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Abstract

BACKGROUND—Diagnosing genetic disorders requires extensive manual curation and 

interpretation of candidate variants, a labor-intensive task even for trained geneticists. Although 

artificial intelligence (AI) shows promise in aiding these diagnoses, existing AI tools have only 

achieved moderate success for primary diagnosis.

METHODS—AI-MARRVEL (AIM) uses a random-forest machine-learning classifier trained 

on over 3.5 million variants from thousands of diagnosed cases. AIM additionally incorporates 

expert-engineered features into training to recapitulate the intricate decision-making processes in 

molecular diagnosis. The online version of AIM is available at https://ai.marrvel.org. To evaluate 

AIM, we benchmarked it with diagnosed patients from three independent cohorts.
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RESULTS—AIM improved the rate of accurate genetic diagnosis, doubling the number of 

solved cases as compared with benchmarked methods, across three distinct real-world cohorts. 

To better identify diagnosable cases from the unsolved pools accumulated over time, we designed 

a confidence metric on which AIM achieved a precision rate of 98% and identified 57% of 

diagnosable cases out of a collection of 871 cases. Furthermore, AIM’s performance improved 

after being fine-tuned for targeted settings including recessive disorders and trio analysis. Finally, 

AIM demonstrated potential for novel disease gene discovery by correctly predicting two newly 

reported disease genes from the Undiagnosed Diseases Network.

CONCLUSIONS—AIM achieved superior accuracy compared with existing methods for genetic 

diagnosis. We anticipate that this tool may aid in primary diagnosis, reanalysis of unsolved cases, 

and the discovery of novel disease genes. (Funded by the NIH Common Fund and others.)

Introduction

Millions of children worldwide are born each year with severe genetic disorders, 

predominantly Mendelian diseases caused by one or a few genetic variants in a single 

gene1–3 (Fig. S1A in the Supplementary Appendix). Each individual’s exome typically 

carries tens of thousands of variants compared with the reference genome. Even after 

applying sophisticated bioinformatic tools to remove common and low-quality variants, 

hundreds of variants remain.4 Identifying the causative variant(s) (referred to as diagnostic 

variants in this paper) from this list is therefore time-consuming and requires broad 

domain knowledge.4,5 Hence, there is a need for efficient, systematic, and comprehensive 

approaches to enhance the accuracy and speed of diagnosis.6,7

The current diagnostic rate for patients with genetic disorders is estimated between 30 

and 40%.4,8,9 Every year, hundreds of novel disease genes are reported, aiding in the 

diagnosis of previously unsolved cases.10,11 Therefore, periodic reanalysis of the remaining 

undiagnosed cases could result in new molecular diagnoses over time.12,13 However, the 

high cost of implementing routine reanalysis also poses a significant barrier for most large 

clinical laboratories.11,12 Bioinformatics-based reanalysis presents a cost-effective approach. 

To this end, several bioinformatic tools have been developed to prioritize genes and 

variants, including VAAST,14 Phevor,15 Phen-Gen,16 PhenIX,17 Exomiser,15 Phenolyzer,18 

Genomiser,19 Xrare,20 LIRICAL,21 AMELIE,22 GEM,23 MOON,24 Emedgene,25 and others 

(Table S1). However, these tools often have limited accuracy, difficulty in prioritizing non-

coding variants, and use simulated data.26–30

To address these limitations, we developed a new artificial intelligence (AI) system called 

AI-MARRVEL (AIM, MARRVEL: Model organism Aggregated Resources for Rare Variant 

ExpLoration)31 to prioritize causative genes/variants for Mendelian disorders (Fig. 1A) 

based on patients’ clinical features and sequencing profiles. AIM was trained using high-

quality samples that were clinically diagnosed and curated by American Board of Medical 

Genetics and Genomics–certified experts along with additional expert-engineered features 

that encode prior knowledge, such as genetic principles and the knowledge of clinical 

genetics experts. We evaluated AIM on three independent patient datasets across several 
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application scenarios including dominant, recessive, trio diagnosis, large scale reanalysis, 

and novel disease gene discovery.

Methods

DATA COLLECTION

We compiled exome sequencing data and Human Phenotype Ontology (HPO) terms from 

three distinct patient groups: 1102 patients from the Clinical Diagnostic Lab (DiagLab), 

75 from the Undiagnosed Disease Network (UDN),32 and 200 from the Deciphering 

Developmental Disorders project (DDD).33,34 The DiagLab group was divided into a 

training set of 1044 patients and a testing set of 58. Additionally, both the UDN and DDD 

groups were used as separate testing sets (Fig. 1B). Each dataset includes Variant Call 

Format files and phenotypes annotated with HPO terms and a diagnostic variant curated by 

clinical experts.

TRAINING AND TESTING FOR THE DEFAULT AIM MODEL

Knowledge-Based Feature Engineering—To gather raw features, patient variants 

were annotated using VEP35 and additional databases summarized by marrvel.org31 

(including DGV: the Database of Genomic Variants,36 DECIPHER: Database of 

Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources,37 ClinVar,38 

and OMIM: Online Mendelian Inheritance in Man39). To guide AIM with genetic principles 

and clinical expertise, we performed knowledge-based feature engineering. Fifty-six raw 

features were selected, encompassing disease database, minor allele frequency, variant 

impact, evolutionary conservation, inheritance pattern, phenotype matching, gene constraint, 

variant pathogenicity prediction scores, splicing prediction, and sequencing quality. To 

incorporate prior knowledge into the AIM model, we developed six modules that cover 

different aspects of genetic diagnosis decision-making. Module 1 evaluates whether the 

candidate variant or corresponding gene is curated in disease databases such as OMIM,39 

ClinVar,38 or others. Module 2 focuses on the evolutionary conservation and frequency of 

the candidate gene/variant. Module 3 categorizes the variant based on mutation type, and 

Module 4 assesses the functional impact of the variant based on prediction algorithms. 

Module 5 determines the functional distance of the candidate variant and gene to known 

disease genes in a biological network. Module 6 evaluates the inheritance pattern of the 

candidate variant.

Each module offers an independent analysis of the pathogenicity of a variant or gene, 

producing new features that emulate the decision-making of human experts. We engineered 

these modules to incorporate diverse aspects of expert logic, generating 47 additional 

features on top of the 56 raw features.

Default AIM Model Training—The random forest algorithm provided by scikit-learn40 

was used as the backbone machine-learning algorithm. To determine the optimal parameters, 

20% of the cases (n=209) were randomly selected as a validation set. These validation 

samples were used for tuning parameters, such as the number of trees and the maximum 

tree depths. The remaining 80% of the cases (n=835) were employed for training multiple 
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random-forest models, each with different parameter combinations. To avoid overfitting due 

to a 7791:1 negative-to-diagnostic variant ratio of training sample, we weighted the minority 

class more heavily when calculating impurity scores during tree construction.

We performed parameter selection based on a formula that assigns higher weight to the 

top-1 accuracy. The formula, denoted as f Λ , consisted of weighted contributions that is 

defined as f Λ = 0.5 * Acc1 + 0.3 * Acc5 − Acc1 + 0.2 * Acc10 − Acc5 , where Acck defines the 

top-k accuracy given the parameter set Λ. Using this objective function, the parameters that 

yielded the highest performance in ranking diagnostic variants with the top-1, top-5, and 

top-10 were selected (see the Supplementary Appendix for details).

Results

AIM OUTPERFORMS ESTABLISHED ALGORITHMS ON THREE INDEPENDENT DATASETS

To compare AIM with other algorithms, we considered recent benchmarking papers28,29,41 

and selected top performers that provide free and local programmable access as the 

benchmarking algorithms (Table S1). This includes Exomiser,15 LIRICAL,21 PhenIX,17 and 

Xrare.20 AIM outperformed all four algorithms in ranking the diagnostic genes across three 

independent datasets (Fig. 1C). Direct assessment of AMELIE was not feasible due to its 

lack of local programmatic access.22 However, according to Birgmeier et al.,22 AIM and 

AMELIE have a similar top-1 accuracy on the DDD datasets, whereas AIM outperforms 

AMELIE by 7.6% in top 5 accuracy (Fig. S2A).

Approximately 10.7% of the diagnosed variants in the training dataset are noncoding (Fig. 

S1C). To enhance AIM’s ability to prioritize splicing variants, we integrated splicing-related 

features such as SpliceAI into the initial design.42 Given that Exomiser is primarily tailored 

for coding variants, we compared Genomiser and AIM for cases diagnosed with noncoding 

variants. AIM outperforms Genomiser, with a noticeable difference in the DiagLab group 

and only a slight edge in the UDN cohort (Fig. S2B).

ACCURATE AIM DIAGNOSIS REQUIRES HIGH-QUALITY LABELING AND FEATURE 
ENGINEERING

On average, each individual carries 15.5 genetic variants categorized as pathogenic in 

ClinVar (Fig. 2A). Approximately 5.6 of them are exclusively associated with recessive 

diseases, according to OMIM (Fig. S3A). Nonetheless, in all three cohorts, 94% of the cases 

were diagnosed with one or two variant(s) (Fig. S1A). Specifically, among all diagnosed 

cases, there are 1586 listed as pathogenic by at least one submitter in ClinVar. However, only 

8% (n=128) were identified by clinical experts as diagnostic variants (Fig. 2B). Moreover, 

we observed that one third of the diagnostic variants were not annotated as pathogenic 

in ClinVar (Fig. 2B). These findings collectively suggest that relying solely on ClinVar 

information is not sufficient for an accurate diagnosis. Complementing this, the AIM 

algorithm has successfully differentiated between diagnostic and nondiagnostic pathogenic 

variants listed in ClinVar (Fig. 2C; P<0.0001).

The use of variant curation status from ClinVar in AIM raises concerns about overreliance 

on this information. To explore this, we created a model (AIM-withoutVarDB) removing all 
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features related to variant curation status. It exhibited only a slight performance decrease 

compared with AIM but still outperformed other benchmarked methods (Fig. S3B). This 

shows that AIM learned a diagnostic logic beyond the ClinVar features.

EXPERT FEATURE ENGINEERING ENHANCES AIM MODEL ACCURACY AND DELAYS 
TRAINING SATURATION

When only 20% of the training samples were used, AIM’s performance was consistent at 

54% top-1 accuracy, regardless of whether it was trained with or without the engineered 

features (Fig. 2D). However, as the volume of training samples increased, AIM trained with 

engineered features improved its performance to 66%, whereas AIM without the engineered 

features plateaued at 58% (Fig. 2D). This suggests that expert-engineered features are more 

effective in capturing the underlying patterns within the data and help to delay the onset of 

training saturation.

MOLECULAR EVIDENCE, PHENOTYPIC DATA, AND DIAGNOSTIC PERFORMANCE

A molecular diagnosis is usually achieved by joint consideration of two factors: molecular 

evidence and phenotype matching. To assess the impact of inaccurate phenotype information 

on AIM’s prediction, we set phenotype-related features to minimum values, mimicking an 

extreme scenario where the phenotype information is completely irrelevant to the diagnostic 

gene. We observed an 11% decrease in the top-1 accuracy (Fig. 2E), highlighting that 

accurate phenotype annotation provides an important although albeit relatively modest 

contribution. The difference in the top-k accuracy was smaller when k was greater than 

5, suggesting that considering a few more top-ranked genes per patient can mitigate the issue 

of inaccurate phenotype annotation (Fig. 2E). Additionally, even with completely irrelevant 

phenotype information, AIM still achieves a top-5 accuracy of 78%, outperforming all the 

other benchmark approaches, and showing that molecular evidence is paramount.

INTERPRETABILITY OF THE AIM MODEL IN CLINICAL GENETIC DIAGNOSIS

To understand how AIM arrives at its predictions, we developed a “feature climbing” 

method to evaluate the contribution of each feature by perturbing the feature value and 

re-running the predictions (Fig. 3A). We quantify the effect size of each feature as the 

maximum difference between the prediction score and the minimum value achievable 

through perturbation. All features are grouped into different classes based on their 

biological meaning (Fig. 3B). The biggest effect size was seen when perturbing the minor 

allele frequency (MAF), followed by the variant curation status in disease databases and 

phenotypic matching (Fig. 3B). However, all these factors present similar effect size. These 

findings collectively indicate that no single factor is decisive in establishing the final 

diagnosis.

The phenotype similarity score, based on OMIM, ranges from 0 (no similarity) to 1 

(high similarity). We observed that when the score increased from none (0) to low (0.25) 

similarity, the prediction scores sharply increased from 60% to 90% (Fig. 3C). However, 

further increases in phenotypic similarity above 0.25 only yielded a moderate increase (Fig. 

3C), suggesting that an exact match with OMIM phenotypes is not critical. Patients with 
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identical diagnostic genes/variants might display different disease manifestations due to 

environmental influences, incomplete penetrance, or variations in genetic background.

Furthermore, the engineered feature “Coding Variant # per Gene,” which counts the 

occurrences of coding variants identified within a candidate gene in a patient, also revealed 

an intriguing pattern (Fig. 3C). The prediction score peaked when the feature’s value was 

between 1 and 2, aligning precisely with the number of variants necessary for a gene to 

follow a dominant or recessive inheritance pattern. Conversely, the prediction score for 

a variant sharply decreased when this feature value is above 3 (Fig. 3C). This outcome 

suggests that AIM has learned that genes with a high number of coding variants per 

individual are less likely to be associated with rare genetic disorders.

CROSS-SAMPLE CONFIDENCE SCORE FOR HIGHTHROUGHPUT REANALYSIS

The 30 to 40% diagnostic rate in clinical genetic diagnosis leads to an extensive backlog 

of unresolved cases, making manual regular review of all unresolved cases costly and labor-

intensive.4,8,9 Updates to disease databases present opportunities to diagnose previously 

unsolved cases. This necessitates an automated method to re-evaluate unsolved cases 

periodically, to pinpoint those that are now diagnosable. Consequently, we designed a 

cross-sample score to represent the likelihood that a diagnostic variant can be correctly 

identified in a patient using AIM. Patients are then stratified into two categories: those in the 

high-confidence group are forwarded for manual review, and those in the lower confidence 

bracket are deferred to the subsequent reanalysis cycle (Fig. 4A).

We established four confidence levels — high, medium, low, and unsolved — according 

to the quartiles of diagnostic variants from DiagLab samples and applied them to UDN 

and DDD samples.43 Notably, 56% of the diagnostic variants were classified as high or 

medium confidence (Fig. 4B). Moreover, variants with high or medium confidence were 

predominantly ranked as top candidates, demonstrating the metric’s rigor (Fig. 4B). To 

assess the confidence score’s ability to identify diagnosable cases, we gathered diagnosed 

patients from DDD and UDN as positives (n=275) and unaffected relatives of patients with 

de novo diagnostic variants as negatives (n=596). The precision-recall curve yielded an area 

under the curve of 0.82, affirming effectiveness in identifying diagnosable cases (Fig. 4C).

AIM-RECESSIVE: ADDRESSING LOW PERFORMANCE FOR RECESSIVE GENETIC 
DISORDERS

Similar to other tools, AIM performed better for dominant cases than for recessive cases 

in both DiagLab and UDN datasets (Fig. 5A), likely due to the differences in genetic 

mechanisms between dominant and recessive diseases.44 Therefore, a single classifier will 

not be effective for all types of genetic disorders. Indeed, recessive-specific classifiers from 

Exomiser provide better accuracy for recessive cases (Fig. S5B). To this end, we designed 

an AIM-Recessive model (see the Supplementary Appendix and Fig. S5A). This model 

requires the presence of at least two variants (or a homozygous variant) in a patient in the 

same gene. To create the new feature matrix, we enumerated all possible pairs of variants 

within each candidate gene and concatenated their features. Out of 56 diagnostic variant 
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pairs, 15 are ranked top-1 in both default and recessive models. AIM-Recessive successfully 

prioritized 63.4% (n=26) of the remaining 41 cases as top-1 (Fig. 5B).

AIM-TRIO: ENHANCING PERFORMANCE WITH INHERITANCE INFORMATION

Heterozygous variants that are inherited from one parent (named as “inherited dominant” 

here) are less likely to be diagnostic. However, approximately 16% of the diagnostic 

variants are “inherited dominant” in our trio training samples (243 diagnosed cases from 

DiagLab; Fig. 5C). This may due to factors such as incomplete penetrance, unrecorded 

milder phenotypes in parents, or incomplete parental phenotype annotation. Therefore, a 

filter to rule out all inherited dominant variants is not appropriate. Consequently, we trained 

a trio-specific model by incorporating inheritance-related features (see Fig. S6A). The trio 

classifier (AIM-Trio) performs much better than Exomiser and Genomiser Trio models (Fig. 

S6B). It also provides slightly better accuracy than the proband-only model (AIM) (Fig. 5D; 

top-1 accuracy increases from 40 to 45%).

AIM-NDG: A STEP TOWARD MORE EFFICIENT AND COST-EFFECTIVE NOVEL DISEASE 
GENE DISCOVERY

The genetic diagnosis process becomes more complex when the candidate gene or variant 

has not yet been linked to any disease. In response, we designed the AIM-NDG model, 

by eliminating all features that are directly or indirectly connected to established disease 

databases such as OMIM, ClinVar, and the Human Gene Mutation Database (HGMD).45 

Consequently, 50% of the features were discarded, leading to a noticeable decrease 

in accuracy (Fig. 5E). Despite this reduction, the performance of AIM-NDG remains 

comparable to that of other benchmarked tools that do use features from these curated 

disease databases (Fig. 5E).

To test the efficacy of our AIM-NDG algorithm in a real-world scenario, we searched 

for recently published novel disease genes and variants in the UDN data after the last 

disease database update of AIM (October 2022). Two novel disease genes were identified: 

MYCBP2 and TMEM161B. MYCBP2 was recently discovered in a cohort of eight 

patients with neurodevelopmental disorder characterized by neurobehavioral phenotypes 

and corpus callosum defects.46 TMEM161B was recently identified to regulate cerebral 

cortical gyration, sonic hedgehog signaling, and ciliary structures in the developing central 

nervous system.47 We employed our AIM-NDG algorithm for these two individuals using 

a default model and the recessive-specific model, yielding confident scores of 88 for 

MYCBP2:p.R2669X and 51 for TMEM161B:p.Leu327-Ser/c.800+5G>A (Fig. 5F, left 

panel). Based on a reference of 275 solved cases, we estimate that these two variants should 

rank within the top 3 and top 2, respectively (Fig. 5F, right panel). Our results demonstrate 

the potential of AIM-NDG in identifying possible novel disease genes and variants, even in 

real-world settings with limited patient data.

Discussion

AIM is a machine-learning model trained with over 3.5 million variant data points 

derived from thousands of diagnosed cases. We further created a Web interface (https://
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ai.marrvel.org) that enables users to submit cases and interactively review the results. Our 

interface provides the convenience of automatic extraction of HPO terms from clinical notes 

using ClinPhen.48 Users have the flexibility to refine the extracted HPO terms through 

ontology trees, allowing for more accurate and personalized results.

AIM uses a relatively loose filter for MAF (<0.01) and avoids stringent filters such as 

coding variants. In addition, AIM rescues common variants (MAF >0.01) that are annotated 

as pathogenic by databases such as ClinVar and HGMD. Therefore, AIM is capable of 

prioritizing challenging cases such as intronic variants that potentially affect splicing, or 

common variants (MAF >0.01) that linked to diseases with much milder phenotypes.

AIM has several limitations. Although AIM can process single-nucleotide variants and small 

insertions or deletions, it is not equipped to analyze structural variations or copy-number 

variations. Furthermore, AIM has been predominantly trained on cases with coding variants, 

which constrains its capacity to effectively prioritize noncoding variants. The training 

samples used exome sequencing as opposed to whole-genome sequencing, which detects 

a wider array of variants that include deep intronic, copy number variations, and structural 

variations. At present, the AIM interface employs ClinPhen for mapping clinical notes into 

phenotype terms. Yet, large language models such as PhenoBCBERT49 and PhenoGPT49 

have shown superior performance. These may be considered for future integration into the 

AIM platform.

In conclusion, AIM is a machine-learning genetic diagnosis tool with the potential to 

discover novel disease genes. Its capacity to run analyses on thousands of samples within 

days makes periodic reanalysis of unsolved cases feasible and cost-effective. We envision 

that the approach and methodology presented here can be expanded and adopted for clinical 

use, providing a valuable resource for clinicians and researchers to identify and interpret 

genetic variations, ultimately improving patient outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
AIM Outperforms State-of-the-Art Methods. (Panel A) The workflow of AI-MARRVEL 

(AIM). (Panel B) Summary of the sample collection; see the Supplementary Appendix 

for details. (Panel C) AIM outperforms four state-of-the-art methods, including Exomiser, 

LIRICAL, PhenIX, and Xrare in three independent datasets: Clinical Diagnosis Lab 

(DiagLab), Undiagnosed Diseases Network (UDN), and Deciphering Developmental 

Disorders project (DDD). The graph shows how the diagnostic genes rank within top-1 
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to top-10 positions among the four methods. AI denotes artificial intelligence; HPO, Human 

Phenotype Ontology; and VCF, variant call format.
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Figure 2. 
Accurate AIM Diagnosis Requires High-Quality Labeling and Feature Engineering. (Panel 

A) Box plot showing the number of pathogenic or likely pathogenetic (P/LP) variants per 

individual based on ClinVar. There are around 15 P/LP variants per individual in the three 

testing datasets. (Panel B) Venn diagram showing the overlap between ClinVar pathogenic 

variants and diagnostic variants identified in solved patients from DiagLab and UDN. The 

red circle represents ClinVar (likely) pathogenic variants, and the blue circle represents 

diagnostic variants identified in patients. The diagram shows that only 8% of ClinVar 

(likely) pathogenic variants are disease-causing in patients, whereas one third of diagnostic 

variants are not annotated as pathogenic in ClinVar. (Panel C) Violin plot of the rankings 

of diagnostic and nondiagnostic ClinVar P/LP variants. AI-MARRVEL (AIM) separates 

these two groups. (Panel D) Line plot showing the percentage of cases in which AIM 

ranks the diagnostic variant as top-1 with down-sampling. The orange line represents AIM 

trained with both raw and engineered features, and the blue line represents AIM trained 

with raw features only. (Panel E) Comparing AIM’s performances between data using 

or ignoring phenotype information. DDD denotes Deciphering Developmental Disorders 

project; DiagLab, Clinical Diagnosis Lab; and UDN, Undiagnosed Diseases Network.
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Figure 3. 
Enhancing Interpretability of AI Models in Clinical Genetic Diagnosis: Analyzing Feature 

Contributions through Feature Climbing to Demystify AIM’s Random-Forest Model. (Panel 

A) Schematic representation of the process of feature climbing. (Panel B) Box plot of 

features’ importance grouped by their types. All the features are grouped into different 

classes based on biological meaning (color-coded). Conservation: evolutionary conservation; 

Constraint: population genetic constraint metric; IMPACT: variant impact in gene function, 

Inheritance: mode of inheritance. (Panel C) Perturbation curves as line plots showing the 

percentage of prediction score after perturbing each feature. The x axis represents the feature 

values after perturbing and the y axis shows the percentage of prediction scores with the 
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perturbed features. Line plots display the mean (black, solid lines) and standard deviation 

(colored, shaded lines) of the performances for diagnostic variants in two testing datasets: 

Diagnosis Lab and Undiagnosed Diseases Network. Representative features of each class 

are shown and colored accordingly. AI denotes artificial intelligence; AIM, AI-MARRVEL; 

CADD, Combined Annotation Dependent Depletion; Freq, frequency; LRT, likelihood ratio 

test; O/E, observed-to-expected; OMIM, Online Mendelian Inheritance in Man; and w, with.

Mao et al. Page 16

NEJM AI. Author manuscript; available in PMC 2024 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Cross-Sample Confident Scoring for High-Throughput Reanalysis. (Panel A) Schematic 

diagram illustrating the reanalysis process. For undiagnosed patients, we employed AI-

MARRVEL (AIM) to determine the likelihood of a diagnosis. Cases with a high level of 

confidence are referred for manual review by a trained clinical geneticist, and those with 

a low level of confidence are reanalyzed periodically after updates to the disease database. 

(Panel B, left) Line plot showing the relationship between confidence score vs. the AIM 

prediction score for diagnostic variants of UDN and DDD samples. (Panel B, right) Four 

levels of confidence are created based on the confidence score: high (75~100, n=108), 

medium (50~75, n=55), low (25~50, n=88), and unsolved (0~25, n=32). (Panel C) The 

precision and recall curve for reanalysis at different confident score thresholds (area under 

the curve [AUC] = 0.82).
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Figure 5. 
AIM Model Extensions Tailored for Diverse Diagnostic Scenarios. (Panel A) Accuracy of 

AI-MARRVEL (AIM) and other methods based on different inheritance modes on two 

independent datasets. (Panel B) Comparing recessive-specific model (AIM-Recessive) and 

the default model (AIM) on all recessive cases from two datasets: Clinical Diagnosis Lab 

(DiagLab) and Undiagnosed Diseases Network (UDN). The Heatmap shows the ranking of 

the diagnostic variants using AIM (AIM var1 and var2) vs. AIM-Recessive model. (Panel C) 

Inheritance of all diagnostic variants in all trio samples from DiagLab. (Panel D) AIM-Trio 
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model outperformed the singleton models. We trained and compared our trio model under 

the same settings as the previously mentioned default. With 31 test samples (42 variants), 

top-k accuracies (variant level) are shown on the plots. (Panel E) Benchmarking of AIM-

NDG; the y axis presents the fraction of cases that different tools rank the diagnostic genes 

within top 1 to top 10. (Panel F) Similar to Figure 4B, the line plot shows the confidence 

score vs. AIM prediction score for the AIM-NDG model (blue line for cases with diagnostic 

gene of dominant inheritance and green line for recessive inheritance). We highlight two 

recently published novel disease genes in the plot (red dots): one dominant gene, MYCBP2 
(red dot on blue line), and one recessive gene, TMEM161B (red dot on green line).
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