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Abstract

In causal mediation analysis, nonparametric identification of the natural indirect effect typically 

relies on, in addition to no unobserved pre-exposure confounding, fundamental assumptions of (i) 

so-called “cross-world-countterfactuals” independence and (ii) no exposure-induced confounding. 

When the mediator is binary, bounds for partial identification have been given when neither 

assumption is made, or alternatively when assuming only (ii). We extend existing bounds to the 

case of a polytomous mediator, and provide bounds for the case assuming only (i). We apply 

these bounds to data from the Harvard PEPFAR program in Nigeria, where we evaluate the extent 

to which the effects of antiretroviral therapy on virological failure are mediated by a patient’s 

adherence, and show that inference on this effect is somewhat sensitive to model assumptions.
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1 Introduction

Causal mediation analysis seeks to determine the role that an intermediate variable plays 

in transmitting the effect from an exposure to an outcome. An indirect effect refers to the 

effect that goes through the intermediate variable; a direct effect is a measure of the effect 

that does not. The study of causal mediation has enjoyed an explosion in popularity in 

recent years (Petersen, Sinisi, and van der Laan, 2006, Imai, Keele, and Tingley, 2010, 

Tchetgen Tchetgen and Shpitser, 2012, Shpitser, 2013, VanderWeele, 2015), not only in 

terms of theoretical developments, but also in practice. This has been most notable in the 

fields of epidemiology and social sciences. This strand of work is based on ideas originating 

from Robins and Greenland (1992) and Pearl (2001) grounded in the language of potential 
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outcomes (Splawa-Neyman, Dabrowska, Speed et al., 1990, Rubin, 1974, 1978) to give 

nonparametric definitions of effects involved in mediation analysis, allowing for settings 

where interactions and nonlinearities may be present.

Consider an intervention which sets the exposure of interest for all subjects in the population 

to one of two possible values: a reference value or an active value. The total effect of such an 

intervention corresponds to the change of the counterfactual outcome mean if the exposure 

were set to the active value compared with if it were set to the reference value. Robins and 

Greenland (1992) formalized the concept of effect decomposition of the total effect into 

direct and indirect effects by describing pure direct and indirect effects using counterfactual 

language. Pearl (2001) further formalized this concept, giving general definitions using 

counterfactual notation to what he termed natural direct and indirect effects, as well as 

general identification results. The pure direct effect (PDE) corresponds to the change in 

the counterfactual outcome mean under an intervention which changes a person’s exposure 

status from the reference value to the active value, while maintaining the person’s mediator 

at the value it would have had under the exposure reference value. In contrast, the natural 

indirect effect (NIE) corresponds to the change in the average counterfactual outcome under 

an intervention that sets a person’s exposure value to the active value, while changing the 

value of the mediator from the value it would have had under the reference exposure value, 

to its value under the active exposure value. The PDE and NIE sum to give the total effect.

Identification of these natural effects has been somewhat controversial as it requires 

assumptions that may be overly restrictive for many applications. First, identification 

invokes a so-called cross-world-counterfactuals-independence assumption, which by virtue 

of involving counterfactuals under conflicting interventions on the exposure, cannot be 

enforced experimentally (Pearl, 2001, Robins and Richardson, 2010). Secondly, a necessary 

assumption for identification rules out the presence of exposure-induced confounding of 

the mediator’s effect on the outcome, even if all confounders are observed. While this 

assumption is in principle testable provided no unmeasured confounding, more often 

than not, post-exposure covariates are altogether ignored in routine application, in which 

case mediation analyses may be invalid. These issues have been considered recently, and 

some work has been done on partial or point identification under a weaker assumption. 

Specifically, on the one hand Robins and Richardson (2010) and Tchetgen Tchetgen and 

VanderWeele (2014) provide conditions for point identification of the PDE and NIE when a 

confounder is directly affected by the exposure. On the other hand, Robins and Richardson 

(2010) give bounds for the PDE and NIE for binary mediator without making the 

cross-world-counterfactual-independence assumption, but assuming no exposure-induced 

confounding of the mediator-outcome relation, and Tchetgen Tchetgen and Phiri (2014) 

extend these bounds to account for exposure-induced confounding. Bounds are commonly 

employed in causal inference when structural assumptions are not sufficiently strong to give 

point identification of a causal parameter of interest (Robins, 1989, Balke and Pearl, 1997, 

Zhang and Rubin, 2003, Kaufman, Kaufman, MacLehose, Greenland, and Poole, 2005, 

Cheng and Small, 2006, Cai, Kuroki, Pearl, and Tian, 2008, Sjölander, 2009, Taguri and 

Chiba, 2015). We build on this previous work to provide a number of new nonparametric 

bounds for the PDE and NIE allowing for a polytomous mediator under relaxations of the 

assumptions of (i) cross-world-counterfactuals independence, and (ii) no exposure-induced 
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confounding, both separately and jointly. In particular, we relax assumption (ii) to allow for 

exposure-induced confounders when these confounders are measured and discrete. We apply 

these bounds to data from the Harvard PEPFAR program in Nigeria, where we evaluate the 

extent to which the effects of antiretroviral therapy on virological failure are mediated by a 

patient’s adherence.

2 Preliminaries

For a directed acyclic graph (DAG) consisting of nodes V, and a given intervention assigning 

a subset of nodes A ⊂ V to a fixed value a, we denote the counterfactual value of a distinct 

node Y ∈ V under this intervention by Y a . In order to link these counterfactuals to the 

observed Y , we adopt the standard set of consistency assumptions that for any A, a, and 

Y , if A = a, then Y a = Y  with probability one. Various causal models may be associated 

with a given DAG. We will focus on two in particular: the Nonparametric Structural 

Equation Model with Independent Errors (NPSEM-IE) of Pearl (2000) and the Finest Fully 

Randomized Causally Interpretable Structured Tree Graph (FFRCISTG) of Robins (1986). 

Let pa paV  denote the parents of V  in the DAG, and vX denote the subset of v ∈ supp V
corresponding to the subset X ⊂ V, where supp ⋅  gives the support of its argument. The 

NPSEM-IE is defined as the set of all probability distributions for which

V paV ∣ ∀paV ∣ V ∈ V

are mutually independent; the FFRCISTG is the set of all probability distributions for which

V paV ∣ V ∈ V, paV = vpaV

are mutually independent for each v. The NPSEM-IE associated with a particular DAG 

is then a subset of the associated FFRCISTG, as the former condition contains the 

latter. To illustrate the difference in these models, consider the directed acyclic graph 

(DAG) displayed in Fig. 1.A. The NPSEM-IE associated with this graph implies mutual 

independence of A, M a′ , and Y a′′, m  for all a′, a′′, and m, whereas the associated 

FFRCISTG merely implies mutual independence of A, M a′ , and Y a′, m  for all a′ and 

m, i.e., when a′ = a′′. When a′ ≠ a′′, M a′ , and Y a′′, m  are “cross-world counterfactuals” 

in the sense that they arise under conflicting interventions that could not occur 

simultaneously in the same world. Thus, the NPSEM-IE makes independence assumptions 

about cross-world counterfactuals, whereas the FFRCISTG only makes assumptions about 

counterfactuals in the “same world”.

To view the NPSEM-IE another way, consider the nonparametric structural equations 

associated with the graph in Fig. 1.A. These provide a nonparametric algebraic interpretation 

of this DAG corresponding to three equations – one for each variable in the graph. Each 

random variable on the graph is associated with a distinct, arbitrary function, denoted g, 

and a distinct random disturbance, denoted ε, each with a subscript corresponding to its 

respective random variable. Each variable is generated by its corresponding function, which 
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depends only on all variables that affect it directly (i.e., its parents on the graph), and its 

corresponding random disturbance, as follows:

A = gA εA

M = gM A, εM

Y = gY A, M, εY

The NPSEM-IE conditions are equivalent to the condition that the random disturbances 

are mutually independent, hence the name “Nonparametric Structural Equation Model With 

Independent Errors”. The FFRCISTG can be formulated in the same way, but with weaker 

conditions on the random disturbances.

The graph in Fig. 1.A illustrates the simplest possible mediation setting, where A is defined 

to be the exposure taking either baseline value a* or comparison value a, M is defined 

to be the (potential) mediator, and Y  is defined to be the outcome. This DAG assumes 

randomization of the exposure, which for expositional simplicity we maintain throughout. 

Results in this paper can be extended to settings with observed pre-exposure confounders, 

and are given at the end of Section 3. The graph also encodes no unobserved confounding 

of the effect of M on Y  given A. The effect along the path A Y  on the diagram is 

generally referred to as direct with respect to M, and the effect along the path A M Y
on the diagram as indirect with respect to M. In terms of counterfactuals, the randomization 

assumption encoded by the DAG in Fig. 1.A is Y a′, m , M a′ ⫫ A for all a′ and m; the 

assumption of no unobserved confounding of M given A is Y a′, m ⫫ M a′ ∣ A = a′ for all a′
and m.

Richardson and Robins (2013) propose another form of causal graphs, known as Single-

World Intervention Graphs (SWIGs). A SWIG is essentially a DAG that has been 

modified under a particular intervention to graphically encode the Markov factorization 

of the counterfactual distribution under that intervention. Operationally, for an intervention 

assigning a subset of nodes A to a particular level a, a SWIG splits each intervention node 

into two. The first is a “pre-intervention” node that has the value this random variable, 

say Aj, would be observed to take under this intervention “just prior” to the intervention 

on this particular node, i.e., when all other nodes in A besides Aj are intervened on. This 

node will be counterfactual (potentially trivially) based on the other nodes being intervened 

on, and inherits only the edges entering its corresponding node in the DAG. The second 

is a “post-intervention” node that is the value that the node is actually set to under this 

intervention. Its value is deterministic, and inherits only the edges exiting its corresponding 

node in the DAG. The remaining non-intervention nodes are replaced by their corresponding 

counterfactual variables under this intervention.
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These graphs manage to clear up some of the ambiguity inherent to DAGs by 

graphically representing the counterfactuals themselves, allowing independence statements 

of counterfactuals to be read directly from the graph using the rules of d-separation (Pearl, 

2000). These rules are applied just as in DAGs, with the exception that paths through 

deterministic-valued nodes are no longer considered to be d-connecting. Consider the SWIG 

in Fig. 1.B. By d-separation, it is clear that Y (a, m) ⫫ M(a) for all a and m, however no 

such statement can be made from the graph about Y (a, m) and M(a*) when a ≠ a*. In fact, 

cross-world counterfactual independence statements are never implied by SWIGs, as each 

SWIG is defined only for a single intervention, hence the name “Single-World Intervention 

Graph”. Thus, SWIGs correspond only to FFRCISTGs and not NPSEM-IES.

For both full and partial identification of the PDE and NIE, we require the 

following positivity assumptions to be satisfied for A, M, Y :0 < pr A = a < 1 and 

minm ∈ supp M pr M = m ∣ A = a > 0. Additionally, when exposure-induced confounding is 

present and sufficiently controlled for by measured variables R, we require that 

minr ∈ supp R pr R = r ∣ A = a* > 0 and minr ∈ supp R , m ∈ supp M pr M = m ∣ R = r, A = a > 0.

We will consider as well defined the nested counterfactual Y {a, M a* }, i.e., the 

counterfactual outcome under an intervention which sets the exposure to the comparison 

value a, and the mediator to the value it would have taken under the conflicting baseline 

exposure value a*. We may now define the pure/natural direct effect and natural indirect 

effect (Robins and Greenland, 1992, Pearl, 2001), which form the following decomposition 

of the average causal effect:

E{Y (a)} − E Y a*

= E Y a, M a − E Y a*, M a*
total effect

= E Y a, M a − E Y a, M a*
natural indirect effect

+ E Y a, M a* − E Y a*, M a*
pure direct effect

.

The terms E Y a′ = E Y a′, M a′ , for all a′, are identified under randomization of A. The 

parameter γ0 ≡ E Y a, M a*  is identified under the NPSEM-IE interpretation of the DAG 

in Fig. 1.A. Under particular interventions, structural equations with independent errors 

naturally encode independences of cross-world counterfactuals. Consider, for example, two 

interventions, one setting A = a*, and another setting A = a and M = m. The structural 

equations then become

A = a* A = a
M(a*) = gM a*, εM M a = m
Y a* = gY a*, M a* , εY Y a, m = gY a, m, εY .

This model then implies that for all m, (i) {M(a), Y (a, m)} ⫫ A, (ii) Y (a, m) ⫫ M(a) ∣ A = a, 

and (iii) Y (a, m) ⫫ M a* ∣ A = a, which in turn suffice for identification of γ0 (Pearl, 2001). 

Independence condition (iii) can be seen to hold under the model by observing that the 

only source of randomness in Y (a, m) = gY a, m, εY  is εY  and the only source of randomness 
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in M a* = gM a*, εM  is εM. Thus, the cross-world-counterfactual-independence statement 

follows directly from independence of exogenous disturbances.

Cross-world counterfactual independence statements, however, are not experimentally 

enforceable (Robins and Richardson, 2010). This issue has been discussed extensively 

(Robins and Richardson, 2010, Richardson and Robins, 2013), and in large part motivated 

the development of SWIGs. Under the FFRCISTG corresponding to the SWIG in Fig. 1.B, 

independence between Y a, m  and M a*  is not assumed, and hence γ0 is not point identified. 

Robins and Richardson (2010) provide the following bounds for its partial identification 

in the setting where M is binary and FFRCISTG independence assumptions M(a) ⫫ A and 

Y (a, m) ⫫ {M(a), A} hold for all a and :

max 0, pr M = 0 ∣ A = a* + E Y ∣ M = 0, A = a − 1
+ max 0, pr M = 1 ∣ A = a* + E Y ∣ M = 1, A = a − 1

≤ γ0 ≤
min pr M = 0 ∣ A = a* , E Y ∣ M = 0, A = a
+ min pr M = 1 ∣ A = a* , E Y ∣ M = 1, A = a .

In Section 3, we extend this result to the setting of a polytomous M.

As previously mentioned, another often-overlooked condition required for identification of γ0

is that there is no confounder of the mediator’s effect on the outcome that is affected by the 

exposure. Such a confounder is present in the setting illustrated in the DAG in Fig. 2.A.

Generally, even under an NPSEM-IE interpretation of this DAG, γ0 will not be identified 

in this setting. This is readily seen by considering the following representation under this 

model given by Robins and Richardson (2010):

γ0 = ∑
r, r*

E E Y ∣ M, R = r, A = a ∣ R = r*, A = a* pr R a = r, R a* = r* .

(1)

Clearly the joint probability term can never be identified from observed data, since we will 

never be able to observe R a  and R a*  for the same individual. Note however that the 

presence of R poses no trouble if there is no direct effect of A on R. In this case, R = R a′
almost everywhere for all a′, and (1) reduces to

γ0 =
r

E E Y ∣ M, R = r, A = a ∣ R = r, A = a* pr R = r ,

which is in fact identical to the identification formula under the NPSEM-IE with baseline 

confounders R and no exposure-induced confounders. Thus, it is only when the confounders 

are directly affected by A that γ0 is not identified.

A few conditions for identification in this setting have been proposed. Robins and 

Richardson (2010) give two. The first is that R(a) ⫫ R a* , in which case the troublesome 

term in (1) will factor, giving
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γ0 =
r*, r

E E Y ∣ M, R = r, A = a ∣ R = r*, A = a* pr R = r* ∣ A = a*

× pr(R = r ∣ A = a) .

It seems biologically unlikely, however, that in a scenario in which A affects R, the 

counterfactual R under A = a would not be predictive of the counterfactual R under A = a*. 

The other condition is that the counterfactual outcome under one exposure value is a 

deterministic function of the counterfactual for the other treatment, i.e., R a = g R a* . In 

this case,

γ0 =
r*, r

E E Y ∣ M, R = r, A = a ∣ R = r*, A = a*

× pr R = r* ∣ A = a* I r = g r* .

The above assumption is implied by rank preservation (Robins and Richardson, 2010), 

which is unlikely to hold in social and health sciences as it rules out individual-level effect 

heterogeneity (Tchetgen Tchetgen and VanderWeele, 2014). As none of these conditions are 

experimentally verifiable, the authors themselves “do not advocate blithely adopting such 

assumptions in order to preserve identification of the PDE in [this setting]” (Robins and 

Richardson, 2010).

Tchetgen Tchetgen and VanderWeele (2014) give two testable conditions for identification 

of γ0 when R is present. The first is of A − R monotonicity, i.e., for Bernoulli R, R a ≥ R a* . 

If R is a vector of Bernoulli random variables whose structural equations have independent 

errors, and if monotonicity holds for each element,

γ0 =
r, r*

E E Y ∣ M, R = r, A = a ∣ R = r*, A = a*
j = 1

k
fj(rj, rj

*, a, a*)

where

fj(rj, rj
*, a, a*) =

pr Rj = 1 ∣ A = a* if rj
* = rj = 1,

pr Rj = 1 ∣ A = a − pr Rj = 1 ∣ A = a* if rj
* = 0, rj = 1,

0 if rj
* = 1, rj = 0,

pr Rj = 0 ∣ A = a if rj
* = rj = 0 .

Their second condition is no M − R additive mean interaction, i.e.,

E Y ∣ m, r, a − E Y ∣ m*, r, a − E Y ∣ m, r*, a + E Y ∣ m*, r*, a = 0,

for all levels m and m* of M and r and r* of R. For discrete M and R, this yields
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γ0 =
m

E Y ∣ m, r*, a − E Y ∣ m*, r*, a pr M = m ∣ A = a*

+
r

E Y ∣ m*, r, a − E Y ∣ m*, r*, a pr R = r ∣ A = a

+ E Y ∣ m*, r*, a .

Eschewing the cross-world-counterfactual assumptions of the NPSEM-IE, Tchetgen 

Tchetgen and Phiri (2014) extend the bounds of Robins and Richardson (2010) under an 

FFRCISTG to allow for the presence of an exposure-induced confounder when the mediator 

is binary:

max 0, pr M = 0 ∣ A = a* +
r

E Y ∣ M = 0, r, a pr R = r ∣ A = a − 1

+max 0, pr M = 1 ∣ A = a* +
r

E Y ∣ M = 1, r, a pr R = r ∣ A = a − 1

≤ γ0 ≤

min pr M = 0 ∣ A = a* ,
r

E Y ∣ M = 0, r, a pr R = r ∣ A = a

+min pr M = 1 ∣ A = a* ,
r

E Y ∣ M = 1, r, a pr R = r ∣ A = a .

We extend these bounds as well to allow for polytomous M in Section 3. Additionally, 

we construct bounds for γ0 under an NPSEM-IE that account for an observed discrete 

exposure-induced confounder, but require no further assumption.

3 New partial identification results

We begin by extending the bounds of Robins and Richardson (2010) and Tchetgen Tchetgen 

and Phiri (2014) to settings with discrete mediator and outcome. Proofs can be found in the 

Appendix.

Theorem 1.

Under the FFRCISTG corresponding to the SWIG in either Fig. 1.B or Fig. 2.B with discrete 
M and Y  and arbitrary R,

∑
m, y

y max 0, pr M a* = m + pr Y a, m = y − 1 I(y > 0)

+min pr M a* = m , pr Y a, m = y I(y < 0)
≤ γ0 ≤

∑
m, y

y max 0, pr M a* = m + pr Y a, m = y − 1 I(y < 0)

+min pr M a* = m , pr Y a, m = y I(y > 0) .

The upper and lower bounds coincide when Y a, m  or M a*  is degenerate, which 

follows from the properties of joint probability mass functions. The upper and lower 

bounds are achieved only if Y a, m  and M a*  are perfectly dependent or perfectly 
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negatively dependent, respectively, for each m. This is formalized by the requirement 

that these counterfactuals be comonotone or countermonotone, respectively, for each m. 

Comonotonicity of X and Y  holds if FX, Y x, y = min FX x , FY y , where FZ ⋅  denotes 

the joint (or marginal) cumulative distribution function of a random vector (or scalar) 

Z; countermonotonicity holds if FX, Y x, y = max 0, FX x + FY y − 1  (Nelsen, 2007). A 

straightforward application of the g-formula under the DAGs in Fig. 1 and 2 yields the 

following corollaries:

Corollary 1.

For polytomous M and Y , γ0 is partially identified under the FFRCISTG 

corresponding to the SWIG in Fig. 1.B by the bounds in Theorem 1 with 
pr M a* = m = pr M = m ∣ a*  and pr Y a, m = y = pr Y = y ∣ m, a . It is partially identified 
under the FFRCISTG corresponding to the SWIG in Fig. 2.B by the same bounds, but with 
pr M a* = m = pr M = m ∣ a*  and pr Y a, m = y = ∑r pr Y = y ∣ m, r, a pr R = r ∣ a .

The second part of the corollary continues to hold even when there is a hidden common 

cause of R and Y  as in Fig. 3, since the same g-formula applies in this setting.

Whereas the previous results invoked no cross-world-counterfactual independences under 

the FFRCISTG interpretation of the DAG in Fig. 2.A, sharper bounds are available under 

Pearl’s NPSEM-IE interpretation of these DAGs. We introduce some notation before stating 

the result. Let R be discrete taking values in 1, …, p , x be the vectorization of the matrix

E E Y ∣ M, R = r, A = a ∣ R = r*, A = a* r, r * ,

πr, r* ≡ pr R a = r, R a* = r* , π be the vectorization of the matrix πr, r* , and δ be the 

vectorization of the matrix πr, r* −p, − p, i.e., the matrix πr, r*  with row p and column p removed. 

Equation (1) can then be expressed as γ0 = xTπ, which is identified in x, but not π. Given the 

marginal probabilities, which are identified, the joint probabilities have (p − 1)2 degrees of 

freedom, and can be expressed in terms of the (p − 1)2-dimensional vector δ as π = Bδ + d, 

where B is the p2 × (p − 1)2 matrix

J 0 ⋯ 0
0 J ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ J

−J −J ⋯ −J

,

where

J ≡
Ip − 1

−1T ,

and d is the p2-dimensional vector
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0p − 1

pr R = 1 ∣ A = a
0p − 1

pr R = 2 ∣ A = a
⋮

0p − 1

pr R = p − 1 ∣ A = a
pr R = 1 ∣ A = a*
pr R = 2 ∣ A = a*

⋮
pr R = p − 1 ∣ A = a*

pr R = p ∣ A = a + pr R = p ∣ A = a* − 1

.

The following result states that bounds for γ0 can be obtained by optimizing xT Bδ + d  in δ
via linear programming.

Theorem 2.

Under the NPSEM-IE corresponding to the DAG in Fig. 2.A, where M and Y  can be either 

continuous or discrete, γ0 is partially identified by xT BδL + d , xT BδU + d , where δL and 

δU are the minimizing and maximizing solutions respectively to the linear programming 

problem with objective function xTBδ subject to the Fréchet inequality constraints

max 0, pr R = r ∣ A = a + pr R = r* ∣ A = a* − 1
≤ δr, r* ≤

min pr R = r ∣ A = a , pr R = r* ∣ A = a* ,

where δr, r* denotes the p r − 1 + r* th element of δ.

Similar to the previous result, these bounds coincide if either R a  or R a*  is degenerate. 

The upper bound is achieved when R a  and R a*  are comonotone; the lower bound is 

achieved when they are countermonotone. These bounds are available in closed form only 

when R is binary; otherwise they can be solved using standard software, such as with the 

lp_solve function, which uses the revised simplex method and is accessible from a number 

of languages, including R, MAT-LAB, Python, and C. While the method used by this 

software is not guaranteed to converge at a polynomial rate (Klee and Minty, 1970), it is 

quite efficient in most cases (Schrijver, 1998). Under A − R monotonicity with binary R, the 

identifying functional given by Tchetgen Tchetgen and VanderWeele (2014) is recovered at 

the upper bound in Theorem 2.

As mentioned, all results given here can be extended to settings with observed pre-exposure 

confounders, which we denote C. The following assumes that previous assumptions hold 

conditionally on C, and that the positivity assumptions conditional on C hold almost 

everywhere. The bounds in Theorem 1 become
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c m, y
y max 0, pr M a* = m ∣ c + pr Y a, m = y ∣ c − 1 I y > 0

+min pr M a* = m ∣ c , pr Y a, m = y ∣ c I y < 0 dFC c
≤ γ0 ≤

c m, y
y max 0, pr M a* = m ∣ c + pr Y a, m = y ∣ c − 1 I y < 0

+min pr M a* = m ∣ c , pr Y a, m = y ∣ c I y > 0 dFC c .

The identification formulas in Corollary 1 are the same, but conditional on C. The bounds in 

Theorem 2 become [∫cx(c)T BδL(c) + d(c) dFC(c), ∫cx(c)T BδU c + ]d c dFC c , where x c  and 

d c  are simply x and d respectively, but conditional on c. For each c, δL c  and δU c  minimize 

and maximize respectively the objective function x(c)TBδ(c) subject to the Fréchet inequality 

constraints

max 0, pr R = r ∣ A = a, c + pr R = r* ∣ A = a*, c − 1
≤ δr, r* c ≤

min pr R = r ∣ A = a, c , pr R = r* ∣ A = a*, c .

When p is of moderate size, δ c  can be solved for each covariate pattern of C, i.e., without 

modeling the dependence of the cross-world-counterfactual joint distribution on C. Each 

of these bounds remains sharp, since satisfaction of the Fréchet inequality constraints on 

the marginal joint probabilities is implied by satisfaction of those on the conditional joint 

probabilities.

4 Application to Harvard PEPFAR data set

We now consider an application to a data set collected by the Harvard President’s 

Emergency Plan for AIDS Relief (PEPFAR) program in Nigeria. The data set consists of 

HIV-1 infected adult patients who had not previously received antiretroviral therapy (ART), 

began ART in the program, and were followed at least one year following initiation. Patients 

without reliable viral load data at two of the hospitals were excluded. Only complete cases 

initially prescribed to either TDF+3TC/FTC+NVP or AZT+3TC+NVP1 were considered for 

this analysis. Thus, the data set we consider consists of 6627 patients, 1919 of whom were 

prescribed to TDF+3TC/FTC+NVP, and the remaining 4708 prescribed to AZT+3TC+NVP.

There has accumulated evidence of a differential effect on virologic failure between 

these two first-line antiretroviral treatment regimens (Tang, Kanki, and Shafer, 2012). 

Virologic failure is defined by the World Health Organization as repeat viral load above 

1000 copies/mL. We base this on measurements at 12 and 18 months of ART duration 

in our analysis. A natural question of scientific interest is what role adherence plays 

in mediating this differential effect. We are primarily interested in learning about the 

scientific mechanism of this effect on the individual level. The natural indirect effect 

best captures this mechanism in that it captures an isolated effect difference mediated by 

adherence by, in a sense, deactivating effect differences along all other possible causal 
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pathways. We specifically examine the effect through adherence over the second six months 

since treatment assignment, i.e., the six months prior to the first viral load measurement. 

Identification is complicated by the presence of treatment toxicity, which clearly affects 

adherence directly, and has the potential to modify the effect of the treatment assignment 

on virologic failure. Thus, toxicity measured at six months after treatment assignment is 

an exposure-induced confounder of the effect of the mediator on the outcome. Further, 

toxicity and virologic failure are likely to be rendered dependent by unobserved underlying 

biological common causes as in Fig. 3, where H represents these hidden biological 

mechanisms. Because we define the mediator to be adherence over the second six months, 

adherence over the first six months is also an exposure-induced confounder along with 

toxicity, and must be accounted for. Had we defined the mediator to be adherence over the 

full year, measurement of the mediator and toxicity would have overlapped, violating the 

principle of temporal ordering.

Let C denote the vector consisting of baseline covariates sex, age, marital status, WHO 

stage, hepatitis C virus, hepatitis B virus, CD4+ cell count, viral load, the tertiary hospital 

affiliated with the patient’s clinic, and whether the patient visited that tertiary hospital or 

an affiliated clinic. Let A be an indicator of ART assignment taking levels a* for TDF+3TC/

FTC+NVP and a for AZT+3TC+NVP; R be a vector consisting of an indicator variable 

of the presence of any lab toxicity at six months following initiation of therapy, and a 

categorization of average adherence over the first six months following initiation of therapy 

into three groups: exceeding 95%, between 80% and 95%, and not exceeding 80%; M be a 

categorization of average adherence over the subsequent six months into the same ranges as 

in R; and Y  be an indicator of virologic failure at one year, i.e., repeat viral load above 1000 

copies/mL at one year and at 18 months.

Here we estimate the natural indirect effect of A on Y  through M, as defined above, 

on the risk difference scale using the various sets of identifying and partially-identifying 

assumptions given above. Throughout, estimation is performed using maximum likelihood. 

There is a growing literature on inference methods for partially-identified parameters, many 

of which are reviewed in Tamer (2010). In particular, Chernozhukov, Hong, and Tamer 

(2007), Romano and Shaikh (2008), Andrews and Guggenberger (2009) propose methods 

for obtaining uniformly-valid confidence sets for moment condition models by inverting a 

test whose critical value is obtained by subsampling the test statistic. While the models 

considered in this paper can be framed as moment condition models, subsampling is 

unfortunately not possible due to the rarity of virologic failure. Additionally, Andrews and 

Guggenberger (2009) propose an alternative method for obtaining a critical value under the 

asymptotically least-favorable null model, however this yields uninformative confidence sets 

in our setting as it does not account for models such as ours in which moment conditions 

cannot hold as equalities simultaneously. Instead, we construct confidence intervals using 

the weighted bootstrap (van der Vaart and Wellner, 1996), which accounts for the rare 

outcome, but does not produce confidence sets that are valid uniformly, due to the 

bounds under consideration not being pathwise-differentiable parameters. The results are 

summarized in Fig. 4.

Miles et al. Page 12

J Causal Inference. Author manuscript; available in PMC 2024 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is immediately apparent that range of uncertainty for the NIE is sensitive to which 

identifying assumptions are made. Consider an investigator who might be willing to rely on 

cross-world-counterfactual independences. By ignoring the presence of toxicity, she would 

find a small, insignificant positive effect. Conversely, were she to make the no M − R
interaction assumption, she would find a small, insignificant negative indirect effect. (An 

empirical test of this assumption reveals that it is unlikely to apply, however we present 

this result for the sake of comparison.) The identification result under A − R monotonicity 

does not extend to the case where R is polytomous, and hence could not be applied in 

this setting. Incorporating R with no assumptions results in bound estimates corresponding 

to Theorem 2 that roughly match the confidence interval achieved under the no M − R
interaction assumption, and a confidence interval that is about three times wider.

Another investigator unwilling to impose cross-world-counterfactual independence 

assumptions is left with little to say as the bounds are considerably wider, regardless of 

how toxicity is handled. These bounds easily contain the null hypothesis of no NIE, as well 

as all confidence intervals obtained under the NPSEM-IE. Thus, cross-world-counterfactual-

independences appear to have stronger empirical implications in the current analysis than 

assumptions regarding exposure-induced confounders. Interestingly, the point estimates of 

the bounds that result from making no assumptions about the joint distribution of the cross-

world R counterfactuals are narrower than those that result from ignoring R. This is because 

even though we do not impose any restrictions on the distribution of R or its counterfactuals 

a priori, observing R is clearly informative. The bounds accounting for R correspond to 

Theorem 1, and have the added advantage of being the only identifying formula that remains 

valid when toxicity and virologic suppression are affected by an unobserved common cause, 

as in Fig. 3. If it is indeed the case that this manner of unobserved confounding is present, 

then the other estimates will be biased.

5 Discussion

We have shown that PEPFAR results are sensitive to the choice of assumptions made, 

consequently, we counsel investigators employing mediated effects to exercise caution in 

considering the basis for point identification and to explicitly state the assumptions required 

for validity. Where assumptions are empirically untestable, they should be argued for on 

the basis of scientific understanding, and ideally the alternative should be explored by 

employing partial identification bounds given both here and elsewhere. While some work 

has been done to develop sensitivity analyses for unmeasured confounding of the mediator 

(Tchetgen Tchetgen, 2011, Tchetgen Tchetgen and Shpitser, 2012, Vansteelandt and 

VanderWeele, 2012), sensitivity analyses for ranges of plausible associations between cross-

world counterfactuals remain undeveloped. Further development of sensitivity analyses of 

both forms would be highly beneficial for practical use, and is fertile ground for future work. 

Additionally, interest is growing in mediation analysis in longitudinal settings with repeated 

measures of the exposure, confounders, and mediator. Extending this work to such settings is 

also a fruitful direction for future research. We hope that the work presented here will inspire 

deeper consideration and transparency regarding underlying identifying assumptions in the 

practice of mediation analysis.
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Appendix

Proofs of theorems

Proof of Theorem 1.

Applying the (sharp) Fréchet inequalities

max 0, pr M a* = m + pr Y a, m = y − 1
≤ pr Y a, m = y, M a* = m ≤

min pr M a* = m , pr Y a, m = y .

to each summand in

E Y a, M a* =
m, y

ypr Y a, m = y, M a* = m

yields the result.

Proof of Theorem 2.

Since xTBδ is linear in δ and each element of δ is constrained linearly, the proposed 

linear programming problem will yield the δ that optimizes xTBδ, and hence xT Bδ + d . 

Thus, γ0 will be bounded by xT Bδ + d  evaluated at the minimizing and maximizing linear 

programming solutions δL and δU.

Glossary

3TC lamivudine

AZT zidovudine

FTC emtricitabine

NVP nevirapine

TDF tenofovir
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Figure 1: 
A. The three-node mediation directed acyclic graph in a setting with no confounding. The 

nodes represent random variables, and the arrows represent possible causal effects of one 

random variable on another. B. The single-world intervention graph in the setting of (a) 

under the intervention setting A to a and M to m. The black nodes represent random 

variables under this intervention, the red nodes represent the level an intervened random 

variable takes under this intervention, and the arrows represent possible causal effects of one 

variable under this intervention on another.
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Figure 2: 
A. A mediation directed acyclic graph in which R is an exposure-induced confounder. The 

nodes represent random variables, and the arrows represent possible causal effects of one 

random variable on another. B. The single-world intervention graph in the setting of (a) that 

has been intervened on to set A to a ∈ a, a*  and M to m. The black nodes represent random 

variables under this intervention, the red nodes represent the level an intervened random 

variable takes under this intervention, and the arrows represent possible causal effects of one 

variable under this intervention on another.
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Figure 3: 
A. A mediation directed acyclic graph in which an unobserved variable H affects R, an 

exposure-induced confounder, and Y . The black nodes represent observed random variables, 

and the arrows represent possible causal effects of one random variable on another. B. The 

single-world intervention graph in the setting of (a) that has been intervened on to set A to 

a ∈ a, a*  and M to m. The black nodes represent random variables under this intervention, 

the red nodes represent the level an intervened random variable takes under this intervention, 

and the arrows represent possible causal effects of one variable under this intervention on 

another. In each panel, the gray node represents a hidden random variable.
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Figure 4: 
A plot showing the estimated natural indirect effect of ART assignment on virologic failure 

with respect to adherence under the various assumptions. The assumptions vary across the 

horizontal axis, with the first part of the label indicating the assumption regarding the 

exposure-induced confounder, R, and the second part indicating the assumption regarding 

cross-world counterfactuals. For the assumptions regarding R, “Ignore” means that the 

presence of R is ignored altogether, “No M*R” means the no M – R interaction assumption 

in Section 1, and “None” means that R was accounted for without additional assumptions. 

For the assumptions regarding cross-world counterfactuals, “NPSEM-IE” means a NPSEM-

IE was assumed, and “FFRCISTG” means an FFRCISTG was assumed, i.e., no cross-

world-counterfactual independences were assumed. When the assumptions give partial 

identification, the two dots represent the point estimates of the upper and lower bound for 

the natural indirect effect, and the vertical bar represents the bootstrap 95% confidence 

interval for the interval. When the assumptions give full identification, the single dot 

represents the point estimate of the natural indirect effect, and the vertical bar represents 

its bootstrap 95% confidence interval.
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