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Abstract

Background

Currently, there are few treatment-predictive and prognostic biomarkers in triple-negative

breast cancer (TNBC). Caveolin-1 (CAV1) is linked to chemoresistance and several impor-

tant processes involved in tumor progression and metastasis, such as epithelial-mesenchy-

mal transition (EMT). Herein, we report that high CAV1 gene expression is an independent

factor of poor prognosis in TNBC.

Methods

CAV1 gene expression was compared across different molecular features (e.g., PAM50

subtypes). CAV1 expression was assessed in relation to clinical outcomes using Cox

regression adjusted for clinicopathological predictors. Differential gene expression and

gene set enrichment analyses were applied to compare high- and low-expressing CAV1

tumors. Tumor microenvironment composition of high- and low-expressing CAV1 tumors

was estimated using ECOTYPER. Tumor tissue microarrays were used to evaluate CAV1

protein levels in stromal and malignant cells.

Results

In the SCAN-B (n = 525) and GSE31519 (n = 327) cohorts, patients with CAV1-high tumors

had an increased incidence of early recurrence adjusted HR 1.78 (95% CI 1.12–2.81) and

2.20 (95% CI 1.39–3.47), respectively. In further analysis, high CAV1 gene expression was

associated with a molecular profile indicating altered metabolism, neovascularization, che-

moresistance, EMT, suppressed immune response, and active tumor microenvironment.
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Protein levels of CAV1 in malignant and stromal cells were not correlated with CAV1 gene

expression.

Conclusion

CAV1 gene expression in TNBC is a biomarker that merits further investigation in clinical tri-

als and as a therapeutic target.

Introduction

Triple-negative breast cancer (TNBC), characterized by the absence of human epidermal

growth factor receptor 2 (HER2) overexpression as well as estrogen receptor (ER) and proges-

terone receptor (PR) negativity [1–3], accounts for approximately 10% of incident breast can-

cers and has the poorest prognosis among breast cancer subtypes [1–3]. TNBC is a subtype

with few targeted treatments and is also biologically aggressive [1–3]. Nonetheless, TNBC is a

remarkably heterogeneous disease [1–3]. Efforts have been made to characterize specific

molecular subtypes of TNBC, the most well-known being the Lehman TNBC subtypes [4, 5].

However, the clinical implications of molecular profiling are still unclear [1–3]. In recent

years, new treatments, such as immune-checkpoint inhibitors [6] and poly (ADP-ribose) poly-

merase (PARP) inhibitors [7], have been introduced. In the advanced setting, a new antibody-

drug conjugate Sacituzumab-govitecan (targeting TROP2), has also been added [1–3]. Still,

chemotherapy remains the primary systemic treatment for TNBC [1–3]. Taxanes and anthra-

cyclines are effective treatments for TNBC, but a substantial proportion of patients relapse

early [1–3, 8]. TNBC is a complex disease for which there is a need to find specific biomarkers

to further stratify patients and help guide treatment decisions.

Emerging evidence suggests a role for Caveolin-1 (CAV1) in cytotoxic drug resistance [9,

10]. Tumors with higher CAV1 expression have been linked to taxane resistance in both pre-

clinical and clinical studies [9, 10]. Recently, a translational study within the GeparSepto trial

reported that CAV1 expression predicted a worse response to paclitaxel and worse clinical out-

come in these patients [11]. These findings merit further investigation into CAV1 as a bio-

marker and potentially as a therapeutic target in TNBC. CAV1 constitutes the principal

component of caveolae, which function as a hub for cell signaling and membrane transport of

nutrients and substances, including drugs [12, 13]. As a master regulator of signal transduc-

tion, CAV1 plays an essential role in tumor-stroma interactions, hypoxia response, cellular

metabolism, inflammation, and epithelial-mesenchymal transition (EMT) [12–14], which are

critical drivers of tumor progression and metastasis.

The role of the tumor microenvironment (TME) is increasingly recognized as essential for

tumor survival, growth, and metastasis [15, 16]. This has led to a more holistic view of the

TNBC as a coordinated ecosystem, integrating the malignant cells and TME [1–3]. Therefore,

the TME, mainly comprised of stromal and immune cells, may harbor relevant biomarkers

and potential treatment targets for TNBC. Notably, CAV1 protein expression in stromal cells

has been reported as a potential prognostic biomarker in breast cancer [13, 17–19]. To date,

no large-scale studies have evaluated CAV1 as a biomarker in TNBC, nor has CAV1 been

characterized thoroughly in the context of the TNBC TME.

In this study, we investigated both gene and protein expression of CAV1 in TNBC in sev-

eral large cohorts, focusing on potential associations between CAV1 and molecular features,

tumor microenvironment composition, and clinical outcome.
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Methods

First, CAV1 gene expression was investigated in the Gene expression-based Outcome for

Breast cancer Online (GOBO) platform. GOBO includes 1881 breast tumors with available fol-

low-up for survival analysis that can be stratified by molecular subtype [20]. The GOBO plat-

form is a versatile and user-friendly online tool designed for conducting various analyses on

an 1881-sample breast tumor dataset generated using Affymetrix U133A microarrays [20].

GOBO functionalities include rapid evaluation of gene expression levels in different subgroups

of breast tumors and examining the association between gene expression levels of individual

genes and outcomes; details on the different analyses are described elsewhere [20].

Second, the Swedish Cancerome Analysis Network–Breast (SCAN-B: ClinicalTrials.gov ID

NCT02306096) study was used. The SCAN-B study is a population-based cohort that prospec-

tively includes breast cancer patients diagnosed and treated at nine Swedish hospitals [21, 22].

All newly diagnosed breast cancer patients are invited to participate [22].

Gene expression profiling of fresh tumor samples and core needle biopsies (in case of

neoadjuvant treatment) was performed using RNA-seq according to custom SCAN-B work-

flow, as previously described [21–23]. The samples were obtained in conjunction with routine

clinical sampling at the time of surgery [21, 22]. Gene expression levels were expressed in frag-

ments per kilobase of exon per million mapped reads (FPKM) in an expression matrix for

SCAN-B [23]. Clinicopathological data, treatment information, and follow-up were collected

from the Swedish National Quality Registry for Breast Cancer [21–23].

Curated RNA-seq and clinicopathological data were accessed from the Supplementary

Information and Data from Staaf et al. [23] for 7743 patients enrolled in SCAN-B from Sep-

tember 1, 2010, to May 31, 2018, and who were followed until 2021 [23]. To all FPKM data, an

offset of +0.1 was added, and thereafter, the data was log2 transformed. Patients with gene

expression profiles (GEXs) only from noninvasive cancer, lymph nodes, or bilateral cancer or

who had no available follow-up for distant metastasis were excluded. In cases where multiple

GEXs from a single tumor passed quality control, the GEX profile with the highest RNA con-

centration measured by NanoDrop spectrophotometry was chosen [23], leaving one GEX per

patient for analysis. This procedure left a total of 5326 patients, of whom 525 had TNBC.

According to Swedish National Guidelines, tumors are considered triple-negative if ER and

PR staining is positive in less than 10% of tumor cells and HER2 is either 0/1+ by IHC assess-

ment or non-amplified by in situ hybridization (ISH) assessment if the IHC score is 2+. These

525 TNBCs were used for further analysis and are hereafter referred to as SCAN-B GEX, Fig 1.

A subcohort of TNBC patients from SCAN-B was used to investigate CAV1 protein levels

in different spatial localizations of TNBC [24]. The cohort consisted of patients from a Region

Skåne hospital diagnosed with TNBC between 2010 and 2015 [24]. Tumor tissue microarrays

(TMAs) were constructed for these patients from tumor tissue obtained at the time of surgery.

Exclusion criteria for this cohort were inconsistency in TNBC status after clinical chart review,

insufficient tumor material, failed RNA-seq quality filters, or formalin-fixed paraffin-embed-

ded (FFPE) tissue not available for analysis in the TMA [24].

The TMAs were constructed as previously described [24], with duplicate cores of 1.0 mm

from each TNBC. IHC for CAV1 was performed using the same protocol and antibody as pre-

viously described [25]. In brief, TMA slides (4 μm) were deparaffinized and pretreated using

the PT Link system (Agilent Technologies, Santa Clara, CA, USA). Sections were then stained

for CAV1 with a primary rabbit polyclonal anti-CAV1 antibody (1:1,000; ab2910, Abcam)

using the Autostainer Plus with the EnVision FLEX high-pH kit, according to the manufactur-

er’s instructions (Agilent Technologies). Immunohistochemical staining was done on March

30, 2022. CAV1 was scored in the cytoplasm of both malignant and stromal cells according to
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the intensity of staining across the two tumor cores. If at least 20% of the cells were stained, the

intensity was denoted as 1+ (weak staining), 2+ (moderate), or 3+ (strong) as per previous pro-

tocols [25]. If less than 20% of the tumor cells were stained, the staining was denoted as 0 (neg-

ative) as per previous protocols [17, 25]. The malignant and stromal cells were distinguished

by morphological assessment per previous studies [17–19]. Scoring was performed by two

independent readers (C. Godina and S. Khazaei), and in case of disagreement, a more

Fig 1. Flowchart of included and excluded patients in SCAN-B GEX.

https://doi.org/10.1371/journal.pone.0305222.g001
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experienced evaluator (B. Nodin) was consulted, and consensus was reached. All evaluators

were blinded to data pertaining to the tumor samples. The protein levels of CAV1 in malignant

and stromal cells were dichotomized as “strong” (1) vs.”negative to moderate” (0). The CAV1

categories in malignant and stromal cells, respectively, were combined to create a joint CAV1

status with four categories: malignant/stromal cells 0/0, 0/1, 1/0, and 1/1. CAV1 status could

be evaluated in 231 of 242 tumors, which were included in the analysis, and this subcohort is

hereafter referred to as SCAN-B TMA, S1 Fig in S1 File.

Validation cohorts

Two additional cohorts, Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC) and GSE31519, were used to validate the findings in GOBO and SCAN-B.

METABRIC consists of clinically annotated primary fresh-frozen breast cancer specimens

from patients diagnosed with non-metastatic breast cancer between 1977 and 2005 in the UK

and Canada [26]. Gene-expression data from microarrays is available for a subset of 1980

patients, known as the METABRIC molecular dataset [26–28]. Further details on clinicopatho-

logical data, sample handling, gene expression profiling, and quality control are described else-

where [26, 28]. The METABRIC molecular dataset was accessed from https://www.cbioportal.

org/study/summary?id=brca_metabric and corresponding clinical data from Rueda et al. [27].

Out of the 1980 patients, 320 had TNBC and were included in the analysis. The GSE31519

cohort consisted of pooled datasets from a single platform (Affymetrix U133A and U133 Plus

2.0 chips) and included only TNBC (n = 579) from 28 different datasets [29]. Follow-up was

available for 327 TNBCs. Details on pooling, quality control, and analysis pipeline are available

elsewhere [29]. If multiple probes mapped to the same gene, the average expression of the

probes was used to represent the gene expression for the gene in question. GSE31519 data

were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/), accession

identification number GSE31519.

Gene expression analyses

CAV1 expression data for all three cohorts was divided into tertiles, with tertile three defined

as CAV1-high and tertiles one and two combined into CAV1-low, based on the GOBO results.

In SCAN-B, both PAM50 subtypes and ROR categories were assigned with single sample

predictors and obtained from Staaf et al. [23]. For METABRIC and GSE31519, PAM50 sub-

types were assigned using the genefu package [30] using nearest centroid correlation [31]. The

PAM50 ROR score was calculated based on centroid correlations, tumor size, and proliferation

score according to the ROR equation with nodal status-dependent cut-offs to assign ROR cate-

gories, as previously described [32–34]. All tumors were assigned a PAM50 subtype, but the

ROR category was missing for tumors with missing data on tumor size and/or nodal status.

For TNBC type classification in all three cohorts [4], gene expression data of TNBCs were

extracted and uploaded as a separate dataset into the web-based classifier [4]. For some

tumors, the web-based application called the tumor as not being ER-negative. These tumors

were removed from the TNBC datasets (inferring missing values), and the remaining tumors

were again uploaded to the web-based application for subtyping. Further, eight gene expres-

sion modules representing different biological functions in breast cancer were calculated for

all three cohorts as previously described [35].

Differential gene expression (DGE) analysis was performed using the Limma-Voom pack-

age [36] to find differentially expressed genes (DEGs) between CAV1-high and CAV1-low

tumors in SCAN-B GEX. The criteria used to define DEGs is a false discovery rate (FDR) of�

0.05 and log2 fold change (log2FC)� 1.5 for up-regulated genes and log2FC� −1.5 for down-
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regulated genes. To find concordant gene sets that differed between CAV1-high and CAV1-

low, gene set enrichment analysis (GSEA) was performed in clusterProfiler [37]. Gene sets

were grouped according to Gene Ontology (GO) and Hallmark Signature annotations [38,

39].

Furthermore, CAV1 expression was profiled in the single-cell atlas of human breast cancers

[40] using the Broad Institute Single Cell portal to investigate in which cell (sub)types CAV1
was expressed. In silico profiling of different cell states and carcinoma ecosystems (including

estimates of relative abundance) was derived from bulk RNA-seq data from SCAN-B GEX

using a deconvolution-based method, ECOTYPER (with standard parameters) [41]. ECOTY-

PER applies a machine-learning framework for large-scale identification of cell states and cel-

lular ecosystems from bulk gene expression data [41]. The average abundance of each cell state

for said cell type was used to infer the relative abundance of cell types.

Statistical analysis

Differences in log2 transformed CAV1 expression depending on PAM50 subtype and TNBC

subtype were evaluated using analysis of variance (ANOVA) and visualized using violin and

box plots. The unpaired t-test was used to evaluate differences in the relative abundance of

fibroblast and endothelial cells between CAV1-high and low tumors. Correlations between

log2 transformed CAV1 expression and the following variables: ROR category, the eight gene

modules, fibroblast states, endothelial states, and carcinoma ecotypes (CE) were assessed using

Pearson’s correlation (r). The correlations were visualized with bar plots. The dominant carci-

noma ecotype was compared between CAV1-high and CAV1-low tumors using the Chi-square

test.

For survival analyses, the R packages survival and survminer were used. The endpoints

used were recurrence-free interval (RFI), distant metastasis-free interval (DMFI), and overall

survival (OS) for both SCAN-B and METABRIC, as previously described [23, 26, 27]. The pri-

mary endpoint was DMFI. Breast cancer-specific survival (BCSS) was used as an additional

endpoint for METABRIC [26, 27]. For GSE31519, event-free survival (EFS) was the only avail-

able endpoint, and the end of follow-up was set at 10 years [29].

The Kaplan-Meier estimator and Log-rank test were used for univariable survival analyses.

Crude and adjusted hazard ratios (HRs) with 95% confidence intervals (CI) were obtained

from Cox proportional hazards models. The multivariable models were a priori adjusted for

age (binned in five-year intervals for SCAN-B or continuous for METABRIC and GSE31519),

tumor characteristics, axillary lymph node status (pN1/2/3), tumor size (pT2/3/4), grade (III

vs. I or II), PAM50 ROR category (High vs Low/Intermediate), and (neo)adjuvant chemother-

apy (yes vs. no). Schoenfeld’s residuals were used to graphically examine the proportional haz-

ard assumption for the CAV1 (dichotomous) classification of tumors in the adjusted models

for all cohorts. The Akaike information criterion (AIC) was used to compare standard clinical

models to clinical models, including CAV1 expression (dichotomous) with or without PAM50

ROR score using the AICcmodavg package.

R version 4.2.2 was used for all statistical analyses. All P-values were two-tailed, and P -val-

ues should be interpreted without reference to cut-offs for significance with or without FDR

adjustment. This study followed the Reporting Recommendations for Tumor Marker Prog-

nostic Studies (REMARK) criteria [42].

Ethics statement

Ethical approvals for the cohorts studied were obtained in relation to the primary projects and

publications [21–23, 26–29]. All participants signed written informed consent. The TMA part
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of the study has received ethical approval (Dnr2009/658, Dnr2015/277, and Dnr2019/01252)

from the Lund University Ethics Committee. No other separate approval was obtained for this

specific study since it is otherwise based on previously published data. The study was con-

ducted in accordance with the ethical principles of the Declaration of Helsinki.

Results

GOBO: High CAV1 expression was associated with worse prognosis in ER-

negative and basal tumors

Investigation of the GOBO database revealed that patients with ER-negative tumors with high

CAV1 expression had shorter distant metastasis-free survival (DMFS) in univariable and mul-

tivariable analyses compared to low CAV1 expression, Fig 2A and 2B. The difference in DMFS

was especially apparent in the subset of tumors classified as basal, Fig 2A and 2B. This finding,

together with previous published results [13, 17–19], implies that CAV1 expression is a poten-

tial prognostic marker in TNBC. Further analyses in GOBO pertaining to molecular features

revealed that CAV1 expression was highest in normal-like and second highest in luminal A

tumors, Fig 2C–2E. CAV1 expression was strongly correlated with stromal and lipid modules

while negatively correlated with both mitotic modules (checkpoint and proliferation), indicat-

ing low proliferation, Fig 2C–2E.

SCAN-B, METABRIC, and GSE31519: CAV1 mRNA expression in relation

to molecular and clinicopathological factors

Similar to the findings in GOBO, CAV1 expression in TNBC in all three cohorts was highest in

the normal-like and second highest in the luminal A subtype (all Ps<0.001), S2A-S2C Fig in

S1 File. There was also an inverse association with the ROR category in all three cohorts (all

Ps<0.001), S2D-S2F Fig in S1 File. Likewise, the correlations between CAV1 expression and

the eight gene modules in TNBC were similar in all three cohorts and GOBO. There were

strong positive correlations between CAV1 expression and lipid and stroma modules and neg-

ative correlations with the mitotic checkpoint and progression modules, Fig 3A, 3C and 3E.

The distribution of CAV1 gene expression was similar across the TNBC subtypes in all cohorts,

with the highest CAV1 expression in the mesenchymal stem-like, followed by the Mesenchy-

mal subtype (all Ps<0.001), Fig 3C, 3D and 3F. Descriptive statistics for clinicopathological

factors in CAV1-high and CAV1-low tumors are presented in Table 1 for SCAN-B and S1

Table in S2 File for METABRIC and S2 Table in S2 File for GSE31519. Chemotherapy was

markedly more common in the SCAN-B cohort compared with the other two cohorts.

SCAN-B: Relationship between CAV1 protein levels in different spatial

localizations and clinicopathological, molecular factors, and CAV1 gene

expression

Strong CAV1 protein staining in malignant cells was associated with a higher histological

grade but no axillary lymph node involvement (both P<0.007). In contrast, strong CAV1 pro-

tein staining in stromal cells was associated with lower histological grade but axillary lymph

node involvement (both P<0.001), S3 Table in S2 File. Strong CAV1 protein staining in stro-

mal cells was also associated with higher age at diagnosis (P = 0.025). With regards to PAM50

subtypes, strong CAV1 staining in malignant cells was positively associated with the basal sub-

type, while strong CAV1 staining in stromal cells was positively associated with the HER2

enriched subtype (P<0.001), S3A, S3B Fig in S1 File. Depending on spatial localization, strong

CAV1 protein staining was associated with different TNBC subtypes. Strong CAV1 staining in
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malignant cells was positively associated with the mesenchymal and negatively associated with

the immunomodulatory subtype (P<0.001). Strong CAV1 staining in stromal cells was posi-

tively associated with the luminal androgen (LAR) subtype (P<0.001), S3C, S3D Fig in S1 File.

Neither CAV1 protein levels in malignant cells nor in stromal cells were correlated with CAV1
gene expression in the tumors, and the combined CAV1 status was also not associated with

CAV1 gene expression, S3E-S3G Fig in S1 File.

SCAN-B: DGE and GSEA analysis of CAV1-high vs. CAV1-low tumors

DGE analyses were performed in TNBCs, comparing CAV1-high versus CAV1-low tumors in

SCAN-B to elucidate the potential biological role of CAV1 in TNBC.

A total of 61 genes were found to be upregulated in CAV1-high versus CAV1-low tumors,

and no genes were downregulated. Notably, higher expression of several genes coding for pro-

teins involved in cellular lipid metabolism, e.g., FABP4, IGF1, IGF2, LEP, TUSC5, CIDEA,

HSPB6, LIPE, PLIN4, PLIN1 ADH1B, and ADH1C were seen in CAV1-high tumors,

Fig 2. CAV1 expression in GOBO. Kaplan-Meier estimates of CAV1 expression (dichotomous) in and corresponding forest plots of mutually adjusted hazard

ratios (95% confidence intervals) in (A) patients with ER negative breast cancer. Kaplan-Meier estimates of CAV1 expression (dichotomous) in and

corresponding forest plots of mutually adjusted hazard ratios (95% confidence intervals) in (B) patients with Basal-like breast cancer. Pearson correlations of

CAV1 gene expression (continuous) and the eight gene modules (stroma, lipid, immune response, mitotic checkpoint, mitotic progression, basal, early

response, steroid response) in (C) patients with ER negative breast cancer. Pearson correlations of CAV1 gene expression (continuous) and the eight gene

modules (stroma, lipid, immune response, mitotic checkpoint, mitotic progression, basal, early response, steroid response) in (D) patients with basal-like breast

cancer. The number of patients in each group at diagnosis is indicated as n. CAV1 expression by intrinsic subtypes using PAM50 and Hu et al. [65]

classifications in (E) the GOBO dataset.

https://doi.org/10.1371/journal.pone.0305222.g002
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supporting a potential association with altered tumor metabolism. Further, in CAV1-high

tumors, genes related to endothelial cells, platelet activation, and vascular homeostasis

(ANGPT1, CTSG, LYVEL, CMA1, MMRN1, CCL14, TIMP4, SVEP1, PI16, ADAM33, VEGFD,

among others) were also upregulated, S4 Fig in S1 File and S4 Table in S3 File. Enriched gene

sets in CAV1-high tumors included EMT, TGF-β signaling, adipogenesis, myogenesis, coagu-

lation, angiogenesis, and hypoxia, among others, S4 Fig in S1 File and S5 Table in S3 File. In

CAV1-low tumors, the G2M checkpoint, E2F targets, interferon alpha and beta response,

MYC targets V1 and V2, UV damage response, and mTOR signaling hallmark gene sets,

among others, were enriched, suggesting increased proliferation and immune response, S4 Fig

in S1 File and S5 Table in S3 File. Similar patterns were seen regarding GO terms, S4 Fig in S1

File and S6 Table in S3 File.

Fig 3. CAV1 expression in relation to molecular features. CAV1 expression (continuous) by TNBC molecular subtype in (A) SCAN-B

GEX, (B) GSE31519, and (C) METABRIC. Pearson correlations of CAV1 gene expression (continuous) and the eight gene modules

(stroma, lipid, immune response, mitotic checkpoint, mitotic progression, basal, early response, steroid response) in (D) SCAN-B GEX, (E)

GSE31519, and (F) METABRIC.

https://doi.org/10.1371/journal.pone.0305222.g003
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Table 1. Descriptive statistics of CAV1-high and low tumors in SCAN-B GEX.

SCAN-B, TNBC n = 525

All patients Missing CAV1 mRNA expression n = 525

Low High

n = 525 n = 350 n = 175

Number (%) Number (%) Number (%)

Age at diagnosis, years 0

–40 62 (11.8) 47 (13.4) 15 (8.6)

41–50 77 (14.7) 51 (14.6) 26 (14.9)

51–60 114 (21.7) 83 (23.7) 31 (17.7)

61–70 128 (24.4) 73 (20.9) 55 (31.4)

71–80 87 (16.6) 55 (15.7) 32 (18.3)

81– 57 (10.9) 41 (11.7) 16 (9.1)

Invasive tumor size 32

pT2/3/4 283 (57.4) 150 (45.0) 60 (37.5)

Axillary lymph node involvement 29

pN1/2/3 (any) 167 (33.7) 109 (32.8) 58 (35.4)

Main histological type 3

No special type (formerly ductal) 444 (85.1) 303 (87.1) 141 (81.0)

Lobular 12 (2.3) 2 (0.6) 10 (5.7)

Other or mixed 66 (12.6) 43 (12.4) 23 (13.2)

Histological grade 67

I 7 (1.5) 4 (1.3) 3 (2.1)

II 65 (14.2) 29 (9.1) 36 (25.5)

III 386 (84.3) 284 (89.6) 102 (72.3)

Systemic Treatment

Chemotherapy 393 (76.8) 13 260 (76.5%) 133 (77.3%)

PAM50 Subtype 0

Luminal A 5 (1.0) 2 (0.6) 3 (1.7)

Luminal B 3 (0.6) 3 (0.9) 0 (0.0)

Normal-like 73 (13.9) 13 (3.7) 60 (34.3)

HER2 enriched 79 (15.0) 68 (19.4) 11 (6.3)

Basal 365 (69.5) 264 (75.4) 101 (57.7)

PAM50 ROR 45

Low 52 (10.8) 12 (3.7) 40 (26.0)

Intermediate 32 (6.7) 11 (3.4) 21 (13.6)

High 396 (82.5) 303 (92.9) 93 (60.4)

TNBC Subtype 21

BL1 94 (18.7) 83 (24.2) 11 (6.8)

BL2 37 (7.3) 22 (6.4) 15 (9.3)

IM 109 (21.6) 90 (26.2) 19 (11.8)

LAR 68 (13.5) 49 (14.3) 19 (11.8)

M 92 (18.3) 54 (15.7) 38 (23.6)

MSL 45 (8.9) 3 (0.9) 42 (26.1)

UNS 59 (11.7) 42 (12.2) 17 (10.6)

https://doi.org/10.1371/journal.pone.0305222.t001
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SCAN-B: Tumor microenvironment composition in relation to CAV1
mRNA expression

The analysis of CAV1 expression in the single-cell atlas of human breast cancers [40] revealed

that CAV1 is highly expressed in stromal cells in the order of endothelial cells, perivascular-

like (PVL) cells, and CAFs while weakly expressed in malignant cells and barely expressed at

all in immune cells, S5 Fig in S1 File. In the subpopulations of each stromal cell type, CAV1
was most highly expressed in CXCL12+ endothelial cells, differentiated PVL, and myCAFs in

each respective cell type (endothelial, PVL, CAF), S5 Fig in S1 File. The tumor microenviron-

ment composition was estimated by ECOTYPER [41] to investigate whether the composition

differed between CAV1-high and CAV1-low tumors in SCAN-B GEX. CAV1-high tumors had

a higher relative abundance of endothelial and stromal cells compared to CAV1-low tumors

(both P<0.001), S6 Fig in S1 File. Additionally, CAV1-high tumors were associated with the

dominance of carcinoma ecotype (CE) 6 followed by CE 1 (P<0.001), S6 Fig in S1 File. This

indicates that CAV1-high tumors have a microenvironment enriched for stromal cells while

deficient in immune cells. CE 6 and 1 are characterized by POSTN+ fibroblasts and the puta-

tive binding of malignant cells’ ligands (BST1 CYR61, GNA12, ICAM1, PTGS2, and TGFB1,

among others) to CAV1 in endothelial cells. Further analysis of the different cell states revealed

that CAV1 expression was correlated to state 2 (S02) fibroblasts (CD34+ and SPARCL1+,

CAF1; myofibroblast features) and S03 fibroblasts (COL10A1+ and POSTN+, CAF2; extra-cel-

lular matrix remodeling features) [43]. High CAV1 expression was also associated with S01

endothelial cells (CD36+, normal-enriched) and S02 endothelial cells (ANGPTL2+ and NID2+,

neovascularization-associated) (all P<0.001), S6 Fig in S1 File. A negative correlation to S04

endothelial cells (ITGA3+ and IRF1+, unknown function) was also seen (P<0.001). These find-

ings support a potential role in an active stromal component in TNBC that promotes vasculari-

zation and EMT as well as suppressing immune response.

SCAN-B, METABRIC, and GSE31519: High CAV1 mRNA expression

confers inferior clinical outcomes

In the SCAN-B GEX cohort, the median follow-up for the 351 patients still at risk was 5.48

years (IQR 5.00–8.15). For the 146 patients still at risk in the SCAN-B TMA cohort, the median

follow-up was 8.13 years (IQR 6.67–9.23). The follow-up was restricted to 10 years in METAB-

RIC. All events after 10 years were censored to make METABRIC more comparable to

SCAN-B and GSE31519. The median follow-up for the 173 patients still at risk in METABRIC

was 10.0 years (IQR 9.82–10.0). For the GSE31519 dataset, the median follow-up was 7.79

years (IQR 5.69–10.00) for the 169 patients still at risk. The proportional hazards assumption

was reasonably well fulfilled for the CAV1 expression (dichotomous) for all endpoints in all

cohorts.

Strong CAV1 protein staining in malignant and stromal cells of breast cancer tumors was

not associated with clinical outcomes in either the univariable or multivariable survival analy-

ses in the SCAN-B TMA cohort, S7 Fig in S1 File and S7 Table in S2 File.

In the univariable survival analyses of the TNBC cohorts with CAV1 expression, there was

some evidence that CAV1-high in SCAN-B was associated with increased incidence of recur-

rence HR 1.46 (95% CI 0.99–2.14), distant metastasis HR 1.40 (95% CI 0.90–2.18), and death

HR 1.33 (95% CI 0.97–1.84), Fig 4A, 4C, 4E. However, in the multivariable analyses adjusted

for age, clinicopathological factors, and treatment, the evidence was stronger for an associa-

tion; CAV1-high in SCAN-B conferred an increased incidence of recurrence HR 1.78 (95% CI

1.12–2.81), distant metastasis HR 1.75 (95% CI 1.04–2.95), and death HR 1.67 (95% CI 1.15–

2.43), Fig 4B, 4D, 4F. Likewise, in the GSE31915 cohort, CAV1-high was not associated with
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Fig 4. Univariable and multivariable survival analyses of CAV1 expression. (A) Kaplan-Meier estimates of CAV1 expression

(dichotomous) in relation to recurrence-free interval and (B) corresponding forest plots of mutually adjusted hazard ratios (95%

confidence intervals) in SCAN-B GEX. (C) Kaplan-Meier estimates of CAV1 expression (dichotomous) in relation to distant

metastasis-free interval and (D) corresponding forest plots of mutually adjusted hazard ratios (95% confidence intervals) in SCAN-B

GEX. (E) Kaplan-Meier estimates of CAV1 expression (dichotomous) in relation to overall survival and (F) corresponding forest plots
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EFS, HR 1.21 (95% CI 0.89–1.66) in the univariable analysis, whereas much stronger evidence

for an association was seen in the multivariable analysis HR 2.20 (95% CI 1.39–3.47), Fig 4G,

4H. Interestingly, adding the PAM50 ROR score to CAV1 expression further improved the

Cox regression model’s ability to predict distant metastasis but not when solely adding the

PAM50 ROR score to standard clinical models, Table 2. This improvement in predictive ability

was seen in SCAN-B but not in GSE31519. In contrast to the more recent cohorts, CAV1
expression in TNBC in METABRIC was not associated with clinical outcome in either univari-

able or multivariable survival analyses.

Discussion

In this study, we report that high CAV1 gene expression was an independent predictor of infe-

rior survival in patients with TNBC in three large cohorts after adjustment for clinical predic-

tors and treatment. In addition, molecular features related to CAV1 gene expression indicate a

potential role of CAV1 in tumor vasculature that supports altered metabolism, neovasculariza-

tion, and EMT combined with suppressed immune response. This may provide putative bio-

logical explanations for the observed negative impact of CAV1 gene expression on clinical

outcome. This study is, to our knowledge, the largest and most comprehensive to date investi-

gating CAV1 in relation to molecular characteristics, tumor microenvironment composition,

and prognosis in TNBC.

The consistent correlation across cohorts with the lipid module indicates a connection

between CAV1 and lipid metabolism in breast cancer, which is in line with other studies [44].

It is known that CAV1 ensures the availability of the lipids required for maintaining the mem-

brane integrity of tumor cells and modulates lipid metabolism and fatty acid oxidation [44].

For instance, loss of CAV1 leads to impaired lipid storage, lipid droplet formation, and down-

regulation of lipid metabolic processes in vivo and in vitro [44]. Several studies show that

CAV1 is also involved in the modulation of glycolytic activities (also known as the Warburg

effect), which is key for tumor survival [44]. High CAV1 expression can stimulate glucose

of mutually adjusted hazard ratios (95% confidence intervals) in SCAN-B GEX. (G) Kaplan-Meier estimates of CAV1 expression

(dichotomous) in relation to event-free survival and (H) corresponding forest plots of mutually adjusted hazard ratios (95% confidence

intervals) in GSE31519. The number of patients is indicated at each time point.

https://doi.org/10.1371/journal.pone.0305222.g004

Table 2. Comparison of clinical prediction models of distant metastasis with or without PAM50 and CAV1 expression using Akaike information criteria (AIC).

SCAN-B

Cox regression models No. of variables AIC (corrected) Delta Akaike weights Log-likelihood

Clinical Model + PAM50 + CAV1 expression 7 978.50 0.00 0.54 "-482.12"

Clinical Model + CAV1 expression 6 979.87 1.37 0.27 "-483.84"

Clinical Model 5 981.74 3.24 0.11 "-485.80"

Clinical Model + PAM50 ROR 6 982.14 3.64 0.09 "-484.97"

GSE31519

Cox regression models No. of variables AIC (corrected) Delta Akaike weights Log-likelihood

Clinical Model + CAV1 expression 6 839.27 0.00 0.68 "-413.45"

Clinical Model + PAM50 + CAV1 expression 7 840.85 1.58 0.31 "-413.18"

Clinical Model 5 847.74 8.47 0.01 "-418.74"

Clinical Model + PAM50 ROR 6 849.77 10.50 0.00 "-418.70"

Clinical Model: Age (5-year bin), Tumor size, Nodal status, Grade, Chemotherapy

AIC: Akaike information criteria

https://doi.org/10.1371/journal.pone.0305222.t002
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transporter 3 (GLUT3) transcription, increasing glucose uptake and ATP production [45].

Knockdown of CAV1 reduces cellular glucose uptake and lactate output, which would indicate

suppression of the Warburg effect [45]. Other studies have shown that CAV1 interacts with

insulin- and IGF-1 receptors (IR/IGF-1R) and stimulates IR/IGF-1R signaling, which

enhances glucose uptake and lactate output through AKT signaling [46]. The results of DGE

and GSEA analyses and the correlation between CAV1 gene expression and early response to

growth factors module support the hypothesis that CAV1 interacts with IR/IGF-1R signaling

and enables metabolic alterations in the tumors, which enhances survival. Seemingly, CAV1 is

involved in the regulation of the switch between glucose dependent mitochondrial respiration

and aerobic glycolysis and lipid-dependent energy metabolism needed for tumor survival [47].

Further characterization of CAV1 in the metabolic context of TNBC and its TME is needed.

Furthermore, we report that CAV1 was highly expressed in endothelial cells and linked to

angiogenesis, platelet activation, and abundance of endothelial cells. It is well-known that

tumors rely on (neo)vascularization to survive and fulfill their metabolic needs [15]. Studies

suggest that CAV1 has a role in the modulation of ischemic angiogenesis through the regula-

tion of vascular endothelial growth factor (VEGF) dependent endothelial nitric oxide synthase

(eNOS) activation in endothelial cells [48]. Ischemia is strongly linked to hypoxia where CAV1

is clearly implicated [12–14]. Hypoxia-inducible factors 1α and 2α (HIF1α and 2α) directly

target CAV1 as a transcriptional target that, in turn, induces metabolic reprogramming

through attenuation of MYC expression [49]. The downregulation of MYC response was also

seen in the GSEA results in our study. Furthermore, endothelial cells have key immunomodu-

latory properties in the anti-tumor response mediated by immune cells through the regulation

of extravasation and exclusion of immune cells entering the tumor via the bloodstream [15, 16,

50]. Potentially, this could explain the association between high CAV1 expression and immu-

nodeficiency in the TME observed in our study. The tumor vasculature is also key for the pro-

motion of metastasis, with intravasation of malignant cells being a key event required for

metastasis [15, 16, 50]. However, this process is not fully characterized. Furthermore, it is

unknown how CAV1 is related to this process, and the topic merits further study.

CAV1 was highly expressed in stromal cells, which is in line with other studies [12–14]. The

association between normal-like, mesenchymal stem-like, Stroma module and CAV1 gene

expression also indicates a strong connection to stromal cells and an active TME, in line with

the previous literature [12–14]. CAV1 expression was especially high in CXCL12 endothelial

cells. CXCL12 is important for endothelial–fibroblast crosstalk, which is necessary for angio-

genesis, tumor growth, and intravasation [51]. In addition, CAV1 expression was correlated to

endothelial cell states (S01 and S02), which are also implicated in neovascularization and

angiogenesis [52], providing additional support for the role of CAV1 in tumor-related angio-

genesis. The type of PVLs in which CAV1 was highly expressed are also enriched in stem cell

markers and platelet-derived growth factor activity [40]. In glioma and prostate cancer, CAV1

has been implicated as a perquisite for maintaining tumor stemness, where it is known to have

a regulatory role in platelet-derived growth factor signaling [53–55]. CAFs enriched for EMT

features and myogenesis were associated with CAV1 expression in the single-cell atlas of

human breast cancers and the ECOTYPER derived cell states in SCAN-B, [40, 41], potentially

facilitating metastasis of TNBC. CAV1 expression was associated with CE2 implicated in extra-

cellular-matrix-related remodeling and fibrosis [56], supporting the hypothesis that CAV1 can

remodel the surrounding extra cellular matrix [57], thus excluding immune cells and promot-

ing metastasis. CAV1 was also highly correlated with CE6, an ecosystem characterized by the

enrichment of stromal features and cells that has been reported to be associated with worse

prognosis features in gastric cancer [58].
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Surprisingly, CAV1 gene expression was not correlated to CAV1 protein expression in

tumors, in contrast to what we have previously reported based on TCGA data [17]. It should

be noted that the previous study measured CAV1 protein expression using a reverse-phase

protein array [17] and not IHC, which is a relatively crude method but is easily translated into

the clinic. With the advent of IHC spatial analysis software that provides fine-tuned estimates

of protein expression, some correlations may be found. Another difference from most studies

that mainly evaluated CAV1 expression in bulk tissue is that in this study, we evaluated CAV1

in different spatial localizations (malignant cells and stromal cells) of the tumors; however,

CAV1 in endothelial cells was not evaluated. CAV1 is abundantly expressed in endothelial

cells [12–14], which was also seen in our results. Incorporating the protein expression of

CAV1 in endothelial cells into the correlation analyses likely would have yielded stronger cor-

relations. However, we were unable to properly assess CAV1 staining in the endothelium since

we had access only to TMA cores, where the endothelium was often missing. Another limita-

tion of this study is the absence of IHC markers used to differentiate between tumor and stro-

mal cells, so it relied instead on morphological assessment as per previous studies [17–19, 25,

59]. Simultaneously utilizing multiple IHC markers allows for the subtyping of tumor and

stromal cells, potentially revealing associations between CAV1 protein expression and clinical

outcomes specific to particular subsets of tumor and stromal cells. However, the subtyping of

tumor and stromal cells was outside the scope of this study. Additionally, a recent investigation

of EHD2, a caveolar regulatory protein, highlighted that its expression in the nucleus or cyto-

plasm had differing associations with survival [60]. However, despite these findings, nuclear

staining of CAV1 could not be detected in our study; this difference might be due to the use of

a different CAV1 antibody [60]. Notably, EHD2 and CAV1 mRNAs were found to be coordi-

nately expressed and jointly associated with shorter survival in basal breast cancer [60].

Regardless, the results of the present study must be interpreted in the context of the biological

phenotype related to high CAV1 mRNA expression.

CAV1 has been shown to modulate the treatment efficacy of chemotherapy (including

anthracyclines and taxanes) in breast cancer in both preclinical and clinical settings [9, 10, 25,

61]. Potentially, tumors with high CAV1 expression are more chemoresistant and respond

poorly to taxane-based chemotherapy, as previously reported in the GeparSepto trial [11]. This

could explain why patients with TNBC tumors having high CAV1 expression have inferior sur-

vival since chemotherapy was the only systemic treatment offered to these patients. It may also

explain why the CAV1 gene expression was not prognostic in METABRIC due to the chemo-

therapy regimen being different in METABRIC (cyclophosphamide, methotrexate, and fluoro-

uracil-based regimen) compared to SCAN-B and GSE31519 (anthracycline and taxane-based

regimen). Since our study is based on real world data but does not include any data from ran-

domized clinical trials, it is not possible to validate CAV1 gene expression as a potential treat-

ment-predictive biomarker for taxane-based chemotherapy. It would therefore be of great

interest to further elucidate whether CAV1 gene expression could be used as a treatment-pre-

dictive biomarker for taxane-based chemotherapy in the clinical setting. Furthermore, in vitro
and in vivo studies investigating the synergism between targeted CAV1 therapy (e.g., statins)

and chemotherapy could lend further credence to CAV1 as a drug target in TNBC [61, 62].

In contrast to SCAN-B, METABRIC and GSE31519 are not population-based [63]. Since

tumors in METABRIC and GSE31519 were from patients with more advanced disease who

were more likely to be treated at tertiary centers and to be included in clinical trials, the under-

lying risk of recurrence and death is considerably higher than in SCAN-B, making direct com-

parisons regarding prognosis harder. The SCAN-B GEX cohort is larger than both

METABRIC and GSE31519; hence, the ability of the statistical test to detect potential survival

associations is smaller in the latter cohorts. It should also be mentioned that the cut-offs for
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CAV1-high and CAV1-low classifications of TNBC are relative to a population and not based

on absolute cut-offs for each tumor. The classifications were applied separately for each cohort,

meaning that some tumors would be reclassified if a uniform cut-off had been applied [63].

SCAN-B is, to our knowledge, the largest breast cancer cohort to date with available RNA-

seq data for consecutively enrolled breast cancers. The cohort offers unique advantages in that

it allows for the evaluation of biomarkers in a contemporary, real-world setting [21–23]. The

study cohort can be considered representative of the general patient demographics in the

catchment area [21–23]. All herein investigated cohorts have relatively long follow-ups with

median follow-up exceeding five years. Most recurrences occur within five years for TNBC [1–

3]. Less than 5% of patients with TNBC have a recurrence after five years [64]. To our knowl-

edge, this study is the most comprehensive molecular characterization of CAV1 gene expres-

sion in TNBC and the only study that investigates the role of CAV1 in the tumor

microenvironment. Further, the associations with molecular features are stable across the

diverse set of investigated cohorts, and the survival associations are replicated in two indepen-

dent cohorts, validating the role of CAV1 gene expression as a prognostic marker in TNBC.

In conclusion, our findings show that high CAV1 gene expression is an independent factor

of poor prognosis in TNBC. The putative role of CAV1 in chemoresistance and a tumor-pro-

moting TME, corroborated by molecular features, may explain this finding. Hence, CAV1
expression is a biomarker that merits further investigation in clinical trials and as a therapeutic

target.

Supporting information

S1 File. Contains S1-S7 Figs with figure legends for each figure provided below: S1 Fig. Flow-

chart of included and excluded patients in SCAN-B TMA. S2 Fig. CAV1 expression by

PAM50 and ROR category. CAV1 expression (continuous) by PAM50 molecular subtype in

(A) SCAN-B GEX, (B) GSE31519, and (C) METABRIC. CAV1 expression (continuous) by

PAM50 ROR category in (D) SCAN-B GEX, (E) GSE31519, and (F) METABRIC. S3 Fig.

CAV1 protein levels in different spatial localizations in relation to molecular features and

CAV1 gene expression. CAV1 protein levels in (A) malignant cells and in (B) stromal cells by

PAM50 molecular subtype in SCAN-B TMA. CAV1 protein levels in (C) malignant cells and

in (D) stromal cells by TNBC molecular subtype in SCAN-B TMA. CAV1 gene expression in

relation to CAV1 protein levels in (E) malignant cells, (F) stromal cells, and (G) combined pro-

tein status. S4 Fig. Molecular analyses of CAV1 expression in SCAN-B. (A) Volcano plot

showing up- and downregulated genes in CAV1-high compared to CAV1-low tumors. (B) Dot

plots showing activated and suppressed. (C) Hallmark signatures and GO terms in CAV1-high

compared to CAV1-low tumors. (D) Heatmap of differentially expressed genes (DEG) in

CAV1-high compared to CAV1-low tumors. S5 Fig. CAV1 gene expression in different cell

populations in the single-cell atlas of human breast cancers. Log-normalized expression of

CAV1 in (A) a Uniform Manifold Approximation and Projection (UMAP) visualization of dif-

ferent breast cancer cells and (B) corresponding violin plots. Log-normalized expression of

CAV1 in (C) a UMAP visualization of major subtypes of stromal cells in breast cancer and (D)

corresponding violin plots. S6 Fig. Tumor microenvironment composition in relation to

CAV1 gene expression. Log-normalized expression of CAV1 in (A) a UMAP visualization of

specialized subtypes of stromal cells in breast cancer and (B) corresponding violin plots. Rela-

tive abundance of (C) fibroblasts and (D) endothelial cells in CAV1-high and low tumors. (E)

Pearson correlations of CAV1 gene expression (continuous) and the different fibroblast cell

states. (F) Pearson correlations of CAV1 gene expression (continuous) and the different endo-

thelial cell states. (G) The dominant CE in CAV1-high and CAV1-low tumors. (H) Pearson
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Meier estimates of CAV1 protein levels in (A) malignant cells and (B) stromal cells in relation

to recurrence-free interval in SCAN-B TMA. CAV1 protein levels in (C) malignant cells and

(D) stromal cells in relation to distant metastasis-free interval in SCAN-B TMA. CAV1 protein

levels in (E) malignant cells and (F) stromal cells in relation to overall survival in SCAN-B

TMA. The number of patients is indicated at each time-point.
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