
Calibrated geometric deep learning improves kinase–drug 
binding predictions

Yunan Luo1,3,✉, Yang Liu2,3, Jian Peng2,✉

1School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 
USA.

2Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, USA.

3These authors contributed equally: Yunan Luo, Yang Liu.

Abstract

Protein kinases regulate various cellular functions and hold significant pharmacological promise 

in cancer and other diseases. Although kinase inhibitors are one of the largest groups of approved 

drugs, much of the human kinome remains unexplored but potentially druggable. Computational 

approaches, such as machine learning, offer efficient solutions for exploring kinase–compound 

interactions and uncovering novel binding activities. Despite the increasing availability of three-

dimensional (3D) protein and compound structures, existing methods predominantly focus on 

exploiting local features from one-dimensional protein sequences and two-dimensional molecular 

graphs to predict binding affinities, overlooking the 3D nature of the binding process. Here 

we present KDBNet, a deep learning algorithm that incorporates 3D protein and molecule 

structure data to predict binding affinities. KDBNet uses graph neural networks to learn structure 

representations of protein binding pockets and drug molecules, capturing the geometric and spatial 

characteristics of binding activity. In addition, we introduce an algorithm to quantify and calibrate 

the uncertainties of KDBNet’s predictions, enhancing its utility in model-guided discovery in 

chemical or protein space. Experiments demonstrated that KDBNet outperforms existing deep 

learning models in predicting kinase–drug binding affinities. The uncertainties estimated by 

KDBNet are informative and well-calibrated with respect to prediction errors. When integrated 
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with a Bayesian optimization framework, KDBNet enables data-efficient active learning and 

accelerates the exploration and exploitation of diverse high-binding kinase–drug pairs.

Proteins are vital drug targets for therapeutic purposes, but at present only 11% of 

human proteome can be targeted by drugs or small molecules, leaving a large proportion 

to be explored for therapeutic opportunities1. A group of proteins called kinase is of 

particular interest as drug targets because of their tractability in drug development and 

diverse pharmacological implications in various diseases2,3. Protein kinases present high 

evolutionary conservation in sequence and structure. Most of the kinase inhibitors bind to 

conserved adenosine triphosphate (ATP)-binding pockets of kinases, leading to extensive 

target promiscuity4. Chemical compounds that inhibit a single kinase are still rare despite 

significant research efforts devoted to target-based drug discovery5.It is therefore crucial 

to map out target binding profiles of kinase inhibitors to uncover new therapeutic effects 

and better predict and manage possible adverse effects. Unfortunately, even with automated 

high-throughput profiling assays, it is still infeasible to exhaustively measure compound-

target binding activities because of the vast chemical space.

Machine learning (ML) methods have emerged as alternative solutions to efficiently 

map compound–protein interaction profiles6. Early studies included bipartite graph-

based methods that framed the prediction problem as a recommendation system-like 

task7–11. These methods computed the similarity between compounds or proteins on 

the basis of simple features like molecule fingerprints or sequence-alignment scores, 

enabling the prediction of new protein–drug interactions on the basis of known, similar 

proteins and drugs. With recent advancements in deep learning, a series of studies12–16 

leveraged deep neural networks to automatically learn features from raw compounds and 

protein representations in a fully data-driven way, also known as end-to-end learning. 

Commonly used data representations include one-dimensional (1D) features such as protein 

sequences and molecule simplified molecular-input line-entry system (SMILES) strings12,13. 

Recent approaches indicated that incorporating two-dimensional (2D) features, including 

molecular graphs and protein contact maps, enhanced prediction accuracy14–17. Although 

the compound–protein binding is, in essence, a physicochemical process in the three-

dimensional (3D) space, there remains a paucity of studies that incorporate 3D structure 

information to enhance protein–drug binding prediction, in part because of the scarcity 

of protein structure data and the absence of predictive models that effectively use 3D 

structure data. Fortunately, for kinases, the data bottleneck is less pronounced owing to 

their biological significance. Kinases are one of the best-represented protein families in 

the Protein Data Bank (PDB) database18, with a rapidly growing number of solved kinase 

structures19,20. In parallel, recent progress in graph deep learning offers promising avenues 

for effectively modelling 3D protein structures21–23. Jointly, there are great opportunities 

and pressing needs to develop new methods that integrate 3D structure information to 

improve predictions of kinase–drug binding affinity.

The primary importance of ML approaches for compound–protein binding prediction is to 

accelerate the discovery of compounds or targets. With an accurate ML predictive model, 

virtual screening can be performed by applying the model to generate hypotheses about 
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binding activities, allowing the selection of candidates with the highest predicted activities 

for further validation. However, these data-driven methods are susceptible to inherent noise 

and bias in the training data, rendering them vulnerable to failures when applied to out-of-

distribution scenarios. To mitigate this issue, one solution is to quantify the uncertainty of 

model predictions, providing a confidence assessment to support human decision-making, 

as higher novelty often comes with a higher risk of failure. Although the importance of 

uncertainty estimation in ML algorithms has been recognized24–26, most existing methods 

of compound–protein binding prediction only provide point-estimate predictions without 

quantifying uncertainty12–16. In the context of compound or target discovery, relying solely 

on point-estimate predictions to select top candidates for validation may result in false 

positives. Ref. 17 introduced uncertainty estimation using Gaussian processes (GPs) to 

prioritize strong-binding compound–protein pairs, but quantifying uncertainty with more 

expressive deep neural networks has not been explored for kinase–drug binding prediction.

Here, we develop the kinase–drug binding prediction neural network (KDBNet), a deep 

learning algorithm that integrates 3D structure information to predict the binding affinity 

of kinase–drug binding while also estimating prediction uncertainties. KDBNet represents 

the 3D protein and molecule structure data as graphs and uses graph neural networks 

(GNNs) to learn structure representations from binding pocket structures of proteins and 

atom coordinates of molecules. We built KDBNet as an ensemble model of several replicates 

of individual neural networks, which not only improves prediction accuracy and robustness 

but also allows us to estimate the uncertainty of model predictions. We further applied an 

uncertainty recalibration technique to refine the uncertainty estimates, enhancing KDBNet’s 

utility in the ML-guided discovery of proteins and targets. Benchmarking on public datasets 

of kinase–drug binding-affinity measurements, we found that KDBNet achieved more 

accurate predictions than existing models that used only 1D or 2D representations of 

proteins and drugs. Our experiments also indicated that KDBNet’s uncertainty estimates 

were largely consistent with respect to prediction errors, meaning predictions with lower 

uncertainty are often more accurate. Furthermore, we found the uncertainty estimates were 

also well-calibrated, providing interpretable confidence intervals for individual predictions. 

Finally, we extended KDBNet into a Bayesian optimization (BO) framework, showcasing 

its capability for data-efficient active learning and accelerated exploration of strong-binding 

kinase–drug pairs.

Results

Overview of KDBNet

KDBNet is a deep learning model that integrates 3D structures to predict binding affinities 

between kinases and small-molecule compounds (Fig.1). KDBNet receives 3D structures of 

proteins and compounds and represents them as two graphs: the graphs’ nodes are protein 

residues or molecule atoms, and the edges encode residue contacts or atom distance. A 

set of features, which collectively describe the structural, evolutionary, biophysical and 

chemical properties of protein residues or chemical atoms, are also derived for each node 

and edge in the protein and molecule graphs. Next, KDBNet uses GNNs to learn structure 

representations of the input kinase and compound, reflecting the spatial organization 
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and topological neighbourhood of the 3D protein and molecule structures. The learned 

representations are then combined to predict the binding affinity through another fully 

connected (FC) neural network. In addition to the binding-affinity prediction, KDBNet also 

associates each of its predictions with an uncertainty estimate, quantifying its confidence 

about the prediction. KDBNets achieves this by training an ensemble of models and 

estimating the uncertainty using the variance of individual models’ predictions.

Accurate prediction of kinase–drug binding affinity

We first assessed KDBNet’s performance in predicting kinase–drug binding affinity using 

two public datasets of experimental measurements of kinase–compound binding affinity, 

Davis27 and KIBA28, which were widely used to benchmark previous methods10,12,15–17. 

We created three evaluation settings to simulate out-of-distribution scenarios in which the 

training and test sets do not share any drugs or proteins (Fig. 2a and Supplementary Notes 

1.1 and 1.2). We compared KDBNet with several state-of-the-art methods for predicting 

kinase–drug binding affinity, including three deep-learning-based methods12,15,16, a GP-

based method17 and a kernel-based method29. These baseline methods rely solely on 

1D and 2D representations or pairwise similarities of compounds and proteins, without 

incorporating 3D structural information (Supplementary Note 1.3).

The evaluation results (Fig. 2 and Supplementary Fig. 1) indicated that KDBNet consistently 

outperformed other methods across several metrics, including Pearson correlation, 

Spearman correlation and mean squared error (MSE; one-sided rank test P < 10−3). These 

improvements held across various split settings. The enhancements achieved by KDBNet 

also underscored the efficacy of end-to-end feature learning in comparison to methods (for 

example, GP) that rely on precomputed, fixed feature embeddings. Similar observations 

were made when applying KDBNet to the larger KIBA dataset, where it surpassed the 

baseline methods and even outperformed two recently developed methods that used protein 

language model embeddings30 or contrastive learning strategies31 (Extended Data Fig. 1).

The improvements of KDBNet primarily stem from its direct modelling of 3D structures 

of proteins and molecules in the neural network. This was confirmed by our ablation 

study, in which 3D structure data of either the input protein or drug were dropped (Fig. 

2c). Compared to baselines that consider only 1D or 2D representations of proteins and 

compounds, the 3D structure data and structure-derived geometric features in KDBNet 

(Supplementary Fig. 2) provided more explicit information related to the binding activity, 

which better respects the 3D physical symmetries of binding activities that might not be 

fully reflected by the 1D or 2D features. Even compared to recent methods that use the 

3D protein–compound binding complex structure as input (CNN3D32,33, GNN3D34 and 

SIGN35) on the PDBbind database36, KDBNet achieved performance comparable to these 

complex-based baselines (Fig. 2d and Supplementary Fig. 3) and substantially higher than 

baselines that used non-3D input (DeepDTA and GraphDTA; one-sided rank test P < 10−3). 

It is noteworthy that complex-based methods had an advantage in this comparison, as 

they can capture the interaction features from the complex structure. Although slightly 

superior in prediction performance, those complex-based methods32–35,37–41 are constrained 

by the availability of binding complex structures. In contrast, KDBNet achieved comparable 
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prediction performance using separate 3D structures, which are more readily accessible, 

making it suitable for numerous tasks such as virtual drug screening for which complex 

structures between novel targets and compounds are rarely available.

Overall, these results demonstrated that by incorporating 3D structure data and leveraging 

geometry-aware deep learning, KDBNet made clear performance improvements in kinase–

drug binding prediction compared to several existing methods and was able to generalize to 

predictions for unseen proteins, unseen drugs or both.

Informative and calibrated uncertainty estimation

One immediate application of an accurate ML model for protein–compound binding-affinity 

prediction is using it to generate new hypotheses, such as prioritizing promising compounds, 

to assist drug discovery and drug repurposing. From a practical perspective, in addition to 

predicting affinity, it is also desirable that the model can provide associated uncertainty 

estimates, allowing researchers to assess the likelihood of hypothesis success and allocate 

experimental efforts more effectively. Unlike many previous deep learning methods that only 

predict a point estimate of binding affinity while overlooking uncertainties in the data or 

model12,15,16, KDBNet goes a step further by providing an uncertainty estimate for each 

affinity prediction (Methods).

First we aimed to investigate whether KDBNet’s uncertainty estimate is indicative of 

prediction accuracy. Ideally, the model’s uncertainty would be correlated with its prediction 

error, and predictions with lower uncertainty would have lower prediction errors. We 

assessed KDBNet’s uncertainty quantification on the Davis dataset. We ranked all of 

KDBNet’s predictions by their associated uncertainty estimates (Supplementary Note 1.4) 

and observed that there was a consistent trend for KDBNet’s predictions with lower 

uncertainty to exhibit lower prediction errors across various split settings (Fig. 3a; average 

Spearman’s correlation ρ‾ = 0.98). Compared to the two GP-based methods, GP and GP-

multilayer perceptron (GP-MLP)17, KDBNet achieved much lower mean absolute errors 

(MAEs) across different uncertainty percentiles (Fig. 3a) and higher correlations between 

the estimated uncertainty and prediction errors (Fig. 3b and Supplementary Fig. 4a). 

These indicated that KDBNet’s uncertainty estimates were correctly ranked with respect 

to prediction errors, and its predictions were highly accurate when it had a low level of 

uncertainty.

The previous evaluation confirmed that KDBNet’s uncertainty estimates provided indicative 

ranking. We now examined whether the magnitude of these uncertainty estimates was 

statistically meaningful. Models that are over-confident or under-confident usually produce 

uncertainty estimates that are either too small or large, rendering them challenging to 

interpret as credible intervals with statistical meaning. This issue is known as miscalibration 

in uncertainty quantification42. Ideally, we desire well-calibrated uncertainty estimation 

from the model, meaning, for instance, that if the model predicts a 95% confidence interval, 

we anticipate the true values to fall within the interval 95% of the time. We computed 

the miscalibration area26,42,43 to quantify the degree of uncertainty calibration, which is 

defined as the area between the model’s calibration curve (Supplementary Note 1.5) and the 

diagonal line representing a perfectly calibrated model (Fig. 3c). A lower miscalibration area 
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signifies superior calibration. We noted that KDBNet’s calibration curves closely resembled 

the ideal diagonal curve (Fig. 3d), resulting in substantially lower miscalibration areas than 

those observed with GP-based methods (Fig. 3e and Supplementary Fig. 4b). Additionally, 

KDBNet’s recalibration algorithm (Methods) effectively pushed the calibration curves closer 

to the diagonal and reduced the miscalibration area (Fig. 3d,e and Supplementary Fig. 4b; 

one-sided rank test P < 10−3). These results indicated that KDBNet’s uncertainty estimates 

were calibrated and scaled with errors.

Together, these two sets of experiments demonstrated that the uncertainty estimates of 

KDBNet were both accurate with respect to prediction errors and well-calibrated. The 

accurate quantification of uncertainty holds important implications for iterative ML-guided 

experiment design for which the uncertainty estimates can guide data acquisition and 

candidate prioritization, as we illustrate in the next section.

Uncertainty-guided, data-efficient active learning

Having validated that KDBNet provides informative and calibrated uncertainty estimation, 

we set out to assess the utility of uncertainty in ML-guided discovery. The first application 

is active learning, for which the objective is to strategically select training samples to 

achieve improved prediction performance with fewer training data. Analogous to human 

experts who rely on intuitive confidence to acquire and test new samples, KDBNet used its 

estimated uncertainty for iterative training and selection (Fig. 4a). We initiated the training 

of KDBNet using a random 1% subset of the KIBA training data. In each subsequent round, 

KDBNet predicted binding affinities and uncertainties for the remaining training data and 

then ranked these samples (drug–protein pairs) on the basis of the predicted uncertainty from 

highest to lowest (referred to as the ‘explorative’ strategy). Two other ranking strategies 

(Methods) were considered for comparison:(1) ‘greedy’, which prioritizes samples with 

higher predicted affinity, and (2) ‘random’, which ranks all samples uniformly at random.

We found that KDBNet achieved efficient active learning by using its estimated uncertainty 

to acquire new training samples, reaching performance on par with full data training by 

using only 50% of the data (Fig. 4b). Noticeably, KDBNet’s performance was improved 

by a large margin in the initial rounds compared to the random strategy, highlighting the 

efficiency of uncertainty-based active learning compared to brute-force random searches. 

Furthermore, in contrast to the greedy strategy that continually seeks samples with the 

highest affinities, KDBNet’s explorative strategy focused on samples that could diversify 

the training set and best address the model’s uncertainties, thereby exhibiting faster rates 

of performance improvement and higher efficiency gains (performance improvement over 

random selection) across all active learning stages (Fig. 4b,c). These indicated that KDBNet, 

enabled by uncertainty quantification, achieved sample-efficient active learning for data 

acquisition and model training, a valuable capability in model-guided experimental design 

where an exhaustive search is costly or infeasible.

Bayesian optimization for rapid exploration and exploitation

As another application of uncertainty estimation, we integrated KDBNet with BO for the 

exploration and exploitation of strong-binding kinase–drug pairs. Although the previous 
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active learning experiments acquired new samples solely on the basis of uncertainty for 

diversifying the training set, BO provides a principled framework to combine both predicted 

values and estimated uncertainties to guide data acquisition more effectively, enabling 

us to prioritize candidates in high-confidence, high-desirability regions (‘exploitation’) or 

probe potentially high-desirability regions, although with less confidence (‘exploration’), as 

illustrated in Fig. 4d. In BO, a common way to combine predicted scores and uncertainties 

is through an acquisition function called the upper confidence bound (UCB) with the 

form UCB x = score x + β × uncertainty x , where x represents a kinase–compound pair and 

constant β controls the trade-off between exploitation and exploration.

High-recall exploration.—We first evaluated KDBNet’s exploration capability using the 

Davis dataset. The objective was to identify kinase–compound pairs with the strongest 

binding affinity by observing the ground-truth binding affinities of only a small subset 

of pairs. We started the data acquisition by training KDBNet on 1% of the kinase–

compound pairs (~100 pairs). Subsequent steps followed the active learning framework 

but incorporated UCB as the score function, defined as UCB x = μ x + βσ x , where β = 1, 

and μ x  and σ x  are the binding affinity and associated uncertainty predicted by KDBNet, 

respectively (Methods). Intuitively, this score function promotes samples with high binding 

affinity and high uncertainties. Because our goal was to identify strong-binding pairs as 

comprehensively as possible, we aimed to explore ‘good’ regions that had some variability 

(uncertainty), as this increased the chances of discovering even better samples. We observed 

that KDBNet yielded clear improvements compared to the random exploration and GP 

baselines, as quantified by the recall of top-500 (about the top 1%) kinase–compound pairs 

as a function of the number of pairs explored. Specifically, KDBNet retrieved 50% of the 

top-500 pairs from the pool of 10,000 pairs after exploring only 1,000 pairs (Fig. 4e). 

This experiment highlighted KDBNet’s effectiveness in accelerating the exploration and 

discovery of strong-binding kinase–compound pairs in the BO framework.

High-confidence exploitation.—Next we performed an analysis to evaluate KDBNet’s 

exploitation capability: that is, how effectively it prioritized top kinase–compound pairs with 

strong binding affinities. This mirrored real-world biological discovery processes in which 

researchers typically focus on only a handful of top compounds or proteins for further 

validation instead of testing the entire unexplored space. We simulated an experiment on 

the Davis dataset where the model was tasked with prioritizing kinase–compound pairs 

with the strongest binding affinity from the test data. For KDBNet, we defined the score 

function as the lower confidence bound (LCB): LCB x = μ x − βσ x  with β = 1. Compared 

to UCB, LCB introduces a negation sign before the uncertainty term, prompting KDBNet 

to prioritize pairs with strong binding affinity and low uncertainty. Figure 4f presents 

the binding affinities, measured in Kd (dissociation constant) values, of the top 10 kinase–

drug pairs acquired by different methods, where lower Kd values indicate stronger binding 

affinities. We found that, on average, KDBNet retrieved pairs with stronger binding affinity, 

outperforming other baseline methods across all three split settings. KDBNet successfully 

prioritized kinase–drug pairs with a mean Kd value lower than 0.5μM for both the new-

protein and new-drug split settings and a mean Kd of 3.5μM for the most challenging both-

new split setting. For reference, a Kd value lower than 3μM was considered a very strong 
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binding by the original study of this dataset27. As the binding-affinity datasets often contain 

inherent noise or technical errors, ML models can be greatly affected and generate uncertain 

predictions. Consequently, top predictions from uncertainty-agnostic models often include 

false positives. In contrast, KDBNet’s estimated uncertainty offers a further dimension of 

information, complementing mean-affinity predictions and facilitating the prioritization of 

lead candidates with high confidence.

Discussion

We have presented KDBNet, a geometric deep learning algorithm for predicting kinase–

drug binding affinity. KDBNet integrates the 3D structure data of both kinases and drugs 

and models them using structure-aware GNNs to predict binding affinity. Although we 

focused on the binding activities of kinases in this work primarily because of their 

important pharmacological implications1,44, KDBNet’s principles can be extended to other 

proteins as well. Our experiments have demonstrated that KDBNet outperformed several 

existing deep learning methods in predicting kinase–drug binding affinity. Additionally, 

KDBNet provides well-calibrated uncertainties that scale with prediction errors, offering 

statistically indicative confidence intervals. We further showcased KDBNet’s practical 

utility in both active learning and BO frameworks for prioritizing kinase–drug pairs with 

strong binding affinities. In future work, KDBNet’s performance for binding prediction 

and uncertainty quantification can be enhanced by integrating recent techniques such 

as contrastive learning on low-coverage data31 (Supplementary Note 1.6), computation-

efficient uncertainty-quantification algorithms26 (for example, conformal predictions45,46) 

and new calibration techniques42,45,47,48

We note that the availability of kinase and compound structures is not a critical limitation 

of KDBNet, as the compound structures are largely available in PubChem49, the number 

of kinase structures is increasing in PDB20,50, and high-quality predicted structures from 

AlphaFold21 can be used as reasonable proxies for understudied kinases with no solved 

structures (Supplementary Note 1.7). We also found that replacing the PDB structures 

input to KDBNet with AlphaFold-predicted structures resulted in comparable prediction 

accuracy (Supplementary Fig.5). Another line of recent studies examined binding-affinity 

prediction on the basis of 3D protein–compound binding complex32–35,37–41. The problem 

setup considered in this work, which was also used in several concurrent studies51,52, is less 

restricted by data availability than those works, as KDBNet only requires separate structures 

as input rather than the binding complex.

KDBNet’s integration of uncertainty estimation is particularly valuable for biological 

discovery processes when data are limited and uncertainty is prevalent. ML-guided 

discovery can be affected by biases in the ML model stemming from data noise, small 

sample size and the model’s intrinsic uncertainty. KDBNet’s uncertainty quantification and 

recalibration serve as crucial safeguards against biased or over-confident model predictions, 

which are particularly useful for guiding both exploitation and exploration in virtual drug 

screening, allowing the prioritization of lead predictions for further validation and proposing 

data samples to explore previously uncharted regions or address model uncertainties. 

KDBNet creates an interactive cycle between computation and experiment to improve the 
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ML model’s sample efficiency and success rate in drug screening53. We anticipate that 

KDBNet can facilitate the reliable and robust deployment of ML-guided drug discovery 

and lead to the identification of promising therapeutic candidates with higher precision and 

efficiency.

Methods

Structure and sequence data

Most protein kinases share a common structural fold with two lobes connected by a flexible 

region that forms the adenosine triphosphate and substrate binding site. The activation loop 

in this region, typically in a length of 20–30 residues, is crucial for binding activity. We 

use the pocket structure, rather than the entire structure of the kinase, as the structure input 

of a kinase to KDBNet because (1) residues in the pocket directly interact with the drug 

molecule, largely determining the binding activity; and (2) structure elements outside the 

pocket–that is, the N- and C-terminal lobes-are relatively conserved across different kinases 

and may not directly coordinate the binding as they are relatively far from the binding sites. 

Several structure conformations may exist for the same protein kinase in the RCSB PDB 

database54 because the loop can fold into catalytically active and inactive states; we thus 

first selected the representative PDB structure for a kinase following a recently developed 

nomenclature for the active and inactive states of protein kinases50,55. To extract the binding 

pocket, we used the KLIFS database20 that defines a pocket formed by 85 residues that 

cover the binding sites in a wide range of kinase inhibitors by analysing around 1,200 

kinase-ligand binding crystal structures (Supplementary Note 1.1). In total, we obtained the 

pocket structure of 283 kinases.

The sequence of amino acids (AAs) of the 85 residues in the binding pocket of a kinase 

was obtained from its reference protein sequence in UniProt56. We did not use the associated 

sequence in the PDB file because it may contain missing or inaccurate residues. To do this, 

we mapped the PDB pocket sequence to the full UniProt sequence using pairwise local 

alignment (score matrix:BLOSUM62, gap open penalty: 10, gap extend penalty: 0.5). We 

successfully mapped 281 of 283 structures to UniProt sequences.

The 3D structure data in the structure-data format (SDF) of compounds in the kinase–drug 

binding datasets (described below) were downloaded from the PubChem database57.

Kinase–drug binding datasets

For evaluation, we used two public datasets of experimental measurements of binding 

affinity, Davis27 and KIBA28 (Supplementary Note 1.2), which were widely used 

to benchmark previous methods10,12,15–17. The Davis study contains binding-affinity 

measurements of kinase–compound pairs, represented by Kd values ranging from 0.1 to 

10,000 nM, where a lower Kd value indicates stronger binding affinity. The KIBA dataset 

derived a score to integrate three bioactivity values: Ki (inhibitory constant), Kd and IC50 

(half maximal inhibitory concentration). We removed from both datasets compounds and 

kinases that do not have 3D structures in the PDB and PubChem databases. We successfully 

retrieved the 3D structures for nearly all compounds and 50%−70% of proteins in Davis and 
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KIBA (Supplementary Tables 1,2). We expect the availability of kinase structure data will 

keep increasing (see discussions in Supplementary Note 1.7). Raw Kd values in the Davis 

dataset were transformed to pKd (binding affinity) values, defined as pKd = − log10 Kd/109 , 

to facilitate numerical stability during model training12,41. We created four train–test split 

settings (Supplementary Note 1.2) to evaluate prediction performance on data of unseen 

drugs (‘new-drug split’), unseen proteins (‘new-protein split’) or both (‘both-new split’) 

and unseen proteins with low (<50%) sequence identity (‘seq-id split’). To compare 

KDBNet with baseline methods that predict binding affinity from binding complex data, we 

additionally created another benchmark task using the PDBBind dataset36. Further details 

about the creation of benchmark datasets are provided in Supplementary Note 1.2.

Representation of protein structure

The 3D PDB structure of a protein is given as 3D coordinates of the backbone 

C = ci ∈ ℝ3
i = 1

N
, where N is the number of residues, ci is the coordinate of the Cα atom 

of the i th residue, and ℝ is the set of real numbers. We represent the protein structure as a 

graph Gp = Vp, ℰp , where nodes Vp are residues and edges εp indicate residue contacts. In 

this work, we define a pair of residues as being in contact if the Euclidean distance between 

their Cα atoms is within 8 Å (ref. 58).

To make the structure graph representation more informative, we associate every node or 

edge in the graph with a feature vector. Intuitively, we want our node and edge features 

to be (1) invariant to rotation and translation so the features not depend on the placement, 

orientation and centring of the PDB structure inputs; and (2) informative about the local 

structure, as unique structural motifs may lead to distinct binding affinities. Here, we derive 

a set of invariant spatial features following a previous study59. We further extend their 

approach to include other features that encode sequence and evolutionary properties of 

residues. The constructions of node and edge features are described below.

Node features: For every residue, we build three types of features: (1) sequence feature, 

(2) geometric feature and (3) evolutionary feature. The sequence feature is a one-hot 

representation to indicate the AA type (of the total 20 possible AAs) of the residue. For 

geometric features, we compute the three dihedral angles (ϕi, ψi, ωi) on the basis of the 

backbone coordinates of residue i. These angles are encoded as a vector of cosine and sine 

values: vi = sin ϕi, sin ψi, sin ωi, cos ϕi, cos ψi, cos ωi . Lastly, for evolutionary features, we ran 

ESM60, a recent protein language model trained on 250 million sequences, to generate the 

embedding for each residue. The ESM embeddings have been shown to encode structural, 

functional and evolutionary properties of the protein and can improve a wide range of 

protein-related prediction tasks, such as function and structure prediction60,61. Those three 

features are concatenated together as the node feature for a residue.

Edge features: To characterize the local structure surrounding residue i, we create edge 

features that describe the spatial relationships between residue i and its neighbours 

(residuesj’s). In particular, we compute an orientation matrix Oi that defines the local 

coordinate frame for residue i59:
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Oi = bi, ni, bi × ni , where ui = ci − ci − 1
∥ ci − ci − 1 ∥,

bi = ui − ui + 1
∥ ui − ui + 1 ∥, ni = ui × ui + 1

∥ ui × ui + 1 ∥,

(1)

where ci ∈ ℝ3 is the coordinates of residue i. For an edge (i, j), we consider an edge 

representation that reflects the local distance, direction, orientation and relative positions59:

eij = RBF cj − ci , Oi
T cj − ci

cj − ci
, q Oi

TOj , Epos cj − ci ,

(2)

The edge feature eij has four components: (1) The first part, RBF ∥ cj − ci ∥ , is the distance 

encoding embedded into radial basis functions (RBFs). We use 16 RBFs with centres evenly 

spaced between 0 and 8 Å. (2) The second term is the direction encoding that corresponds to 

the relative direction of cj in the local frame of residue i. (3) The third term is the orientation 

encoding of the quaternion representation q ⋅  of the spatial rotation matrix Oi
TOj. (4) 

The last term, Epos cj − ci , encodes the relative distance and direction between residues i
and j. We used the relative positional encoding62, an extension of the positional encoding 

introduced in the Transformer model63. The relative positional embedding represents the 

vector pointing to cj from ci through a sinusoidal function. We keep the sign of the distance 

vector cj − ci because protein sequence structures are generally asymmetric.

Representation of molecule structure

KDBNet also incorporates the 3D molecular structure of compounds to predict binding 

affinities. Similarly, given the 3D coordinates of atoms in the molecule, we represent the 

molecule structure as a graph Gd = Vd, ℰd  where nodes Vd are atoms of the molecule and 

edges εd are defined for a pair of atoms if their distance is less than 4.5 Å, following 

ref.34. As molecules do not have a natural backbone as in proteins, we do not derive the 

angle, orientation and direction features for atoms as we did in the protein graph. Instead, 

we directly use the 3D coordinates of atoms or edge vectors as node features and edge 

features, allowing the GNN in KDBNet to learn meaningful geometric representations of the 

molecule in a data-driven way. The node and edge features of the molecule structure are 

detailed below.

Node features: For every atom, we include a vector-valued feature and a scalar-valued 

feature as its node feature. The vector feature is the atom coordinates ci ∈ ℝ3. The scalar 

feature is a list of 66 descriptors of chemical properties15,16,41, including the atom type, 

bond degree, number of hydrogen bonds, number of implicit hydrogen bonds and whether 

the atom is aromatic (Supplementary Table 3).

Edge features: For an edge between atoms i and j, we also create a vector feature and a 

scalar feature. The vector feature is the unit vector in the direction of cj − ci, and the scalar 
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feature RBF ∥ cj − ci ∥  is the pairwise distance embedded into 16 Gaussian RBFs with 

centres evenly spaced between 0 and 4.5 Å.

KDBNet model architecture

The primary components of KDBNet are two GNNs to learn structure representations from 

the input protein and compound, respectively. The representations produced by the two 

GNNs are then passed to a FC neural network to predict the binding affinity between the 

input protein and compound.

Protein GNN.—For the protein GNN, we use Graph Transformer64, an effective GNN 

architecture adapted from the vanilla Transformer model for text data63, to model the 

kinase structure. Given the protein structure graph Gp = vp, ℰp , a Graph Transformer model 

builds L graph convolution layers. The ith layer is a non-linear transformation function that 

maps node i’s embedding hi
ℓ − 1 ∈ ℝdℓ − 1 to hi

ℓ ∈ ℝdℓ for i ∈ N , ℓ ∈ L , where dℓ is the 

embedding’s dimension at layer ℓ , N is the number of nodes in Gp and L is the total number 

of layers in the GNN. In particular, when ℓ = 0, the embedding hi
0 ∈ ℝd0 is just the node 

feature of residue i. In addition, we have edge features of each edge (i, j) denoted as eij ∈ ℝde, 

where de in the dimension of input edge features.

Formally, in the ℓ-th Graph Transformer layer of the GNN, the hidden representation hi
ℓ  is 

updated by performing a message passing between node i and its neighbours

hi
ℓ = W1

ℓ hi
ℓ − 1 + ∑

j ∈ N i
αi, j W2

ℓ hj
ℓ − 1 + W3

ℓ eij ,

(3)

where N i  is the set of neighbour nodes of node i in the graph, W1
ℓ ∈ ℝdℓ − 1 × dℓ, 

W2
ℓ ∈ ℝdℓ − 1 × dℓ and W3

ℓ ∈ ℝde × dℓ are learnable parameters of the GNN, and αi, j is the 

attention weight used to aggregate messages. The weights αij are computed using self-

attention:

αi, j = softmax W4
ℓ hi

ℓ − 1 ⊤ W5
ℓ hj

ℓ − 1 + W3
ℓ eij / dℓ ,

(4)

where W4
ℓ ∈ ℝdℓ − 1 × dℓ and W5

ℓ ∈ ℝdℓ − 1 × dℓ are learnable parameters and dℓ is the length of 

vector hi
e .

We stack three Graph Transformer layers and use the Leaky ReLU activation function65 

between two adjacent layers. After the final layer, we use the global add pooling operation 

as the readout function to aggregate all node representations into a summary representation 

hp ∈ ℝ256 of the input protein: hp = ADD hi
L ∣ i = 1, …, N .
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Molecule graph neural network.—Given the molecule structure graph Gd = Vd, ℰd , 

we also use a GNN to learn the representation for the input molecule. Recall that in graph 

Gd, we associate each node and edge with both geometric vector features (for example, 

3D coordinates) and scalar features (for example, descriptors of chemical properties). We 

thus use a specialized layer, geometric vector perceptrons (GVPs)22, to build the molecule 

GNN. The key advantage of GVP is that it has special consideration for 3D data in design 

(Supplementary Note 1.8) and allows KDBNet to learn structure representations directly 

from the raw atom coordinates in ℝ3 without requiring the construction of features invariant 

to rotations and translation, such as relative direction embeddings. In the GNN, the GVP 

layer can be used as a drop-in replacement for MLPs, such as W1
ℓ , W2

ℓ , W3
ℓ  in the protein 

GNN (equation (3)).

Formally, we use the tuple vi = vi
ν, vi

s  to denote the node feature of atom i (the superscripts 

v and s stand for vector and scalar, respectively), where vi
ν ∈ ℝμ × 3 is a list of vector features 

in ℝ3 and vi
s ∈ ℝν is a list of scalar features (μ and v are the number of vector features and 

scalar features, respectively). The edge feature eij = eij
v , eij

s  of edge i, j  has similar meaning. 

The molecule GNN transforms the node and edge features through L graph convolution 

layers to obtain the representation of the input molecule. Specifically, in the ith layer, each 

node aggregates ‘messages’ (embeddings) from neighbouring nodes and edges and then 

updates its own representations:

hi
ℓ = hi

ℓ − 1 + g hi
ℓ − 1 + 1

N i ∑
j ∈ N i

mji
ℓ ,

(5)

where g ⋅  is a sequence of three GVP layers, N i  is the set of neighbour nodes of node i
in Gd, hi

ℓ  is the embedding of node i in layer ℓ (in particular, hi
0 = vi is the node feature), 

and mji
ℓ  is the ‘message’ passed from node j to node i, computed using another sequence of 

GVP layers: mji
ℓ = g concat hj

ℓ − 1 , eji , where concat ⋅  is the concatenation operation of two 

embeddings. Similar to the protein GNN, after the final layer of the molecule GNN, we also 

apply the global add pooling operation to aggregate all node representations into a scalar 

representation hd ∈ ℝ128 of the input drug.

In addition to the molecule GNN, the GVP layers can also be used to build the protein GNN. 

As introduced above, the default architecture of the protein GNN was on the basis of the 

Graph Transformer layers as we found in our local tests that GVP- and Transformer-based 

protein GNNs lead to comparable prediction accuracy (Supplementary Fig. 5), but the latter 

took 50% less training time and GPU memory use. We thus chose Transformer layers as the 

default building blocks for the protein GNN. Nevertheless, for larger training sets that cover 

diverse protein families rather than only kinases, we expect GVP layers to be more effective 

for learning structure representations, as they are able to learn many other implicit geometric 

features that go beyond the manually defined features used in the Transformer-based GNN.
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Prediction module, hyperparameter tuning and model training.—We tuned the 

hyperparameters of KDBNet by performing a small-scale grid search using the training data, 

such that seven-eighths of the training data were used to train a model with a specific set 

of hyperparameters, and the remaining one-eighth of the data were used as the validation 

set to select the hyperparameters. The test split was not used for hyperparameter selection. 

We tested combinations of GNN layer dimensions from {64, 128, 256, 512, 1, 024}, 

combinations of FC layer dimensions from {64, 128, 256, 512, 1, 024}, the number of FC 

layers in {1, 2, 3} and the dropout rate in {0.1, 0.25, 0.5}.

By performing nested cross-validation on the training data, we decided to use three layers 

with sizes 128, 256 and 256 for the protein GNN and three layers with uniform size 128 for 

the molecule GNN, which were robust across different settings in our experiments. The two 

representations of protein and drug structures generated by the GNNs, hp and hd, are then 

projected to dimension 128 using two FC layers with sizes 1,024 and 128 and a dropout rate 

of 0.25. The two projected embeddings are then concatenated and passed to a two-layer FC 

neural network with sizes 1,024 and 512 and a dropout rate of 0.25, followed by a single 

scalar output as the predicted binding affinity between the input protein and drug.

The training objective of KDBNet is to minimize the MSE between the predicted binding 

affinity and the true affinity value. The model is trained using the Adam optimizer with a 

learning rate of 0.0005. We trained all models for 500 epochs.

Uncertainty quantification

We equipped KDBNet with an uncertainty-quantification module. This was achieved 

by training an ensemble of M independent model replicates24, which has been widely 

demonstrated as an effective way to estimate uncertainty66. The M model replicates had 

the same neural network architectures and hyperparameters, but the learnable parameters 

were initialized with different random seeds. We set M = 8 in this work unless otherwise 

specified. Specifically, let ŷk xi  be a prediction given by the kth individual model, where 

xi represents the input kinase–drug pair. KDBNet’s final prediction of binding affinity μ xi

and its estimated uncertainty σ xi  are given by the mean and standard deviation (s.d.) of the 

individual model’s predictions:

μ xi = 1
M ∑

k = 1

M
yk xi , σ xi

2 = 1
M ∑

k = 1

M
yk xi − μ xi

2

(6)

The uncertainty σ x  estimated by KDBNet above is known as epistemic uncertainty. In 

the literature, uncertainties are often categorized into aleatoric uncertainty (data uncertainty 

due to inherent noise in observations) and epistemic uncertainty (model uncertainty due to 

uncertainty in parameters or predictions; Supplementary Note 1.9). In this work, we focus 

on estimating epistemic uncertainty, as many recent studies have demonstrated the utility 

of epistemic uncertainty for discovery in various domains, including biology17, chemistry67 

and healthcare68. Nevertheless, KDBNet can be extended to estimate aleatoric uncertainty 
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by modifying the objective function from an MSE minimization to a maximum likelihood 

estimation24,69.

Active learning

We started training KDBNet on a random 1% subset of KIBA training data. At each 

subsequent round, KDBNet predicted binding affinities and uncertainties for the remainder 

of the training data and then ranked them on the basis of the score function s x = σ x , 

where σ x  is the predicted uncertainty for sample x (hereinafter referred to as the 

‘explorative’ strategy) and where a sample x represents an input kinasedrug pair. We then 

added the top T  samples with the greatest uncertainties to the training set and retrained 

KDBNet from scratch with the expanded training set. In our experiments, we performed 

seven rounds of active learning. The number of samples to acquire T  for each round was 

determined such that 10%, 20%, 30%, 40%, 50%, 75% and 100% of the training samples 

were used to retrain the model in each of the seven rounds, respectively. Two other types of 

score function s x  were considered for comparison: (1) ‘greedy’, where samples with higher 

predicted affinity receive higher scores, s x = μ x ; and (2) ‘random’, where samples receive 

random scores, s x ≈ U 0, 1 , that is, the continuous uniform distribution between zero and 

one. The performance was evaluated on the ‘both-new’ test set.

Uncertainty recalibration

There are two widely used definitions of regression calibration in the literature: 

confidence-interval-based calibration42 and error-based calibration47. Under confidence-

based calibration, a model is said to be well-calibrated if e % of its predictions fall in the e %
predicted confidence interval 0 ≤ e ≤ 1 42, whereas error-based calibration defines a well-

calibrated model as one for which the uncertainty estimate of a prediction, in expectation, 

equals the prediction errors47. Several approaches have been proposed to recalibrate 

regression models42,47,48. The general idea is to learn a post hoc transformation function, 

which receives the model’s predicted uncertainties as input and outputs the transformed 

uncertainty estimates that would be better calibrated. In our method, we use a simple 

yet effective scaling approach47,70 to recalibrate the uncertainty estimates. Specifically, we 

transform the model’s output μ xi , σ xi  to μ xi , rσ xi , where r is the scaling factor to 

be learned. Note that the model’s prediction of binding affinity μ xi  does not change. To 

learn the scaling factor r, we introduce an optimization problem in which the objective is 

to minimize the miscalibration area (Supplementary Note 1.5). The recalibration is a post 

hoc process, meaning the model’s predicted uncertainties are fixed and only r is optimized. 

As indicated previously42, the recalibration is performed on a held-out validation set that 

has not been used for model training. We use Brent’s method71 implemented in the SciPy 

package72 to solve this single-variable optimization.
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Extended Data

Extended Data Fig. 1 ∣. Prediction performance evaluation on KIBA dataset.
(a) Four train-test split settings of evaluation, where the model is evaluated on data 

of unseen drugs (‘new-drug split’), unseen proteins (‘new-protein split’) or both (‘both-

new split’), and unseen proteins with low (<50%) sequence identity (‘seq-id split’). (b) 
Comparisons of prediction performance of KDBNet with KronRLS, DeepDTA, GraphDTA, 

DGraphDTA, EnzPred, and ConPLex on the KIBA dataset using four train-test split settings. 

The performances of GP were not shown as it was not evaluated in the original study17 

and it is computationally costly to run GP at the scale of KIBA dataset because of the 

high memory footprint of kernel computation. Performances were evaluated using three 

metrics, including Pearson correlation, Spearman correlation, and mean squared error (MSE) 

between predicted and true KIBA scores28. All bar plots represented the mean ± SD of 

evaluation results on five random train/test splits. Abbreviations: seq. id.: sequence identity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Overview of KDBNet.
KDBNet is a neural network that integrates protein 3D structure and compound 3D structure 

to predict compound–protein binding affinity. KDBNet derives a set of features, including 

sequence (seq), evolutionary representations and 3D-invariant geometric features, on the 

basis of the input 3D structure and uses a GNN to learn structure-aware representations 

of a protein For the input compound, KDBNet uses a 3D-equivariant GNN to directly 

learn structure representations from the compound’s coordinates in the 3D space. The 

representations of the input protein and are then used to predict the binding affinity as well 

as the uncertainty of the prediction.
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Fig. 2 |. KDBNet achieves accurate prediction of kinase–drug binding affinity.
a, Four train–test split evaluation settings in which the model is evaluated on data of unseen 

drugs (‘new-drug split’), unseen proteins (‘new-protein split’) or both (‘both-new split’) 

and unseen proteins with low (<50%) sequence identity (‘seq-id split’). b, Comparison of 

KDBNet prediction performance with KronRLS, DeepDTA, GraphDTA, DGraphDTA and 

GP on the four train–test split settings. c, Comparisons between KDBNet variants that use 

or do not use 3D structure data on the both-new split. When 3D drug structure is not used, 

the 2D molecule graph parsed from a SMILES string is used as the representation of the 

input drug, and no 3D geometric features are used in the molecule GNN. When 3D protein 

structure is not used, the sequence is used as the representation of the input protein, and 

the protein GNN is replaced by a convolutional neural networ. The full model use both 3D 

drug and protein structures. d, Comparisons between KDBNet and three baseline methods 

that receive 3D binding complex structure as input (GNN3D, CNN3D and SIGN) on the 

PDBbind dataset. KDBNet differs from them in that it only uses separate 3D drug and 

protein structures as input: the baseline methods thus have an advantage as they are aware of 

the protein–compound docking structure through the input complex. Results of methods that 

receive non-3D input (GraphDTA and DeepDTA) are also shown for comparison. Asterisks 

indicate the statistical significance (one-sided Mann–Whitney U rank test P = 0.00397 for 

both GraphDTA and DeepDTA) that KDNBet’s performance is higher than the baseline’s 

performance over n = 5 random train/test splits. Bar plots in b-d represent the mean ±s.d. 
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of the evaluation results on five random train/test splits. Pearson correlation and MSE were 

computed using the predicted and true pd values.
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Fig. 3 |. KDBNet provides accurate and calibrated uncertainty estimation.
a, Prediction errors of KDBNet, GP and GP-MLP, measured as MAE, at different cutoffs 

of uncertainty percentiles. The x axis represents the sorted uncertainty such that the 100% 

percentile is the lowest uncertainty (highest confidence). b, Spearman correlation between 

the estimated uncertainty and the prediction error measured in MAE on the both-new test 

set. c, Calibration curve. For a confidence interval of confidence level e 0 ≤ e ≤ 1), the 

curve shows the expected fraction and observed fraction of test points that fall within that 

interval. The diagonal line corresponds to the calibration curve of a perfectly calibrated 

model. The miscalibration area, defined as the area between a curve and the diagonal line, is 

used to quantify the uncertainty calibration, and lower values indicate better calibration. d, 

Calibration curves of KDBNet, KDBNet without recalibration, GP and GP-MLP on test sets. 

e, Miscalibration area of KDBNet, GP and GP-MLP on the new-protein test set. Solid lines 

in curve plots represent the mean value of five independent trials, and error bands indicate 

the s.d. MAE values were measured in pKd values. Bar plots in b and e represent the mean 

±s.d. of the evaluation results on five random train/test splits. Error bands in a and c depict 

mean ±s.d. calculated over five random train/test splits. Recalib., recalibration.
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Fig. 4 |. Leveraging uncertainty for active learning, exploration and exploitation.
a, Schematic visualization of the active learning process, which consists of several rounds 

of model training, data acquisition and model evaluation. b, Active learning performance 

in Pearson correlation on the KIBA both-new test set at different rounds. The explorative 

sampling is compared to the greedy and random sampling strategies. c, Efficiency gain 

of the explorative and greedy samplings over the random sampling, defined as the 

relative improvement in Pearson correlation. d, Schematic illustration of data acquisition 

on the basis of KDBNet’s prediction and uncertainty. One can exploit regions with high-

confidence, high-desirability samples or explore potentially high-desirability regions with 

less model confidence. e, Exploration using KDBNet and UCB acquisition function with a 

BO framework. Curves represent the performance trajectory, measured by the percentage 

of top-500 binding affinities found as a function of the number of kinase–compound pairs 

explored in the Davis dataset. f, Exploitation using KDBNet and LCB acquisition function 

with BO. True Kd values of the top 10 kinase–drug pairs prioritized by each model are 

shown. A lower Kd value means a stronger binding affinity. Curve plots in b, c and e depict 

the mean values over five independent trials in solid lines with s.d. in error bands. Bar plots 

in f represent mean ± s.d. of the results for five independent trials of top-10 acquisition 

n = 50 .
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