 

Rats given (R)-MTD showed peak infusion rates at 25 μg/kg, while rats given (R,S)-MTD 

peaked at 50 μg/kg. Notably, rats trained on (R,S)-MTD had more infusions at the peak unit 

dose than those on (R)-MTD, and the (R,S)-MTD curve was significantly shifted to the right 

indicating that larger drug amounts were required to reach the same level of reinforcement.

(R)-MTD and (S)-MTD preferentially bind to MOR in vivo

In order to better understand the effects of (R,S)-MTD and its enantiomers in vivo, we 

assessed their occupancy at MOR and NMDAR using doses based on drug exposure levels 

from the studies noted above, and prior reports on antidepressant-like doses of (S)-MTD 

used in rats6, 7. Rats were injected with saline (1 ml/kg, sc), (R,S)-MTD (4 mg/kg, sc), 

(R)-MTD (2 mg/kg, sc), or (S)-MTD (30 mg/kg, sc) 30 min before decapitation, blood 

collection, and brain extraction. Brains were split into two hemispheres. One hemisphere 

was used to assess drug amounts whereas the other was sectioned (20 μm) and subjected 

to autoradiography using [3H]DAMGO or [3H]MK-801 to examine occupancy at MORs or 

NMDARs, respectively (Fig. 2G). After 2 mg/kg of (R)-MTD, total/estimated free22, 23 drug 

concentration was 640/19.2 nM ± 136/4.1 nM in plasma and 1.1/0.03 μM ± 0.15/0.005 μM 

in brain. After 30 mg/kg of (S)-MTD, total/free drug was 5/0.15 μM ± 0.6/0.017 μM in 

plasma and 11.5/0.35 μM ± 1.5/0.046 μM in brain. Finally, after 4 mg/kg of (R,S)-MTD, 

total/free (R)-MTD was 551/16.5 nM ± 119/3.6 nM in plasma and 1.3/0.04 μM ± 0.3/0.008 

μM in brain, while total/free (S)-MTD was 580/17.4 nM ± 111/3.3 nM in plasma and 

1.4/0.04 μM ± 0.3/0.009 μM in brain. The free (i.e., unbound) drug concentration provides 

the most accurate measure of biophase drug concentration able to engage pharmacological 

targets in plasma or brain21. Since the free concentration of (R,S)-MTD and its enantiomers 

is reported to be ~3% of total concentration22, 23, it is unlikely that (R,S)-MTD or its 

enantiomers reach sufficient concentration to engage with NMDAR in vivo. By contrast, the 

free concentrations shown here align well with each drug’s Ki at MOR. As predicted by the 

free concentrations of each drug, we found that 4 mg/kg (R,S)-MTD, 2 mg/kg (R)-MTD, 

and 30 mg/kg (S)-MTD produced near total (99%, 91%, and 79% respectively) occupancy 

of MORs 30 min after injection (Fig. 2H, I). Importantly, none of the drugs produced any 

NMDAR occupancy (Fig. 2J, K).

(R)-MTD and (S)-MTD do not produce MOR desensitization

Decreases in MOR density and desensitization contribute to the development of opioid 

tolerance24. In contrast to other MOR agonists, (R,S)-MTD does not produce tolerance, due 

to its ability to induce MOR internalization and recycling of re-sensitized MOR25. Thus, 

we examined to what extent repeated exposure to (R)-MTD (2 mg/kg, sc), (R,S)-MTD (4 

mg/kg, sc), or (S)-MTD (30 mg/kg, sc) lead to changes in MOR density and G protein 

activation using [3H]DAMGO and DAMGO-stimulated [35S]GTPγS autoradiography. We 
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found that neither (R,S)-MTD nor its enantiomers produced any effect on MOR density or G 

protein activity (fig. S5).

Divergent pharmacodynamic effects of (R)-MTD and (S)-MTD at MOR in the VTA

In view of the apparent lower reinforcing efficacy of (S)-MTD in rats, we next examined 

effects of the (R,S)-MTD and its enantiomers on locomotor activity in mice. In contrast 

to rats, which become cataleptic following opioid exposure, mice display dose-dependent 

increases in locomotion26–30. This opioid-induced hyperlocomotion is dependent on 

dopaminergic activation31–33, namely the activation of MORs expressed on GABA afferents 

onto VTA dopamine neurons34. Additionally, locomotor activation can distinguish between 

full and partial MOR agonists, with partial agonists producing graded increases dependent 

on efficacy35. We found that (R,S)-MTD and (R)-MTD increased locomotion, but (S)-MTD 

did not (Fig. 3A–D). Specifically, after 60 minutes of habituation, (R,S)-MTD produced a 

significant locomotor activation at 10 mg/kg (sc) but not at 3 mg/kg (sc), and 30 mg/kg 

(sc) was less effective than 10 mg/kg. An inverted U shape effect was also observed with 

(R)-MTD, which was more potent and effective at 3 mg/kg (sc). (S)-MTD did not produce 

any significant locomotor-activating effects, even at 100 mg/kg (sc; Fig. 3D). Moreover, 

when administered 15 min before (R)-MTD, (S)-MTD (10, 30 mg/kg, sc) dose-dependently 

counteracted the locomotor-stimulating effect of (R)-MTD (10 mg/kg, sc; Fig. 3E, F).

Repeated administration of opioids in rodents leads to psychomotor sensitization, which is 

classically known to depend on activation of MOR localized in the VTA36. We habituated 

mice to open-field chambers for two days before giving repeated injections of (R)-MTD (2, 

5, or 10 mg/kg, ip), (R,S)-MTD (4, 10, or 20 mg/kg, ip), or (S)-MTD (20, 30, or 40 mg/kg, 

ip) for three days (Fig. 3G–J). (R)-MTD at 5 or 10 mg/kg and (R,S)-MTD at 10 or 20 

mg/kg led to significant acute locomotion each day. Only (R)-MTD produced psychomotor 

sensitization at 10 mg/kg (D1 vs D2: P = 0.01). Mice treated with (R,S)-MTD and (S)-MTD 

failed to show sensitization at any dose. We also investigated whether (S)-MTD pretreatment 

(10 or 30 mg/kg, ip) would prevent (R)-MTD-induced (10 mg/kg, ip) sensitization (Fig. 

3K, L). As before, we found that (S)-MTD dose-dependently decreased acute locomotion 

produced by (R)-MTD, however, it did not prevent psychomotor sensitization ((S)-MTD 0 

mg/kg: D1 vs D3: P = 0.0003; (S)-MTD 10 mg/kg D1 vs D3: P < 0.0001; (S)-MTD 30 

mg/kg: D1 vs D3: P < 0.0001).

In view of the apparent lower reinforcing efficacy of (S)-MTD in rats we next examined 

whether the enantiomers of (R,S)-MTD could stimulate MOR receptors in the VTA which 

are involved in opioid reinforcement. In particular, the weak interaction of (R,S)-MTD 

with MOR-Gal1R heteromers in rat VTA is thought to underlie its reduced dopaminergic 

activation and lower abuse liability 16. Thus, we studied the effects of (R)-MTD and 

(S)-MTD perfusion into the rat VTA, using in vivo microdialysis. We recently showed 

that the intracranial perfusion of (R,S)-MTD in the VTA was less potent and efficacious 

than other opioids (e.g., morphine, fentanyl and DAMGO) at eliciting somatodendritic 

dopamine release16. This reduced effect was attributed to (R,S)-MTD’s weak activation of 

MOR-Gal1R. Here, we show that local perfusion of (R)-MTD into the VTA produced a 

concentration-dependent increase in extracellular dopamine, with a significant increase at 3 
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μM and a larger increase at 10 μM (Fig. 3M, N), showing similar potency to that previously 

obtained with morphine16. In contrast, (S)-MTD did not induce any significant effect on 

extracellular dopamine levels when perfused up to 100 μM (Fig. 3N). Notably, the 100 μM 

concentration of (S)-MTD completely counteracted the effect of (R)-MTD on dopamine 

release (Fig. 3O).

In rat brain slices containing the VTA, 1 μM (R)-MTD significantly increased [35S]GTPγS 

recruitment (121.6%, P = 0.0003), which was prevented by preincubation with (S)-MTD. 

As shown in Fig. 3P, 1 μM (S)-MTD + 1 μM (R)-MTD significantly increased [35S]GTPγS 

recruitment (115%, P = 0.012), while 10 μM (S)-MTD + 1 μM (R)-MTD (107%) did 

not. The ability of (S)-MTD (10 μM) to reduce [35S]GTPγS recruitment by (R)-MTD (1 

μM) was significant (P = 0.039). The [35S]GTPγS results also demonstrate a qualitatively 

different profile for (R)-MTD and (S)-MTD when comparing effects across different brain 

areas, with (S)-MTD showing a detectable efficacy in the striatum (Fig. 1D, E) and 

significantly counteracting the effect of R-MTD in the VTA, but not in the CPu or NAc 

(fig. S6).

Divergent pharmacodynamic effects of (R)-MTD and (S)-MTD at the MOR-Gal1R heteromer

We next investigated the possibility of divergent pharmacodynamic effects MTD 

enantiomers at MOR-Gal1R, which could explain their divergent effects on the VTA 

MOR. First, we evaluated possible differences in binding affinity of (R,S)-MTD, (R)-MTD, 

and (S)-MTD. We performed radioligand binding experiments in membrane preparations 

from HEK-293 cells stably transfected with human MOR alone and with human MOR-

Gal1R16, 37. The results of competitive inhibition experiments using the MOR antagonist 

[3H]naloxone (1.7 nM) versus increasing concentrations of the ligands (fig. S7) were 

analyzed with the ‘dimer receptor model’ (see Methods). In both cell lines and for the 

three compounds, a significantly better fit was obtained for biphasic versus monophasic 

curves (p < 0.05 in all cases), indicating the preferred dimeric structure of MOR, forming 

heteromers or not forming heteromers with Gal1R, as previously shown37. Table S1 shows 

that (R,S)-MTD, (R)-MTD and (S)-MTD bind MOR with two different affinities and 

negative cooperativity, both in MOR and MOR-Gal1R cells. None of the obtained binding 

parameters show significant differences between MOR and MOR-Gal1R cells for any of 

the ligands, indicating that the MOR-Gal1R-dependent changes in the pharmacodynamic 

properties of (S)-MTD are not related to changes in its affinity for the MOR, but likely to its 

intrinsic efficacy. As expected, (S)-MTD had 14 times lower affinity than (R)-MTD in both 

cell types.

BRET experiments were performed to evaluate differences in the intrinsic efficacy of (R,S)-

MTD, (R)-MTD and (S)-MTD at the MOR (Fig. 4A). MOR-Rluc and Gi-YFP constructs 

were transiently co-transfected to HEK-293T cells, and concentration-response curves of 

(R,S)-MTD, (R)-MTD, and (S)-MTD were analyzed for Emax and EC50 values (Fig. 4B–D). 

As expected, Emax for (S)-MTD was significantly lower than for R-MTD (about 30% lower, 

Fig. 4C), and EC50 for (S)-MTD was significantly higher than for R-MTD (about 10 times; 

Fig. 4D). Thus, relative to (R)-MTD, (S)-MTD is a partial and less potent MOR agonist.

Levinstein et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CODA-RET experiments were then performed to determine whether MOR-Gal1R 

heteromerization might determine the specific pharmacodynamic profile of (S)-MTD (see 

Methods) (Fig. 4G). HEK-293T cells were co-transfected with MOR fused to nRLuc 

(MOR-nRLuc), Gal1R was fused to cRLuc (Gal1R-cRLuc) and Gi-YFP (Fig. 4H–J). In 

the presence of Gal1R, no detectable increase of response (BRET ratio) could be obtained 

with (S)-MTD, while the dose-response curve of (R,S)-MTD was shifted to the right, 

with an EC50 value significantly higher than for R-MTD (~10-fold; Fig. 4J). These results 

indicate that (S)-MTD, but not (R)-MTD, changes its pharmacological profile and loses 

its efficacy for the MOR when forming heteromers with Gal1R. This implies that the 

changes in the pharmacological profile of (R,S)-MTD within the MOR-Gal1R heteromer, 

as previously described16, 37, depend on the modified pharmacodynamic properties of 

(S)-MTD. Consistent with this, increasing concentrations of (S)-MTD progressively 

counteracted the effect of a minimal concentration with maximal effect of (R)-MTD (10 

μM) (Fig. 4K). At the highest concentration of (S)-MTD (1 mM), the effect of (R)-MTD was 

completely blocked, and CODA-RET measurements were not significantly different from 

basal values (Fig. 4L). As a control, the same design was applied with BRET experiments 

with the MOR alone. In this case, the highest concentration of (S)-MTD (1 mM) did not 

counteract the effect of (R)-MTD (10 μM) (Fig. 4E, F), and only decreased its effect to the 

expected maximal level of efficacy of (S)-MTD. These results, therefore, complement those 

obtained with in vivo and ex vivo experiments in the VTA (microdialysis and [35S]GTPγS) 

and with locomotor activation and psychomotor sensitization in mice, and provide strong 

evidence for their mediation by MOR-Gal1R heteromers.

Molecular mechanism of the MOR-Gal1R-dependent pharmacodynamic profile of (S)-MTD

The recently reported structure of MOR in complex with fentanyl 38 can be used as a 

template to understand the pharmacological differences among the enantiomers of (R,S)-

MTD at the molecular level. We first performed five replicas of unbiased 1 μs molecular 

dynamics (MD) simulations of (S)-MTD and (R)-MTD docked into the MOR monomer 

(see Methods). Root-mean-square deviations (rmsd) of the simulations show that the 

proposed docking models of (S)-MTD and (R)-MTD remained highly stable (fig. S8). In 

these models, the protonated amine of (S)-MTD and (R)-MTD forms the conserved ionic 

interaction with D1493.32, and both phenyl groups adopt a “V” shaped conformation in 

the orthosteric binding site but, importantly, with significant differences (Fig. 4M, N). For 

(R)-MTD, both phenyl rings point up to form T-shaped aromatic interactions with H2996.52 

and W3207.35, whereas the phenyl rings of (S)-MTD point down to interact with W2956.48 

in a “sandwich” mode, in which the aromatic Trp ring is between both phenyl rings (figs. 

S8–S9 show a detailed analysis of the binding modes). We suggest that the phenyl ring 

of (S)-MTD positioned between W2956.48 and TM 5, absent in (R)-MTD, restricts the 

necessary movement of W2956.48 for activation38, 39, which explains the decreased ability of 

(S)-MTD to activate MOR.

To understand the inability of (S)-MTD to activate MOR in the presence of Gal1R, at 

the molecular level, we first needed to computationally model the MOR-Gal1R heteromer 

(fig. S10). Previously reported bimolecular fluorescence complementation (BiFC) and total 

internal reflection fluorescence (TIRF) microscopy experiments revealed that the interface 
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for the MOR-MOR homodimer changed from the TM 5/6 to the TM 4/5 interface in the 

absence or presence, respectively, of Gal1R 37. Thus, we hypothesized that the MOR-MOR 

homodimer interacting via the TM 4/5 interface disables (S)-MTD to activate MOR. To 

test this hypothesis, we performed five replications of unbiased 1 μs MD simulations of 

the MOR-MOR homodimer, constructed via both the TM 5/6 (not interacting with Gal1R) 

and TM 4/5 (interacting with Gal1R) interfaces, in complex with Gi (see Methods and fig. 

S10). These simulations showed that, in contrast to the TM 5/6 interface, TM 5 of the active 

Gi-bound protomer moved the extracellular part of TM 5 inward in the TM 4/5 interface. 

Importantly, this movement of TM 5 relocated the position of the key V2385.42 (fig. S10). 

Fig. 4O, P summarizes these findings. In the TM 5/6 interface (Fig. 4O), W2956.48 is only 

partially restricted (depicted as flexible ellipses) by the phenyl ring of (S)-MTD because the 

dynamic behavior of the ligand is not fully constrained by the partner protomer (depicted 

as flexible arrows). In contrast, in the TM 4/5 interface (Fig. 4P), the inward movement 

of V2385.42 fully constrained (depicted as a single arrow) the phenyl ring of (S)-MTD, 

maintaining W2956.48 in the inactive conformation (depicted as a single ellipse).

Discussion

(R,S)-MTD is a DEA Schedule II controlled medication with known abuse liability 

that is prescribed for pain management and treatment of OUD. However, the individual 

contributions of its enantiomers to its abuse liability and clinical efficacy are not well 

understood. We found that both (R)-MTD and (S)-MTD produced full agonistic effects on 

analgesia but only (R)-MTD was reliably self-administered. These findings are in agreement 

with results from recent studies indicating that (S)-MTD does not lead to reinforcing effects, 

physical dependence nor withdrawal signs in rats40 and that it lacks opioid effects, or 

withdrawal signs and symptoms in humans5, suggesting that the abuse liability of (R,S)-

MTD is mediated by (R)-MTD and not by (S)-MTD. Indeed, our data indicate that (S)-MTD 

can attenuate the abuse liability of (R)-MTD under some conditions.

Although some experimental and clinical effects of (S)-MTD have been attributed to its 

NMDAR antagonism5, 7–9, 41, we demonstrate here that, at pharmacologically relevant 

doses, (S)-MTD does not interact with NMDARs in vivo. Instead, (S)-MTD significantly 

occupies MORs at doses that promote the classical behavioral effects of opioids in rats: 

analgesia, catalepsy, and hypothermia. For example, the effective dose at which (S)-MTD 

produced analgesia is within the range of doses used to produce antidepressant-like effects 

in rats 6, 7. For both (R)-MTD and (S)-MTD, the predicted free brain concentrations 

coincided with their in vitro MOR affinities as well as their capacity to selectively occupy 

MORs in vivo. In contrast, we failed to detect in vivo NMDAR occupancy at the same doses 

where MOR occupancy was observed. Therefore, we can conclude that (S)-MTD selectively 

binds MORs at brain concentrations relevant to its analgesic and antidepressant-like efficacy. 

Thus, the currently assumed role of NMDAR blockade in the antidepressant effects of 

(S)-MTD should be reframed in the context of its MOR agonistic properties.

We demonstrated that (S)-MTD does not promote activation of the dopaminergic system 

despite its agonism of MOR. This lack of effect is likely due to the inability of (S)-MTD 

to activate MOR-Gal1R in the VTA, previously shown to mediate the dopaminergic effects 
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of opioids16. On the other hand, (R)-MTD promoted a significantly stronger activation of 

the VTA dopaminergic system than the reported effect of (R,S)-MTD16. The specific lack 

of effect of (S)-MTD was due to its loss of intrinsic efficacy for MOR-Gal1R, which also 

explains its antagonism of (R)-MTD-induced effects in the VTA including dopamine release, 

[35S]GTPγS recruitment, and locomotor activation. This is the first time to our knowledge 

that enantiomers have been shown to work in direct opposition at the same pharmacological 

target.

The significant analgesic and cataleptic effects of (S)-MTD indicate dopamine-independent 

mechanisms, not mediated by MOR-Gal1R. As opposed to neuroleptic-induced catalepsy, 

opioids do not induce catalepsy by inhibiting striatal dopaminergic neurotransmission, 

but possibly by inhibiting the MOR-expressing striatal and pallidal GABAergic neurons 

that project to the output structures of the basal ganglia30, 42, 43. These two functionally 

opposite MOR-dependent effects, locomotor activation and catalepsy, are both present but 

differentially dominate in mice and rats, respectively. In fact, locomotor activation can also 

be elicited in rats with the intracranial injection of opioids in the VTA44, and catalepsy has 

been reported with relatively high doses of opioids in mice45 and likely contributes to the 

descending limb of the dose response curve for opioid-induced locomotor activity in mice26, 

28.

The question of whether dopamine neurotransmission underlies the reinforcing properties 

of opioids has been a matter of debate46–48. Nevertheless, results from chemogenetic and 

optogenetic experiments in mice49 strongly support the involvement of VTA dopamine 

neurons projecting to the ventral striatum in driving heroin reinforcement. The present 

results showing IVSA of (R,S)-MTD and (R)-MTD but not (S)-MTD, are consistent with 

the dopaminergic hypothesis. Nevertheless, at high doses, (S)-MTD was able to substitute 

for (R)-MTD in rats trained on (R)-MTD, which support the involvement of additional 

non-dopaminergic mechanisms in opioid reinforcement. Importantly, the dose response of 

(R,S)-MTD IVSA was qualitatively different from that of (R)-MTD, with a significantly 

higher peak and a pronounced shift to the right. This could be explained by (S)-MTD 

counteracting the effect of (R)-MTD at sufficiently high doses of (R,S)-MTD.

One potential adverse effect of (R,S)-MTD use is that it can cause cardiac arrythmia50. 

This has been attributed to high concentrations of the drug and perhaps to the presence 

of (S)-MTD, which one study reported blocks the Ether-à-go-go-Related Gene 1 (hERG) 

channel 3.5-fold more potently than (R)-MTD51. However, the stereoselective contribution 

of (R,S)-MTD enantiomers to these effects has been challenged52. We did not observe any 

meaningful binding for (R)-MTD or (S)-MTD at hERG, even at a concentration of 10 μM. 

Furthermore, recent clinical studies assessing (S)-MTD for depression have not reported any 

cardiac arrythmias9. It is therefore unclear to what extent (S)-MTD contributes to the cardiac 

effects of (R,S)-MTD.

Combined, the present results help explain the clinical profile of (R,S)-MTD, since they 

indicate that its lower abuse liability, as compared with other opioids16, 53, are due to the 

specific effect of (S)-MTD at MOR-Gal1R heteromers which counteract rewarding and 

dopamine releasing effects of (R)-MTD. In addition, the results suggest that the separation 
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of reinforcing vs. therapeutic effects of (R,S)-MTD16 should be significantly augmented 

with (S)-MTD. (S)-MTD could then be used clinically as analgesic, antidepressant, or for 

the treatment of opioid withdrawal or restless legs syndrome, with the anticipation of low 

abuse liability. The results of the in silico analysis provide information about the possible 

molecular mechanism underlying MOR-Gal1R heteromer-dependent pharmacodynamic 

properties of (S)-MTD, which could also guide the search for novel (S)-MTD-like 

therapeutics.
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Fig. 1. Methadone and its enantiomers are MOR agonists.
A, Receptor and enzyme competitive screen at two concentrations (100 nM and 10 μM) of 

(S)- and (R)-MTD. B, Competition binding assays of (S)-MTD (orange), (R)-MTD (blue), 

or (R,S)-MTD (black) versus [3H]DAMGO. C-E, Representative slices (C) and analysis 

from methadone-stimulated [35S]GTPγS autoradiography for CPu (D, upper circle) and 

NAc (E, lower ellipse). Values are shown as mean ± standard error of the mean. CPu = 

caudate putamen; MOR = mu opioid receptor; MTD = methadone; NLX = naloxone; NAc = 

nucleus accumbens. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig 2. Analgesic, cataleptic and differential abuse liability profile of (R,S)-MTD, (R)-MTD, and 
(S)-MTD.
A-B, Dose response curves of hotplate latency (A) and catalepsy (B) for (R,S)-MTD (black), 

(R)-MTD (blue) and (S)-MTD (orange). C-E, Lever presses during IVSA training for 

(R,S)-MTD (100 μg/kg/infusion, C), (R)-MTD (50 μg/kg/infusion, D), and (S)-MTD (500 

μg/kg/infusion, E). F, IVSA dose responses for (R,S)-MTD, (R)-MTD, and (S)-MTD. G-K, 
Representative slices (G) and analysis of receptor occupancy by (R,S)-MTD, (R)-MTD, 

or (S)-MTD of MORs ([3H]DAMGO, 5nM) in CPU (H, upper circle) and NAc (i, lower 
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ellipse) or NMDARs ([3H]MK-801, 5nM) (J-K). Values are shown as mean ± standard 

error of the mean. CPu = caudate putamen; ED50 = half maximal effective dose; FR = 

fixed-ratio schedule; IVSA = intravenous self-administration; MOR = μ opioid receptor; 

MPE = maximum possible effect; MTD = methadone; NAc = nucleus accumbens; NMDAR 

= N-methyl-D-aspartate receptor.
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Fig. 3. VTA-dependent neurochemical and behavioral effects of (R)-MTD and (S)-MTD.
Created with BioRender.com. A-F, acute locomotor activation schematics (A, E) and 

analysis with (R,S)-MTD (B), (R)-MTD (C), or (S)-MTD (D) alone, or pretreatment of 

(S)-MTD before (R)-MTD (F). Data shown as the average of the square root of centimeters 

traveled per ten minutes. Asterisks are compared to saline; pound symbols are compared to 

(R)-MTD alone. G-L, psychomotor sensitization schematics (G, K) and analysis with (R,S)-

MTD (H), (R)-MTD (i), or (S)-MTD alone (J), or pretreatment of (S)-MTD before (R)-

MTD (L). Asterisks are comparison between D1 and D2; pound symbols are comparison 
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between D1 and D3. M-O, effect of intracranial perfusion of (R)-MTD and (S)-MTD in the 

VTA on somato-dendritic dopamine release from in vivo microdialysis experiments. Values 

represent mean dopamine concentrations as a percentage of baseline ± standard error of 

the mean (average of 5 samples before the enantiomer administration). The rectangles in 

the x axis indicate the period of corresponding enantiomer perfusion. In O, co-perfusion of 

both enantiomers, with (S)-MTD (100 μM) beginning 20 min before (R)-MTD (10 μM). P, 
Analysis of [35S]GTPγS recruitment by R-MTD (1 μM) with or without preincubation of 

S-MTD (1 μM or 10 μM) in the VTA. Values are shown as mean ± standard error of the 

mean. D1, 2, 3 = day 1, 2, or 3; Hab = habituation, MTD = methadone, VTA = ventral 

tegmental area. *,# P < 0.05, **P < 0.01, ***,###P < 0.001.
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Fig. 4. MOR-Gal1R heteromer-dependent loss of efficacy of (S)-MTD.
A-F, BRET experiments in HEK-293T cells cotransfected with MOR fused to RLuc and 

the α subunit of the Gi protein fused to YFP (schematically shown in A). G-L. CODA-

RET experiments in HEK-293T cells cotransfected with MOR fused to nRLuc, Gal1R 

fused to cRLuc and Gi-YFP (schematically shown in G). In B and H, representative 

experiments with concentration-responses of (R,S)-MTD (black), (R)-MTD (blue), and 

(S)-MTD (orange); values represent the mean ± standard error of the mean of triplicates; 

in C, D, I, and J, corresponding Emax and EC50 values from 6 independent experiments 

with triplicates, shown as dots and presented with the mean ± standard error of the mean or 

median with interquartile ranges, respectively; asterisks are compared to (R)-MTD values. In 

E and K, representative experiments of the effect of increasing concentrations of (S)-MTD 

on BRET and CODA-RET values obtained with (R)-MTD at 100 nM; values represent 

the mean ± SEM of triplicates; in F and I, corresponding BRET and CODA-RET values 

of the effect of (R)-MTD (100 nM) in the presence and absence of (S)-MTD (1 μM) 

from 7 and 9 independent experiments with triplicates, shown as dots and presented with 

the mean ± standard error of the mean; asterisks are compared to basal values. M-N, 
Schematic 2D representation of (R)- and (S)-MTD. Grey arrows represent groups of the 

ligand located toward the conserved protonated amine (left) and toward the -CO-CH2-CH3 

moiety (right). The phenyl groups of methadone are depicted by either blue (R-) or orange 

(S-) arrows. Docking and MD-simulated models (fig. S7) of (R)- and (S)-MTD bound 

to the MOR. The phenyl rings, in a “V” shaped conformation, point up to interact with 

H2996.52 and W3207.35 in (R)-MTD, and point down to interact with W2956.48 in (S)-MTD. 

O-P, Previous results37 show that MOR forms homodimers via the TM 5/6 interface in the 

absence of Gal1R or via the TM 4/5 interface in the presence of Gal1R. MD simulations 

show that the TM 4/5 triggers an inward movement of TM 5 and, importantly, the inward 
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movement of V2385.42 (fig. S9). Thus, in the TM 5/6 interface the phenyl ring of (S)-MTD 

(flexible arrows) partially restricts the conformation of W2956.48 (flexible ellipses), whereas 

in the TM4/5 interface V2385.42 restricts the conformation of the phenyl ring (single 

arrow) and in consequence W2956.48 (single ellipse) in the inactive conformation. BRET 

= bioluminescence resonance energy transfer; CODA-RET = Complemented donor-acceptor 

resonance energy transfer; Emax = maximal response; EC50 = half maximal effective 

concentration; Gal1R = galanin 1 receptor; MD = molecular dynamics; MOR = mu opioid 

receptor; MTD = methadone. *P < 0.05, **P < 0.01, ***P < 0.001
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