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Transcriptionis the primary regulatory step in gene expression. Divergent
transcription initiation from promoters and enhancers produces stable RNAs from
genes and unstable RNAs from enhancers?. Nascent RNA capture and sequencing
assays simultaneously measure gene and enhancer activity in cell populations®.
However, fundamental questions about the temporal regulation of transcription and
enhancer-gene coordination remain unanswered, primarily because of the absence
of asingle-cell perspective onactive transcription. In this study, we present sScGRO-
seq—a new single-cell nascent RNA sequencing assay that uses click chemistry—and

unveil coordinated transcription throughout the genome. We demonstrate the
episodic nature of transcription and the co-transcription of functionally related
genes. scGRO-seq can estimate burst size and frequency by directly quantifying
transcribing RNA polymerases inindividual cells and can leverage replication-
dependent non-polyadenylated histone gene transcription to elucidate cell cycle
dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq
enables the identification of networks of enhancers and genes. Our results suggest
that the bursting of transcription at super-enhancers precedes bursting from
associated genes. By imparting insights into the dynamic nature of global transcription
and the origin and propagation of transcription signals, we demonstrate the ability
of scGRO-seq to investigate the mechanisms of transcription regulation and the role
of enhancers in gene expression.

Transcriptionisadiscontinuous process characterized by shortbursts
and longinter-burstsilent periods**. Decoding the origin and circuits
of burst signals is crucial for understanding the mechanisms of tran-
scription regulation during the cell cycle, development and disease.
Core promoter elements, transcription factors and enhancers are
implicated in the regulation of burst kinetics, but their precise role in
determining overall transcription output remains unsettled®’. Whether
the widely accepted view of stochastic transcription of individual genes
conceals co-transcription of functionally related genes and coordina-
tion between enhancer-gene pairs holds broad significance inunder-
standing gene regulation. From a clinical perspective, assessing the
contribution of enhancers in the regulation of protein-coding genes
canunlockalargely unexplored genomic landscape for therapeutics.

Active enhancers are occupied by transcription factors and RNA
polymerase, similar to the gene promoters they regulate, which results
in the synthesis of non-coding, non-polyadenylated and unstable
RNA38, Enhancers are highly specific to cell types and states®, and exert
cis-regulatory effects over long genomic distances'. Genome-wide
association studies further underscore the role of enhancers in gene
regulation, showing that more than 90% of genomic loci associated
with traits and diseases are found in non-coding regions with many
overlapping enhancers'. However, linking enhancers that harbour

causal variants to genes remains challenging. Although low through-
put, genome-editing tools can potentially map enhancer-gene pairs,
but the pleiotropic nature® and weak effect of individual enhancers
hinder their utility.

Existing genomic tools that probe the coding and non-coding
genome without perturbation by assessing chromatin conformation,
histone modifications and chromatin accessibility have shed light on
the molecular events that lead up to enhancer-mediated gene activa-
tion. However, these tools do not fully confirm the actual activation
event™. Despite having similar chromatin features, the distinguish-
ing feature of an active enhancer from its inactive counterpart is its
transcription®. Nascent RNA sequencing assays, such as global run-on
and sequencing (GRO-seq)? and precision run-on and sequencing
(PRO-seq)™, enable the simultaneous quantification of transcription
in genes and enhancers. However, these bulk cell assays average the
discontinuous transcription fromindividual cells, which makes it chal-
lenging to decipher transcription dynamics and to assign enhancer-
gene relationships.

Here we present anew single-cell nascent RNA sequencing method,
whichwe term scGRO-seq, that uses copper(l)-catalysed azide-alkyne
cycloaddition (CuAAC or click chemistry)® to assess genome-wide
nascent transcriptioninindividual cells ina quantitative manner. Our
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analyses of genes and enhancers across 2,635 individual mouse embry-
onicstem (ES) cells provide acomprehensive view of the dynamic nature
of transcription. We leverage elongating RNA polymerases as built-in
clocks and measure the distance travelled from the transcription start
site (TSS) to estimate transcriptional burst kinetics. Using a class of
cell-cycle-phase-specific genes undetected by most single-cell meth-
ods, we quantify the dynamics of transcription during the cell cycle.
We use the single-nucleotide temporal resolution of genome-wide
transcriptioninindividual cells toreveal the co-transcribed gene-gene
and enhancer-gene networks that are turned on within afew minutes
of each other. Using a set of validated enhancer-gene pairs, our data
suggest that transcriptioninitiates at enhancers before the activation
oftranscription at the associated genes. Overall, scGRO-seqbridges a
gapinthestudy of temporal control of transcription and the functional
association of enhancers and genes. These insights will shed light on
gene regulatory mechanismsin essential cellular processes and disease.

Development of scGRO-seq

The primary challenge in capturing and sequencing nascent RNA from
individual cells is attaching unique single-cell tags onto nascent RNA.
Existing nascent RNA sequencing methods selectively capture tagged
nascent RNA fromacell population, which makes single-cell deconvolu-
tionimpossible. By contrast, single-cell RNA sequencing (scRNA-seq)
methods capture mRNA by annealing with the poly(A) tail and attaching
single-cell barcode sequences by reverse transcription (RT). Nascent
RNA lacks a terminal poly(A) tract or any other consensus sequence
and must be selectively labelled and enriched from abundant total
cellular RNA.

We designed anew strategy to selectively label nascent RNA through
anuclear run-on reaction in the presence of modified nucleotide
triphosphates (NTPs) compatible with CUAAC conjugation. CUAAC s
highly efficient and selective, robust under diverse reaction conditions,
enzyme-free and compatible with automation. First, we developed,
optimized and systematically characterized an assay for genome-wide
transcriptome using click chemistry (AGTuC): a cell-population-based
nascent RNA sequencing method that uses 3’-(0O-propargyl)-NTPs in
mouse ES cells (Extended Data Figs. 1a-fand 2a-d). It takes about 8 h
to preparean AGTuC library. However, the high concentration of ionic
detergent in AGTuC disrupts nuclear membranes during the run-on
reaction, which makes RNA fromindividual cells indistinguishable for
single-cell barcoding. We therefore developed aniteration of AGTuC
whereby nascent RNAs in individual nuclei are labelled with alkyne
through run-onwith 3’-(O-propargyl)-NTPs but without disrupting the
nuclear membrane (termed intact-nuclei AGTuC (inAGTuC)) (Extended
Data Figs. 3a—j and 4a-h). We prepared inAGTuC libraries in 96-well
plates with12 cells per well (c.p.w.), 120 c.p.w.and 1,200 c.p.w. (whichis
roughly equivalentto1,000,10,000 and 100,000 nuclei, respectively).
We tested for correlation between this method and with PRO-seq
(Extended DataFig. 5a-d), and the results demonstrated the feasibility
of profiling nascent RNA with small sample sizes. Based on the cor-
relation slope, the inAGTuC library with as low as about 1,000 nuclei
showed similar efficiency as PRO-seqin detecting nascent transcrip-
tomes. The higher efficiency, lower cost, shorter library preparation
time and lower sample input make AGTuC and inAGTuC viable alterna-
tives to existing methods such as PRO-seq. By enabling the compart-
mentalization of intact nuclei that contain click-compatible nascent
RNA and 5’-azide single-cell-barcoded (5’-AzScBc) DNA molecules
using fewer nuclei, inAGTuC laid the ground for single-cell nascent
RNA sequencing.

Building on this foundation, we applied our newly developed chem-
istry to single cells (Fig. 1a). For congruence with the original nascent
RNA sequencing method of GRO-seq, we named this single-cell version
scGRO-seq. Intact nuclei containing nascent RNA labelled with prop-
argyl, following anuclear run-on reaction with 3’-(O-propargyl)-NTPs,

were sorted individually into 96-well plates. Each well contained
asmall volume of 8 M urea, which lyses the nuclear membrane and
denatures RNA polymerase and releases propargyl-labelled nascent
RNA. The addition of CUAAC reagents led to the covalent linkage of
propargyl-labelled nascent RNA to a unique 5’-AzScBc DNA molecule
in each well. After CUAAC, single-cell-barcoded nascent RNAs from
96 wells were pooled, reverse transcribed in the presence of a tem-
plate switching oligonucleotide (TSO), PCR amplified and sequenced
(Extended Data Fig. 6). Despite a span of more than 3 years between
the generation of various scGRO-seq library replicates, the differ-
entbatches showed strong correlation at the level of the 96-well plate
(Extended DataFig. 7a).

The scGRO-seq results recapitulated the inAGTuC and PRO-seq
profiles at both genes and enhancers (Fig.1b) and provided acompre-
hensive map of nascent transcription inindividual cells. We performed
17 batches of scGRO-seq experiments with39 96-well plates and 3,744
cells, of which 36 plates and 2,635 cells passed the threshold (Meth-
ods). We captured anaverage of 3,665 reads and 1,503 features (genes
and enhancers) per cell (Fig. 1c and Extended Data Fig. 7b). Moreover,
pseudo-bulk scGRO-seq counts from collapsed single cellsin genes and
enhancers correlated well with bulk counts frominAGTuC (Fig.1d). An
analysis of the sequencing depth indicated the possibility that more
reads and features per cell could be discovered with further develop-
ment of the technology and deeper sequencing (Extended DataFig. 7c).
However, scGRO-seq is less efficient in capturing nascent RNA from
promoter-proximal pause sites. We attribute this limitation to the
reduced run-on efficiency of paused RNA polymerase Il (Polll) in the
absence of a high concentration of strong detergent. This difference
in promoter-proximal run-on efficiency was reflected in the reduced
correlationbetween scGRO-seqand PRO-seq libraries (Extended Data
Fig.7d), aswell asin the metagene profiles around the TSS of genes and
enhancers (Extended Data Fig. 7e,f).

After confirming that scGRO-seq recapitulates results from bulk
nascent RNA sequencing methods, we benchmarked scGRO-seq
against other RNA-based single-cell assays. The closest single-cell
method that probes nascent transcription is intron seqFISH, which is
amultiplexed single-molecule in situ nascent RNA hybridization and
imaging method”. We confirmed that the correlation between scGRO-
seq and intron seqFISH is similar to the correlation reported between
intron seqFISH and GRO-seq (Fig. 1e). By contrast, scGRO-seq poorly
correlated with scRNA-seq (Extended Data Fig. 1g), which is probably
duetodifferencesin mRNA stability and capture methods. Neverthe-
less, as expected, scGRO-seq reads were more likely to be intronic or
intergenic than scRNA-seq reads (Fig. 1f). Overall, the suite of genomic
assays presented here utilizes anew biochemical approachto provide
asnapshot of genome-wide transcription at various cell resolutions,
including individual cells.

Direct measurement of burst kinetics

Estimates of transcriptional kinetics primarily come from low-
throughput live-cell imaging or fluorescent in situ hybridization in
fixed cells'®”. The intron seqFISH method is limited to predefined
genetargets, requires specialized probes and assumes thatallintronic
RNAs have the same kinetic fate. Approaches based on next-generation
sequencing (NGS) are comprehensive and technically more acces-
sible. However, the current methods measure polyadenylated mRNA
from single cells? and fit a simple two-state mathematical model to
infer transcriptional kinetics’. Bridging this gap, scGRO-seq combines
high-throughput measurement of transcription with NGS, thereby
enabling the detection of transcribing RNA polymerases genome-wide
atsingle-nucleotide resolution (Fig. 2a).

With this new approach, we examined the evidence of bursting
de novo without previous assumptions by quantifying the incidence
of transcribing RNA polymerases. If transcription occursin bursts, we
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would anticipate a higher occurrence of more than one RNA polymerase
per burst (multiplets) than would be expected by chance. Based on the
approximately 10% capture efficiency of scGRO-seq estimated from
comparisonwithintronseqFISH (Methods), the probability of detect-
ing two consecutive RNA polymerases on a gene is 1%. To account for
differencesin unique molecularidentifiers (UMIs) per cell, we devised
anullmodel using permutation. We permuted reads among cells while
keeping UMIs per cell and polymerase position unchanged (Methods;
n=200permutations). We then compared the real datato the permuted
controldataand observed fewer singlets (n=1,052, false discovery rate
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and 250 bpregions fromeach end of the enhancers analysed were removed to
onlyinclude nascent RNA from elongating RNA polymerases. Data are plotted
onalog-logscaletoshow therange of datadistribution. e, Correlation
betweenscGRO-seqUMIs per cell fromup to the first 20 kb of genes and intron
seqFISH counts per cellinthebody of genes used in theintron seqFISH study
(n=9,666).f, Distribution of scGRO-seqand scRNA-seq UMIs in various
genomicregions.

(FDR) = 0.05) and a greater number of multiplets (n=828,FDR=0) in
thereal data, which provided evidence for the bursting nature of tran-
scription (Fig. 2b). This result represents a significant 2.4% excess of
multipletsinreal datacompared with permuted data. Transcriptional
bursting would also result in more closely spaced RNA polymerases
thanwhat would be observed by random chance. When examining the
distance between multiplets, we observed enrichment of closely spaced
RNA polymerases (P < 0.05, two-sample Kolmogorov-Smirnov (KS)
test) (Fig. 2c and Extended Data Fig. 8a), which further strengthened
the evidence of bursting.
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With confidence inthe ability of scGRO-seqto discern bursting, we
directly measured burst kinetics using scGRO-seq counts and their
genomic positions. We estimated burst size as the average number of
RNA polymerases per burst, whereas burst frequency was calculated
as the number of bursts per allele per unit of time required for RNA
polymerase to traverse through the burst window (Fig. 2d), corrected
for capture efficiency (Methods). We considered genes longer than 11 kb
(n=13,564) and excluded 500 bpregions at either end that are known
to harbour paused polymerases?, thereby using the remaining 10 kb as
the burst window. We assigned reads to asingle allele based on previous
evidence showingthat allelesin mouse ES cells burstindependently to
generate monoallelicRNA?, With an average RNA Polll elongation rate
of 2.5 kb min (ref. 23), using a10 kb region limited the burst detection
window to 4 min. This short burst window was consistent with bursts
from one allele and aligned with previous reports®. We simulated
kinetic measurements using synthetic data to validate the accuracy
ofthe model and observed robust performance (Extended DataFig. 8b).
We then estimated the kinetic parameters of transcriptional bursts for
expressed genes (Fig.2e and Supplementary Table 1). Burst sizes ranged
primarily between 1 and 4 RNA polymerases per burst, with a mean
burstsize of 1.23. The mean duration of approximately 2 huntil the next
burst obtained using scGRO-seq data matched the 2 h of the global
nascent transcription oscillation cycle reported using intron seqFISH.
Using the burst parameters estimated from scGRO-seq data, we again
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inference of burstkinetics from scGRO-seqdata. e, Histogram of burst size (left),
burst frequency (middle) and duration until the next burst (1/burst frequency)
(right) for genes thatare atleast 10 kb long (n =13,142). f, Correlation of burst
frequency of genes between scGRO-seqandintron seqFISH data. g, Effect of
promoter elementsinburstsize greater than1(left) and burst frequency (right).
Inr, theinitiator motif. The centrelineindicates the median of the distribution.
h, Gene setenrichmentanalyses showing the role of transcription factorsin
determining burst frequency and burstsize.

tested our model by simulation and observed robust performance
(Extended DataFig. 8c). Burst frequency results from scGRO-seqdata
correlated well with intron seqFISH data (Fig. 2f), and the correlation
was even stronger for genes with a higher burst frequency (Extended
DataFig.8d). However, we observed a poor correlation between burst
frequencies from scGRO-seqand scRNA-seq data, as well asbetween
intron seqFISH and scRNA-seq data (Extended Data Fig. 8e). This find-
ing highlights potential limitations in kinetic estimates derived from
mature transcripts. In contrast to a previous report'®, we did not find
animpact of genelength onkinetic estimates (Extended Data Fig. 8f).
We further confirmed that the burst frequencies calculated from 10 kb
and 5 kb burst windows showed strong agreement (Extended Data
Fig. 8g), which indicated the reliability of burst kinetic calculations
from scGRO-seq data.

Core promoter elements can modulate burst parameters™?. We
observed asignificant variationin core promoter elements with burst
kinetics (Fig. 2g). Specifically, genes with the TATA element exhibited a
larger burst size than genes lacking it (P= 4.6 x 10~°), and the presence
of theinitiator sequence further increased the burst size (P=2.5x107).
The higher burst size but lower burst frequency of genes with TATA
elements agreed with previous findings?.

Transcription factors are also thought to regulate burst kinetics.
Using a curated transcription factor binding database**®, we exam-
ined the effect of transcription factors on burst parameters. Gene set
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Fig.3|Cell cycleinference by non-polyadenylated replication-dependent
histone gene expression. a, Heatmap of hierarchical clustering of single cells
representing transcription of G1/S-specific, S-specific and G2/M-specific genes.
Thedendrogram coloursrepresent cell clusters with cell-cycle-phase-specific
genetranscription. b, Fraction of cellsinthe three primary clusters distinguished
by transcription of G1/S-specific, S-specificand G2/M-specific genes.

c, Distribution of scGRO-seq UMIs per cellinthe three clusters of cells
(n=122,479 and 244 cells, respectively, from10 independent batches) defined

enrichmentanalysisindicated that some transcription factors regulate
burst size, whereas others regulate burst frequency (Supplementary
Table2). MYC and AFF4 are examples of each category. Genes bound by
MYC had larger burst sizes, whereas AFF4 target genes were enriched
for higher burst frequencies (Fig. 2h). Our observation supports a
previous report whereby MYC increased the burst size by increasing
the burst duration?, and the association of the AFF4 transcription
factor correlated with burst frequency>. Overall, we show that direct
and comprehensive observation of transcription using scGRO-seq
facilitates the study of transcription kinetics at the single-cell level.

Cell cycle inference from histone genes

Investigating gene programs during cell cycle stages is essential for
understanding biology and disease®. Polyadenylated RNA-dependent
scRNA-seq methods rely on mature transcripts of cell cycle marker
genes to determine the cell cycle state. However, the time required
for mRNA processing, export and accumulationintroduces atime lag.
Except forafew total RNA-based single-cell methods®**, scRNA-seq fails
to detect replication-dependent histone genes—the best character-
ized cell-cycle-phase-specific genes exclusively transcribed during the
S phase**—owing to the lack of polyadenylation®. scGRO-seq enabled
the detection of active transcription of replication-dependent histone
genes in the histone locus body (Extended Data Fig. 9a) that could be
used to classify cellsin S phase. For G1/S and G2/M phase-specific genes,
we used aset of transcriptionally characterized genes from a RNA veloc-
ityand deep-learning study of mouse ES cells®. Hierarchical clustering
based onthe expression of these three sets of cell-cycle-phase-specific
genesrevealed three significant clusters of individual cells (Fig. 3a).
Mouse ES cells have a short G1 phase and an extended S phase®.
De novo classification of mouse ES cells based on the nascent tran-
scription of these newly integrated marker genes recapitulated the
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by cell-cycle-phase-specific gene transcription. The centre lineindicates
themedian, theboxrepresentsthe databetween the first and third quantiles,
the whiskersindicate thel.5interquartile range, and points outside the
whiskersindicate outliers. d, Differentially expressed genes amongthe three
clusters of cells defined by transcription of G1/S-specific, S-specific and
G2/M-specificgenes. The genes used to classify cells are denoted inbold and
colouredboxes. Histones (RD) represent aggregate reads fromreplication-
dependenthistone genes.

lengths of cell cycle phases (Fig. 3b). Notably, cells in G1/S and G2/M
phases exhibited higher transcription levels compared with cells in
the S phase (Wilcoxon rank-sum test, P= 6.3 x10" and P=1.2x107%,
respectively) (Fig. 3c). We observed an approximately 40% decreasein
total transcription when cells transition from the G1/S phase to the
S phase, withasubsequent20% increase after exiting the S phase to the
G2/M phase. This observation indicates that transcription continues
during DNAreplication, albeit at areduced level. The transition fromthe
G2/M phase to the G1 phase is marked by anincreasein transcription’s,
which restores the transcription level observed during the G1 phase,
thereby completing the cycle. An analysis of differentially expressed
genesincell cycle phasesalsorevealed that certain genesrestore tran-
scriptionlevels to those observedinthe G1/S phase as they transitioned
fromthe S phase to the G2/M phase, whereas others regained partial
transcription (Fig. 3d and Supplementary Table 3). At the same time,
some did not recover their transcription until exiting from G2/M to
G1/S. By quantifying the active transcription of non-polyadenylated
histone genes and a small subset of marker genes, scGRO-seq reveals
adynamic transcription program throughout the cell cycle.

Co-transcription ofinterdependent genes

Co-expression of functionally related genes, as measured by accumu-
lated mRNA, is widely reported®. However, assessing whether these
genesare transcriptionally coordinated in steady-state has been chal-
lenging. By utilizing nascent transcription within the first 10 kb of the
gene body, thereby limiting the co-transcription detection window
to 4 min, we calculated pairwise Pearson correlation values between
expressed genes (Fig. 4a). Gene pairs with a correlation coefficient
greater than 0.1and aq value of less than 0.05, and an empirical FDR of
lessthan 5% from1,000 permutations, were considered co-transcribed
(Supplementary Table 4). These stringent criteria controlled for
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sampling biases and other confounding effects. We identified about
0.7% of the 112,807,710 gene pairs tested (n =800,888) as signifi-
cantly co-transcribed. We generated a graphical network from these
significant pairs and identified 59 modules (genes per module >10)
of co-transcribed genes. This gene-gene transcriptional correlation
probably reflects commontemporal gene activation by atranscription
factor or could reflect mechanistic coupling of transcription activation
by clusters of genes separated across regions of chromosomes.

Conducting gene ontology analysis on these co-transcribed mod-
ules compared with all transcribed genes, we found enrichment of
several related molecular functions, including cell cycle regulation,
RNA splicing, translational control, DNA repair and circadian rhythm
(Fig.4b, Extended Data Fig. 9b and Supplementary Table 5). By scanning
the promoters of co-transcribed genes, we discovered an enrichment
of known transcription factor motifs, such as FOXO3 enriched in the
promoters of co-transcribed genes associated with the ‘regulation of
cell-cycle phase transition’ gene ontology term. A previous study*°
showed that FOX03, in coordination with the DNA replication fac-
tor CDT1, is crucial in regulating cell cycle progression. We compared
the co-transcription patterns of gene pairs obtained from scGRO-seq
with those from intron seqFISH, and the results revealed concordant
co-transcription profiles (Fig. 4c). This high-throughput and capabil-
ity of scGRO-seq to directly examine transcriptional coordination
between any gene pair or network of genes provides valuable insights
into the functional organization of the genome.

Enhancer-gene temporal coordination

Regulation of gene expression by distal regulatory elementsisanarea
ofbroadinterest. scGRO-seq captures transcripts fromboth genesand
active enhancers, thereby enabling the measurement of co-activation
insingle cells. We analysed scGRO-seq reads within the first 10 kb of
genes and at least 3 kb on each strand transcribing outwards around
enhancers (Methods). We excluded 500 bp regions around the TSS of
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genes and enhancers to avoid paused polymerase. We also included
clusters of enhancers known as super-enhancers (SEs) that do not
overlap with gene regions*.

We used stringent criteria in permutation and correlation tests to
identify enhancer-gene pairs that exhibit co-transcription (Methods).
Out of 6,985,904 test pairs, 0.6% (n = 44,361) passed the threshold of
the pairwise correlation coefficient, multiple hypothesis corrected
chi-square P value and empirical FDR from 1,000 permutations (Supple-
mentary Table 6). We observed a significant enrichment (two-sample
KS test, P=5.5 x107%) of enhancer-gene co-transcription primar-
ily within 200 kb of each other compared with uncorrelated pairs
(Fig. 5a). SE-gene pairs were similarly enriched (two-sample KS test,
P=1.3x107°°) within 400 kb of each other (Extended Data Fig. 10a).
When examining functionally related genes clustered together on the
same chromosome*?, we found multiple enhancers correlated with
eachgene (Extended Data Fig. 10b), probably a further manifestation
of cell cycle regulation.

We investigated a set of validated enhancers known to regulate
pluripotency transcription factors* ¢, We observed significant cor-
relations between the transcription of Sox2 and Nanog and their dis-
tal enhancers (Extended Data Fig. 10c). If enhancers and their target
genes aretemporally coupled and co-transcribed, we speculated that
co-transcription of the pair could be even more prominent at finer
temporal resolution. To test this idea, we divided enhancers and genes
into 5 kb bins (representing a 2-min transcription window) and found
thatatleast1enhancerbin correlated significantly withits target gene
forall4 genes (Fig.5b). Notably, the correlated enhancer bin generally
appeared further from its TSS than the gene bin, which implied that
enhancer transcription may initiate before promoter transcription.

To test the enhancer-gene timing hypothesis, we examined a set of
seven non-intronic mouse ES cell SEs validated by CRISPR perturba-
tion*’. CRISPR-mediated knockout of Sall1 SE reduced Salll expres-
sion by 92%, and we found a correlation between multiple enhancer
bins and this gene (Fig. 5¢). Overall, four out of seven SE-gene pairs
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showed correlations of at least one bin. Notably, we observed that in
most cases, enhancer transcription began earlier or around the same
time as the transcription of their target genes (Fig. 5d). This temporal
pattern could have mechanisticimplications for enhancer-gene regu-
lation. However, any conclusions will require a much deeper dataset.
Nevertheless, our findings offer a glimpse into the temporal order in
enhancer-gene transcription.

Discussion

We developed scGRO-seqto enable the assessment of co-transcription
and prediction of enhancer-gene regulatory networks in their native
context. By reporting the activity of genes and distal regulatory ele-
ments—and therefore the functional consequences of transcrip-
tional signals and networks—scGRO-seq is inherently multimodal
for understanding transcription regulation in high detail. We illus-
trated these advantages by determining burst size and frequency for
expressed genes, transcription dynamics during cell cycle phases and
genome-wide gene-gene and enhancer-gene co-transcription detec-
tion. We restricted this study to mouse ES cells for comparison with
large available datasets for validation.

The current scGRO-seq methodology has its limitations. The pres-
ervation of nuclear integrity, achieved through alow sarkosyl concen-
tration, failed to promote the run-on of RNA polymerasesin the pause
complex, thereby limiting the detection of promoter—proximal paused
polymerases. The read depth and cell numbers limited our analyses
of burst kinetics and co-transcription of gene-gene and enhancer-
gene pairs. Improved efficiency in future iterations will facilitate more
precise evaluation of these phenomena.

scGRO-seqis also limited by the abundance of nascent RNA per cell at
any giventime, whichis considerably lower than that of mature mRNA.
Nascent RNA detection requires technology that does not depend
on a polyadenylated terminus, which initially raised doubts about
the feasibility of nascent RNA sequencing in single cells*®, However,
implementing highly efficient CUAAC has overcome this limitation,
enabling the capture of approximately 10% of nascent RNA with the
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distancebars. For finer time resolution correlation, features are extended up
totheend of the transcription signal and divided into 5 kb bins. Correlated
binsarerepresented by aredarch, except for Sox2andits distalenhancer bins,
which areshownindifferent colours for visual aid. ¢, Co-transcription between
Salllandits CRISPR-verified SE. Correlated SE-gene bins are denoted by arches.
d, Summary of correlated bin positions in CRISPR-verified SE-gene pairs.
Scrambled random pairs served asa control.

current single-cell protocol. To streamline the process and to ensure
compatibility with future automation, we optimized the biochemical
steps by replacing multiple rounds of nascent RNA purification and
nucleicacid ligation with click chemistry. Further adaptations, includ-
ing high-throughput droplet encapsulation and enhanced capture
efficiency, will extend the applicability of our scGRO-seq method in
bothresearch and clinical settings.

For clinical specimens, particularly for challenging tissues such
as the brain and pancreas, which contain high levels of RNase, isola-
tion of nuclei is preferred over intact cells. Single-cell methods such
as sNuc-seq® profile polyadenylated RNA inside the nucleus of such
tissues, but paintanincomplete view of single-cell gene expression. By
contrast, the entire scGRO-seq substrateis presentinside the nucleus.
Furthermore, the compatibility of CUAAC-based nascent RNA sequenc-
ing methods with bulk low-input samples and single cells makes them
desirable methods for clinical investigations. The adaptability and effi-
ciency of scGRO-seqintroduce new avenues for investigating transcrip-
tional dynamics and regulatory mechanisms across diverse biological
contexts, enriching our understanding of gene expression regulation
and its ramifications in physiological and pathological conditions.
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Methods

scGRO-seq conceptualization

Capturing nascent RNA with sufficient efficiency from single cells for
meaningful analysis was deemed challenging. However, recognizing
the potential insights into transcription mechanisms that single-cell
nascent RNA sequencing could offer, we set out to develop asingle-cell
version of the GRO-seq method a decade after its use in cell popula-
tions. Our efforts were met with two significant challenges: selectively
capturing a small fraction of nascent RNA among various RNA spe-
cies within a cell and accurately distinguishing nascent RNAs from
individual cells.

The primary limitation we encountered was capture efficiency. The
quantity of nascent RNA from transcribing RNA polymerases in an
individual cell, mainly due to the intermittent nature of transcription
with short bursts and long latency periods, is significantly lower than
the mRNA copies that accumulate over time. Traditional nascent RNA
capture methods yield only a meagre number of nascent RNAs from
single cells. Miniaturizing GRO-seq using strategies derived from
scRNA-seq was not feasible because nascent RNA lacks the consen-
sus polyadenylation sequence used in RNA-seq. Instead, GRO-seq
and related methods selectively label nascent RNA in bulk cells using
modified nucleotides and use single-stranded RNA-RNA ligation with
PCR handles onboth ends. This ligation process proved unsuitable for
scGRO-seq owing to its low efficiency and the need for nascent RNA
purification before ligation, which risks depleting the already scarce
nascent RNA from single cells.

To overcome these challenges, we devised a strategy that involved
labelling nascent RNA in cells and attaching single-cell barcodes to
the labelled nascent RNA without requiring purification from other
cellular RNA. After exploring several approaches without success,
we turned to click chemistry, specifically CUAAC. We speculated that
by sourcing or synthesizing CUAAC-compatible chain-terminating
nucleotide triphosphate analogues and performing nuclear run-on
with the modified nucleotides to selectively label nascent RNA, we
couldlabel nascent RNA fromindividual cells with 5-AzScBc DNA with
aPCR handle. Then, we could pool the barcoded nascent RNA from
multiple cells for selective RT in the presence of a TSO and subsequent
PCR amplification for sequencing.

Tosuccessfullyimplement thisstrategy, weidentified threeimportant
biochemical hurdles to address. First, we needed to demonstrate the
ability of native RNA polymerase toincorporate 3’-(O-propargyl)-NTPs
during nuclear run-onreactions. Second, preserving the intactness of
nuclei during the run-on reaction was essential to enable the separa-
tion of individual nuclei for single-cell barcoding. Finally, we had to
confirm the ability of reverse transcriptase to traverse the triazole
ringjunction formed during CuAAC. Successful resolution of the first
and third hurdles would pave the way for CUAAC-based nascent RNA
sequencingin cell populations, whereas overcoming the second hurdle
would establish the foundation for scGRO-seq.

Development of AGTuC

Todevelop anascent RNA tagging method suitable for capturing asmall
fraction of RNA fromsingle cells, we initiated our approach by focusing
onacell-population-based strategy. We aimed to develop an enhanced
nascent RNA tagging method that optimally integrates selective label-
ling and single-cell barcode tagging, bypassing the need for RNA puri-
fication. Among the tested methods, we identified click chemistry as
the most suitable option because of its high selectivity, efficiency,
robustnessin diverse experimental conditions, cost-effectiveness and
speed. Our goal wasto selectively label nascent RNA through anuclear
run-on reaction, conjugate a single-stranded DNA PCR handle (that
can accommodate a single-cell barcode for future use in single-cell
analysis), reverse transcribe the RNA-DNA conjugate and prepare a
NGS library.

To achieve single-nucleotide resolution of transcribing polymer-
ases and efficient RT, we identified two click-chemistry-compatible,
chain-terminating nucleotides with arelatively small functional group:
3’-(O-propargyl)-ATP and 3’-azido-3’-dATP (Extended Data Fig. 1a). Nas-
centRNA labelled with 3’-(O-propargyl)-NTPs forms a1,4-disubstituted
1,2,3-triazole junction with azide-labelled DNA through CuAAC, as
shownin Click-Code-Seq*’, whereas nascent RNA labelled with 3’-azido-
3’-dNTPs forms a slightly bulkier junction with dibenzocyclooctyne
labelled DNA through strain-promoted alkyne-azide cycloadditions
(Extended Data Fig. 1b). Nuclear run-on with 3’-(O-propargyl)-ATP
and CuAAC showed superior efficiency compared with 3’-azido-
3’-dATP and strain-promoted alkyne-azide cycloadditions (Extended
DataFig. 1c).

To convert the clicked RNA-DNA conjugate to cDNA, we tested eight
different reverse transcriptase enzymes, varied the temperature and
duration of RT and evaluated three TSOs (Extended Data Fig. 1d-f,
some results not shown). Our optimized method, whichwe AGTuC, was
then performedin5 million mouse ES cell nuclei. AGTuC nascent RNA
profiles closely resembled PRO-seq profiles (Extended Data Fig. 2a)
and exhibited strong correlations at both gene and enhancer levels
(Extended DataFig. 2b,c). Notably, the AGTuCllibrary protocolinvolved
significantly fewer steps than PRO-seqand could be completedinasin-
gle day (Extended DataFig.2d). AGTuCis asimpler, faster and cheaper
alternative to GRO-seq and PRO-seq for nascent RNA sequencing
from cell populations.

Development of inAGTuC

To adapt CuUAAC-mediated nascent RNA sequencing to single cells, we
explored the feasibility of performing AGTuC insingle cells. Implement-
ing AGTuC at the single-cell level presented challenges as the nuclear
run-on reaction with 0.5% sarkosyl disrupts the nuclear membrane
before cellbarcodes could be attached during the post-run-on CUAAC
step, which leads to unintended mixing of nascent RNA from different
cells. One potential solution was to perform AGTuC in single tubes,
which would prevent nascent RNA mixing. However, this approach
requires RNA purification after the run-on reaction, but purification
results in further depletion of exceedingly low amounts of nascent
RNA in single cells. Alternatively, omitting RNA purification would
lead to an abundance of 3’-(O-propargyl)-NTPs supplied in excess
during the run-on reaction, which could outcompete 5’-AzScBc DNA
during CuAAC.

To address this challenge, we developed inAGTuC, a new strategy
that enables labelling nascent RNA with 3’-(O-propargyl)-NTPs while
preserving nuclear integrity. This approach overcomes the issues
associated with nascent RNA mixing before single-cell barcoding. We
proposed that performing the run-on reaction without disrupting
the nuclear membrane would facilitate the easy removal of excess
nucleotides through a few centrifugation and resuspension steps
while retaining propargyl-labelled nascent RNA within the nuclei. This
approachwould produce clean nuclei with labelled nascent RNA, free
fromexcess reactive nucleotides, which could be compartmentalized
with 5’-AzScBc DNA for CuAAC. We could minimize further RNA loss
by pooling and processing the single-cell-barcoded nascent RNA from
multiple cells.

Toachieve an efficient run-onreaction, PRO-seqand AGTuC disrupt
the polymerase complex with 0.5% sarkosyl detergent, of which nuclear
membranelysisis collateral damage. We sought to identify the lowest
sarkosyl concentration that maintains nuclear membrane integrity
while maximizing run-on efficiency and found that a20x reductionin
sarkosyl concentration preserved nuclear intactness, with only a20%
reductioninrun-onefficiency (Extended DataFig.3a,b). To maximize
the capture efficiency of nascent RNA, we optimized the molecular
crowding effect of PEG 8000 and the ratio of Cu(l) to the CuAAC accel-
erating ligand BTTAA (Extended Data Fig. 3c). Although a low sarko-
syl concentration preserves nuclear integrity, it also retains the RNA



polymerase complexintact, thereby shielding the propargyl-labelled
3’ end of nascent RNA from reacting with 5’-AzScBc DNA. We investi-
gated nascent RNA release from the RNA polymerase complex using
common denaturants and found that 6 Murea and TRIzol was efficient
(Extended Data Fig. 3d). However, the denaturant in TRIzol hindered
CuAAC reaction (Extended Data Fig. 3e). Notably, urea also offered
the added benefit of retaining the RNA-DNA conjugate in the aqueous
phase during TRIzol clean-up to remove PEG 8000 from the CUAAC
reaction (Extended Data Fig. 3f). For reaction clean-up, we assessed vari-
ous methods, finding cellulose membrane to be effective in removing
CuAACreagents (Extended Data Fig. 3g), whereas silica matrix columns
performed well in retaining RNA and ssDNA (Extended Data Fig. 3h).
Subsequently, we evaluated DNA polymerase for library preparation
and DNA size-selection methods (Extended Data Fig. 3i,j).

Considering the goal of working with single cells, we performed
inAGTuC with cellnumbers between 5 million usedin AGTuCand 1 cell
planned for scGRO-seq. Specifically, we placed 100 to 1,000 intact
nucleiin each well of a 96-well plate containing urea. Nascent RNA in
each well was barcoded with a unique 5’-AzScBc DNA by CuAAC and
pooled from the 96 wells, and a sequencing library was prepared as in
AGTuC. TheinAGTuClibraries exhibited similar profiles ingene bodies
compared with PRO-seq and AGTuC. However, they could not capture
the paused peaks at the 5" end of genes and enhancers (Extended Data
Fig. 4a-c). This observation is consistent with the need for a higher
sarkosyl concentration for efficient run-on of paused polymerase com-
plexes. The four inAGTucC libraries correlated well with each other
(Extended Data Fig. 4d), with the potential to discover more insights
withdeeper sequencing (Extended DataFig. 4e,f). Despite only partially
capturing nascent RNA from a paused complex, the inAGTuClibraries
correlated well with those from AGTuC and PRO-seq (Extended Data
Fig.4g).

To systematically characterize the compatibility of inAGTuC with
even fewer cells, we prepared fourinAGTuC librariesin a 96-well plate,
with12 c.p.w.,120 c.p.w.and 1,200 c.p.w., which is roughly equivalent
t01,000,10,000 and 100,000 nuclei, respectively. We also included a
1,200 c.p.w. plate, omitting Cu(l) as a negative control. Despite lower
coverage, theinAGTuC library with 12 c.p.w. (total of about 1,000 cells)
successfully captured the overall nascent RNA profile. It exhibited
agood correlation with 120 c.p.w. (total of about 10,000 cells) and
1,200 c.p.w. (total of around 100,000 cells) (Extended Data Fig. 5a-c).

3’-(0-propargyl)-nucleotide synthesis
For this study, several CUAAC-compatible nucleotide analogues modi-
fied with azide or alkyne functionalities were evaluated. Ultimately,
3’-(O-propargyl)-NTPs were selected for three main reasons: (1) these
analogues lack 3" hydroxyl groups, making them chain-terminating and
enablingsingle-nucleotide resolution of the 3’ end of nascent RNA; (2)
the CuAACreaction producesacompactjunction dueto the presence
ofasingle carbonbond between the sugar group of the nucleotide and
the propargyl group at the 3’ end position; and (3) they are relatively
cost-effective compared with biotin-modified nucleotides commonly
used in PRO-seq.

3’-(O-Propargyl)-ATP (NU-945) was offered by Jena Biosciences.
To complete the set, custom synthesis requests were made for
3’-(0-propargyl)-CTP (NU-947), 3’-(O-propargyl)-GTP (NU-946) and
3’-(0-propargyl)-UTP (NU-948), all of which are now available for pur-
chase from Jena Biosciences.

Single-cell barcoded DNA adaptors

During scGRO-seq development, 3 sets of 96 5-AzScBc DNA were syn-
thesized by GenelLink. Each design encompassed four components: a
5 azide positioned at the 5’ terminus, a10-12 nucleotide sequence for
the single-cell barcode, a 4-6 nucleotide sequence for the UMl and a
PCRhandle. The 5" azide modification was obtained following a previ-
ously described method®. Specifically, an oligonucleotide containing

5’ iodo-dT was synthesized through solid-support phosphoramidite
oligonucleotide synthesis, and subsequent replacement of the iodo
group withan azide group was achieved through areaction with sodium
azideat 60 °Cfor1h. Thesequences of three different 5-AzScBc DNA
areavailable in Supplementary Table 7.

The hairpinstructure of the 86-nucleotide 5’-AzScBc DNA (Supple-
mentary Fig. 3a) is formed through self-folding. The RT process is initi-
ated using the 3’ end of the oligonucleotide, which serves as a built-in
primer. This design ensures al:1stoichiometry between the PCR handle
and the RT primer, minimizing mispriming and nonspecific amplifica-
tionduring RT. The folded hairpinstructure also generates arestriction
site for the Eagl enzyme, which is digested before PCR amplification.

Undesired extension by reverse transcriptase is effectively prevented
by a three-carbon spacer at the 3’ end of the 43-nucleotide 5’-AzScBc
DNA*2. This version of the azide adaptor harbours a 5-nucleotide ACAGG
sequence after the azide-dT atits 5’ end (Supplementary Fig.3b). Dur-
ing RT, the extension of primers annealing to unclicked 5’-AzScBc, the
addition of non-templated CCC and the incorporation of TSO results
inundesired cDNA that are preferred substrates for PCR amplifica-
tion. Ifunaddressed, these amplicons can overwhelm the sequencing
library. The ACAGG sequence plays a crucial role in depleting these
PCR amplicons.

Apreviously described method named DASH uses recombinant Cas9
protein and gRNA complex to digest and deplete undesired dsDNA*2,
The ACAGG sequenceis necessary to generate agRNA target sequence
inthe undesired PCR amplicons (underlined sequence). In PCR ampli-
cons formed between nascent RNA and 5’-AzScBc DNA, the comple-
mentation of gRNA is interrupted by the presence of a nascent RNA
sequence, whichmakes the desired productsincompatible with DASH.
AGG serves as the protospacer adjacent motif.

Cellline

The V6.5 mouse ES cells used in this study were established by the Jae-
nisch Laboratory (Whitehead Institute, Massachusetts Institute of
Technology) from the inner cell mass of a 3.5-day-old mouse embryo
froma C57BL/6(F) x129/sv(M) cross.

Cell culture

Mouse ES cells were cultured in Dulbecco’s modified Eagle medium
(Gibco, 11995), plus 10% fetal bovine serum (HyClone, SH30070.03),
supplemented with 1x penicillin-streptomycin (Gibco, 15140), 1x
non-essentialaminoacids (Gibco, 1140), 1x L-glutamine (Gibco, 25030),
1x B-mercaptoethanol (Sigma, M6250) and 1,000 U ml™ leukaemia
inhibitory factor (Sigma, ESG1107) on tissue-culture-treated 10 cm
plates (Corning, CLS430167) pre-coated with 0.2% gelatin (Sigma,
G1890) prepared in PBS (Fisher, MT21031CV). Cells were grown at 37 °C
and 5% CO, and passed with HEPES buffered saline solution (Lonza,
CC-5024) and 0.25% trypsin-EDTA (Gibco, 25200) when 70% confluency
was reached (every 2 days).

Sample preparation
Tissue culture cells were prepared for nuclear run-on reaction by either
nucleiisolation or cell permeabilization as described below. All centrifu-
gation steps were performed at1,000g for 5 min. Cells were collected
by removing the tissue culture medium, rinsing with PBS and placing
the plates onice. Cells were scraped while still on ice. The cells were
collectedintoal5 mlconicaltube and centrifuged at1,000g for 5 min.
For nucleiisolation, the pellet was resuspended in ice-cold dounc-
ing buffer (10 mM Tris-Cl pH 7.4, 300 mM sucrose, 3 mM CacCl,, 2 mM
MgCl,, 0.1% Triton X-100, 0.5 mM DTT, 0.1x Halt protease inhibitor and
0.02 U pl' RNase inhibitor) and transferred to a 7 ml dounce homog-
enizer (Wheaton, 357542). After incubation on ice for 5 min, the cells
were dounced 25 times withatight pestle, transferred back to the 15 ml
conical tube and centrifuged to pellet the nuclei. The pellet was washed
twice in a douncing buffer.



Article

For cell permeabilization, the pellet was resuspended in ice-cold
permeabilization buffer (10 mM Tris-Cl pH 7.4,300 mMsucrose, 10 mM
KCI, 5 mM MgCl,, 1 mM EGTA, 0.05% Tween-20, 0.1% NP-40, 0.5 mM
DTT, 0.1x Halt protease inhibitor and 0.02 U pl* RNase inhibitor). After
incubation onice for 5 min, the cells were centrifuged to pellet the
nuclei. The pellet was washed twice in the permeabilization buffer.

The washed pellet was resuspended in storage buffer (10 mM Tris-ClI
pH 8.0, 5% glycerol,5 mMMgCl,,0.1 MM EDTA, 5 mM DTT, 1x Halt pro-
tease inhibitor and 0.2 U pl™ RNase inhibitor) at a concentration of
5x10°nuclei per 50 pl of storage buffer, flash-frozenin liquid nitrogen
andstored at-80 °C. The nuclei and permeabilized cells in the storage
buffer can be stored for up to 5 years at -80 °C, making them readily
available for nuclear run-on experiments.

Nuclear run-onwith 3’-(0O-propargyl)-nucleotides

A volume of 50 pl of 2x nuclear run-on buffer (20 mM Tris-Cl
pH 8.0, 10 mM MgCl,, 400 mM KCI, 50 uM 3’-(O-propargyl)-ATP,
50 uM 3’-(O-propargyl)-CTP, 50 uM 3’-(O-propargyl)-GTP, 50 uM
3’-(O-propargyl)-UTP, 0.05% Sarkosyl, 1 mM DTT, 2x Halt protease
inhibitorand 0.4 U pl™ RNase inhibitor) was prepared per sample and
heated to 37 °C. Once thawed from -80 °C, permeabilized cells or nuclei
were added to the heated tube containing nuclear run-on buffer and
incubated for 5 minat 37 °Cwith gentle tappingat the incubation mid-
point. Permeabilized cells or nuclei were centrifuged at 500g for 2 min
at4 °C, and the supernatant was aspirated off. The pellet was washed
3 times in 150 pl resuspension buffer (5 mM Tris-Cl pH 8.0, 2.5% glyc-
erol,2.5 mMMgAc,, 0.05 mMEDTA, 1.25 mM MgCl,, 60 mMKCI, 3 mM
DTT, 0.2x Halt protease inhibitorand 0.2 U pl ' RNase inhibitor). After
the final wash, the permeabilized cells or nuclei were resuspended in
a2 mlresuspension buffer and passed through a 35 pm nylon mesh
(Falcon, 352235).

Single-cell sorting and nuclei sorting

Forsingle-celland nucleisorting, 96-well plates with 2.5 pl 8 Mureawere
prepared using a multichannel or 96-well pipettor (Avidien MicroPro
300, 30835029). Single cell and nuclei populations characterized by
forward and side scattering were sorted by FACS into the 96-well plate
containing urea. The sorted plates can be used in CUAAC directly or
sealed with aluminium foil or a plastic seal and stored at -80 °C.

CuAAC

A 96-well plate containing 5’-AzScBc DNA with a unique cell barcode
in each well previously synthesized and aliquoted was thawed from
-80 °C. Sodium ascorbate, PEG 8000, CuSO, and accelerating ligand
BTTAA were prepared and dispensed into each well of the 96-well
plate containing 5’-AzScBc DNA. The CuAAC reaction mix was dis-
pensed into individual wells containing single cells in urea using a
multichannel or 96-well pipette. The final concentration of CUAAC
reactionineach wellwas 30 nM 5’-AzScBc DNA, 800 mM sodium ascot-
bate, 15% PEG 8000,1 mM CuSO,, 5mM BTTAA and 2.66 M ureaina
7.5 pl volume. The 96-well plates were sealed, vortexed for 10 sin an
orbital vortexer and centrifuged for 1 min at 500g before incubation
for2hat50°C.

Afterincubation, the CuAAC reaction was quenched with 5 mM EDTA
and pooled from 96 wells into a1.5 ml Eppendorftube. PEG 8000 was
removed using TRIzol. The remaining CuAAC reagents (sodium ascor-
bate, CuSO, and BTTAA) were removed with a centrifugal filter with
3 kDa cellulose membrane (Amicon, 2020-04). The purified RNA was
fragmented with 10 mM ZnCl, for 5 min at 65 °C.

RT through the triazole link and pre-amplification

RT of the clicked RNA-DNA conjugate was performed with highly
processive Moloney murine leukaemia virus (M-MuLV) reverse tran-
scriptase lacking RNase H activity but capable of RNA-dependent and
DNA-dependent polymerase activity, non-templated addition and

template switching (Thermo Fisher, EPO751). RT reaction (1x RT buffer,
0.5mMdNTPs, 0.8 U ul ' RNase inhibitor,16% PEG 8000, 1 uMRT primer
(except for hairpin-forming 5’-AzScBc DNA), and 1 pm TSO) was incu-
bated with the RNA-DNA conjugate for 2 h at 50 °C. The cDNA was
size-selected in10% denaturing PAGE away from the unclicked 5’-AzScBc
DNA and empty cDNA formed between the 5-AzScBc DNA and TSO.

The purified cDNA was PCR amplified for 6 cycles to generate dsDNA
with NEBNext Ultra Il Q5 High-Fidelity 2x master mix (NEB, M0544)
and 0.5 uM PCR primers with unique dual index using the PCR cycles
presented in Supplementary Table 8.

Removal of empty adaptors using DASH

The dsDNA from the pre-amplification of cDNA was subjected to
DASH to remove the undesired amplicons formed by RT of unclicked
5’-AzScBc DNA and TSO, as described above. Cas9-gRNA complex
(6.6 UM Streptococcus pyogenes Cas9 nuclease (NEB, MO386T),
20 uM gRNA, 1x NEBuffer r3.1 and nuclease-free duplex buffer
(IDT, 11-05-01-04)) was prepared by incubation for 15 min at 25 °C.
The incubated complex was added to the cleaned PCR reaction and
incubated for1hat37°C.

PCR amplificationand NGS
The DASHed library was PCR amplified with NEBNext Ultra Il Q5
High-Fidelity 2x master mix (NEB, M0544) and 0.5 pM PCR primers
with a unique dual index using the two-step PCR cycles presented in
Supplementary Table9.

The NGS library was sequenced on Illumina NovaSeq SP100 flow
cells with 64 nucleotides forward read, 43 nucleotides reverseread, 8
nucleotidesindex 1and 8 nucleotides index 2.

Alignment and pre-processing

Adaptor sequences were removed from paired-end fastq files using Cut-
adapt®. Inbrief, the read 1 sequence CCCCTGTCTCTTATACACAT and
theread 2sequence AGATCGGAAGAGCGTCGTGT were trimmed with a
maximum error rate of 0.15, requiring aminimum overlap of 12 nucleo-
tides between the read and adapter. The resulting adapter-trimmed
reads were demultiplexed using Flexbar®. Cell barcodes and UMIs
were extracted from the 5’ end of read 1, applying a barcode error
rate of 0.15 and retaining reads of at least 14 nucleotides in length.
The adapter-clipped and demultiplexed reads were first mapped to
the mouse ribosomal genome using bowtie2 (ref. 56) in--very-sensitive
mode. The reads unmapped to the ribosomal genome were mapped
to the mouse genome (mm10 build) in --very-sensitive mode. After
mapping, duplicate reads were identified and removed utilizing UMI
and mapping coordinates with UMI-tools”.

Filtering experimental batches and cells

The scGRO-seqbatches with r* values of at least 0.6 against at least 60%
ofall batches were selected for further analysis. Cells were required to
containaminimum of 1,000 UMIs and 750 features for further analysis.
Our study involved 17 batches of scGRO-seq experiments across 39
96-well plates, encompassing a total of 3,744 cells. Of these, 36 plates
(each containing a minimum of 24 high-quality cells) and 2,635 cells
met the threshold.

Estimation of capture efficiency

The average capture efficiency of scGRO-seq was estimated to be
approximately 10%. We used data from the intron seqFISH study”,
which quantified the abundance of 34 introns by single-molecule fluo-
rescentin-situ hybridization (smFISH). Based on the slope of the line of
best fit between data from smFISH and intron seqFISH, the detection
efficiency of intron seqFISH was estimated to be 44%. When scGRO-
seq was compared with intron seqFISH, the detection efficiency of
scGRO-seq was 26% of intron seqFISH. Based on these two detection
efficiencies, the estimated capture efficiency of scGRO-seq is about



10% (26% of 44% is approximately 10%). This estimate is based on the
8 min of median time required for intron to be spliced out once it is
transcribed, which ranges from 5 to 10 min according to several stud-
iesusing diverse methods*®®*. Thus, the capture efficiency of 10%isan
average approximation and can vary among cells and batches.

Enhancer annotation

Active transcription regulatory elements (TREs) in mouse ES cells
were identified with PRO-seq data using dREG®. Further filtering of
the dREG results, carried out to eliminate TREs within or proximal to
1,500 bp of the RefSeq annotated genes (n = 23,980), identified 68,299
high-confidence TREs. The remaining TREs within 500 bp of each other
were combined, which resulted in the final list of 12,542 enhancers. To
capture nascent RNA derived from elongating RNA polymerases at
these enhancers, the TREs were extended atleast 1500 bp from the TSS
inbothdirections. The overlapping enhancers were stitched together
after extension.

Transcription unit calling

groHMM (https://www.bioconductor.org/packages/release/bioc/
vignettes/groHMM/inst/doc/groHMM.pdf) was used to call de novo
transcription unit on PRO-seqdata. All combinations of tuning param-
eters (-50,-100,-200,and -400 for LPand 5,10, and 15 for UTS) were
tested. LP represents the ‘log-transformed transition probability of
switching from transcribed state to non-transcribed state’, and UTS
represents ‘the variance of the emission probability for reads in the
non-transcribed state’. In our test, =50 LP and 10 UTS performed best
for optimal transcription unit calling.

Evidence of bursting

Transcriptional bursting was examined de novo using scGRO-seq data
by measuring two parameters: the multiplicity of RNA polymerases
and the distance between the RNA polymerases. The bursting model
suggests that transcription occurs in short bursts punctuated by
long silent periods, which results in on and off states. The alternative
modelis the relatively uniform transcription initiation by primarily
solitary RNA polymerase. We expected two observations under the
bursting model.

First, we expected a higher incidence of more than one RNA polymer-
ase per burst and a concurrent depletion of single RNA polymerases.
To test the evidence of bursting, we selected genes longer than 11 kb
(n=13,564) and trimmed 0.5 kb regions from the 5’ and 3’ ends of the
genethatareknownto harbour paused polymerases. With an average
transcription rate of 2.5 kb min™, the remaining 10 kb region resulted
inan observation window of 4 min. Based on the evidence of monoal-
lelic transcription described in the main text and a short observation
window of 4 min, we assigned all signals for ageneinindividual cellsto
oneallele. We quantified the observed incidence of zero, one (singlets)
and more than one RNA polymerase (multiplets) per allele. The majority
of alleles had zero polymerase. To calculate the expected incidences
of RNA polymerases under the non-bursting model, we permuted the
cellidentity of scGRO-seqreads 200 times without changing theread
positions. The permutation maintains the number of UMIs per cell,
breaks the bursting-mediated association between RNA polymerases,
and mimics the RNA polymerases distribution under the non-bursting
model. We quantified the permuted incidences of zero, singlets and
multiplets.

Second, if more than one RNA polymerase is observed in the burst
window, either due to transcriptional bursting or random chance, we
expected thetranscription bursting model would resultinmore closely
spaced molecules than expected by the random chance. We took all
multiplets in observed or permuted data and calculated the distance
between RNA polymerase molecules within each pair. We binned the
distances in 50 bp bins and calculated the ratio of RNA polymerase
pairs between the observed and permuted data.

Burst kinetics

Genesover11 kb (n=13,564) were selected for studying transcriptional
bursting kinetics, and 500 nucleotide regions at both ends known to
harbour paused polymerases were truncated. In cases in which genes
exceeded 10 kb after trimming, they were shortened to 10 kb starting
fromtheinitiation site of the gene. With an average transcription rate of
2.5kb min, this 10 kb burst window served an average burst duration
of 4 min. The calculation of burst size and burst frequency proceeded
as described below.

Burst size. For each gene, the number of cells with at least one read
within the 10 kb burst window (number of bursts) was identified, and
then the average UMIs per burst was computed. If a consistent single
read per burst was observed, the burstsize of that gene was set to 1. How-
ever, iftheaverageburstsize was 1.2, the residual burst above lindicated
ahigherburstsize. Accounting for the 10% capture efficiency, wherein
thelikelihood of capturing paired reads within aburst window is 1%, the
residual burst was proportionally adjusted by the capture efficiency.
Theequation for the burst sizeis shownin Supplementary Fig. 4 (top).

Burst frequency. For each gene, the burst frequency was determined
as the number of bursts per allele (two alleles in autosomal and one in
sex chromosomes) per transcription time. The transcription time was
calculated as the duration needed to traverse the 10 kb burst window
withauniformtranscriptionrate of 2.5 kb min, translating to 4 min. The
calculated burst frequency was normalized by the capture efficiency, tak-
ingtheburstsize into account. Although burst events withalargerburst
size, like ten, would be consistently detected even with 10% capture effi-
ciency, normalization was applied for casesin which aburst size like four
would resultin a 60% false negative rate, which indicated anon-existent
burst despite active bursting. Thus, burst frequency normalization was
scaled by burst size to ensure accurate quantification. The equation for
the burst frequency is shownin Supplementary Fig. 4 (bottom).

Genes with core promoter elements like TATA and Initiator sequences
were retrieved from the Eukaryotic Promoter Database (http://epd.
vital-it.ch)®®. Genes containing a pause button, a sequence associated
with promoter-proximal paused RNA polymerase, were recovered
from the CoPRO dataset®’.

Simulation of idealized burst kinetics

We simulated read counts for populations of single cells to evaluate

the performance of our estimators for burst rate and size. In the first

simulation, we randomly generated the true burst size (T,.) for all

human genes from a normal distribution (mean = 2, standard devia-

tion = 3). Similarly, we generated true burst rates (7,,) for allhuman

genes from a normal distribution (mean =1, standard deviation =1).

T,z less than1was corrected to1, and 7, less than 0.1 burst per hour

was corrected to 0.1. These parameters were used to simulate UMIs

per gene per cell as follows:

1. For each cell and each gene, a sample from a Poisson distribution
with rate parameter A= T,,..

2. Scale the sampled burst by T;,. and round to the nearest integer.

3. After generating molecule counts for allgenes and all cells, randomly
subsample to aspecified level (for example, 10% sampling efficiency)
without replacement.

Inthe second simulation, 7;,.and T,,.. were taken from our genome-
wide estimates described in Fig. 2, and UMIs per gene per cell were
similarly generated. Simulations were performed ten times to ensure
consistent results.

Cell cycle analysis
Three sets of transcriptionally characterized genes were used to
characterize the cell cycle phase in individual cells. Transcription of
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68 replication-dependent histone genes on chromosome 3, chromo-
some 6, chromosome 11 and chromosome 13 were used to determine
the S phase collectively. Transcription of four genes (Orcl, Ccnel, Ccne2
and Mcmé6) were used to assign G1/S phase, and six genes (Weel, Cdkl1,
Cenf, Nusapl, Aurka and Ccna2) were used to assign G2/M phase. Cells
with more than a read in one of the genes or reads in more than one
gene were hierarchically clustered, which revealed three major clus-
ters of the cell-cycle-phase-specific transcription pattern. The other
three smaller clusters without distinct transcription patterns were not
considered for downstream analyses. Differentially expressed genes
among G1/S, Sand G2/M phases of the cell cycle were identified using
the ‘FindAllFeatures’ function of Seurat® (single-cell analysis package).

Gene-gene co-transcription

The co-transcription of genes was determined using two criteria: cor-
relation and permutation. scGRO-seq reads were collected fromup to
thefirst10 kb of genes after 500 bp regions at both ends were trimmed
(n=15,666). The genes by cells expression matrix was binarized. For the
correlation approach, pairwise correlation was performed for all gene
pairs, and the P value was calculated using the chi-square test. It was
adjusted for multiple hypothesis tests using the Benjamini-Hochberg
correction method.

Permutation was performed by shuffling the cellidentifiers of reads
while maintaining their gene assignments. The permutation method
accounts for severalunknown and knownbiases and, more importantly,
maintains the number of readsin each cell. The observed and permuted
co-transcription frequencies of gene pairs were calculated. The empiri-
cal Pvalue for a gene pair was determined by counting the incidence
of equal or higher co-transcription frequency in 1,000 permutations
compared with the observed co-transcription frequency.

Gene pairs with correlation coefficients of greater than 0.1 and
multiple hypothesis corrected P values of less than 0.05 from the cor-
relation approach and an empirical P value of less than 0.05 from the
permutation approach were considered co-transcribed. A network of
pairwise co-transcribed genes was created using the Leiden algorithm,
and the modules were selected for gene ontology analyses using the
clusterProfiler R package.

Enhancer-gene co-transcription

Enhancer-gene co-transcription was determined following the logic
of gene-gene co-transcription, substituting genes on one arm with
enhancers. scGRO-seqreads were collected from up to the first 10 kb
of genes after 500 bp regions at both ends were trimmed, and from
atleast a3 kb region around enhancers (1,500 bp sense and 1,500 bp
antisense) after a 500 bp region around the TSS was removed to
avoid paused polymerases. Strand-specific reads on either side of the
enhancer TSS were combined to determine enhancer expression. The
features (genes + enhancers) by cell expression matrix was binarized,
and the co-transcribed enhancer-gene pairs were determined using
the correlation and permutation tests, similar to the approach used
in the gene-gene co-transcription calculation. The UMIs per cell are
maintained in each permutation. Enhancer-gene pairs only from the
same chromosomes were retained for downstream analyses. We also
included non-overlapping SEs identified in mouse ES cells.

Enhancers of pluripotency factors

Validated enhancers associated with pluripotency transcription fac-
tors OCT4 (also known as POUSF1), SOX2, Nanog and KLF4 were col-
lected from studies referenced in the main text. To define time bins
within genes, genes were divided into 5 kb bins (2-min bins calculated
using the 2.5 kb min™ constant transcription rate of elongating RNA
polymerases) in the sense and antisense direction until the end of the
transcription wave called by groHMM®, or they overlapped bins from
other genes. For enhancers, the TSS was first determined based on the
strongest OCT4, SOX2 and Nanog chromatin immunoprecipitation

and sequencing (ChIP-seq) peaks. The precise position was deter-
mined by evaluating the divergent transcription around them. The
reads from corresponding bins in sense and antisense directions
were combined.

CRISPR-validated SEs

A set of validated SEs and their target genes were used from a previ-
ously published study referenced in the main text. SEsin gene introns
or associated with miRNA were excluded due to the ambiguity in
assigning reads and short gene length, respectively. For the time bin
analyses, genes and SEs were divided into four 5 kb bins (2-min with the
2.5 kb min™ constant transcription rate of elongating polymerases)
inthe sense and antisense direction, limiting the analyses to the first
20 kb. Using a20 kb regionin this analysis yields four 5 kb bins. The TSS
was first determined based on the strongest OCT4, SOX2 and Nanog
ChIP-seqpeaks, and precise position was determined by evaluating the
divergent transcription around them. The reads from corresponding
binsinsense and antisense directions were combined. The scrambled
random pairsin SE-gene time bin analysis represent the co-transcribed
bins between SEs and genes that are not the verified pairs.

External data

Various data types were analysed, compared and benchmarked
against this study. PRO-seq data (GSE169044), ChIP data for p300
(GSM2360934), ATAC-seq (GSE169044), CDK9 (GSM1082347), RNA
Polll (GSM318444), H3K4mel (GSM281695), H3K4me3 (GSM1082344),
H3K27Ac (GSM594579), OCT4 (GSM1082340), SOX2 (GSM1082341)
and Nanog (GSM1082342) were downloaded from the Gene Expres-
sion Omnibus database. PRO-seq libraries were prepared using the
same cells used for scGRO-seq under identical conditions™. Intron
seqFISH data on mouse ES cells were downloaded from table S1 of
ref. 17. The genes-by-cells intron seqFISH matrix was binarized, and
burst frequency was calculated assuming the signal in each gene comes
from aburst equivalent to the 10 kb region used in scGRO-seq, given
the probes were designed against theintrons at the 5’ regions of genes.
MouseES cell scRNA-seq was used froma previous study’, and the burst
kinetics was downloaded from 41586 2018 836 MOESMS5 _ESM.xIsx file
associated with this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequencingfiles for scGRO-seq, inAGTuC and AGTuC experiments have
been deposited into the NCBI's Gene Expression Omnibus database
and are accessible through GEO series accession number GSE242176.
The published datasets used in this study were obtained from the
GEOrepository (identifiers GSE169044, GSM2360934, GSM1082347,
GSM318444, GSM281695, GSM1082344, GSM594579, GSM1082340,
GSM1082341and GSM1082342), supplementary table S1ofref.17,and
41586 2018 836_MOESMS5_ESM.xIsx file of ref. 7.

Code availability

The code used in this study is available from GitHub (https://github.
com/jaymahat/scGROseq).
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Extended DataFig. 1| click-chemistry mediated nascent RNA conjugation
tosingle-stranded DNA and optimization of reverse transcription.

a, Click-chemistry compatible nucleotides tested in AGTuC development.
Afewnucleotide triphosphates were custom synthesized or sourced with few
propertiesinmind - smaller size, chain termination ability, and the possibility
ofincorporation by native RNA polymerases. b, Structure of the triazole
linkage formed by CuAAC between the nascent-RNA terminally labeled with
3-(O-Propargyl)-NTPs and the azide-labeled DNA (top left), the linkage formed
by SPAAC between the nascent-RNA terminally labeled with 3-Azido-3-dNTPs
and DBCO DNA (right). The phosphodiester linkage in a native oligonucleotide
isshown for comparison (bottom left). ¢, Incorporation efficiency of
3-(O-Propargyl)-ATP or 3-Azido-3’-dATP by native RNA polymerase in nuclear
run-onreaction. The propargyl or azide labeled nascent RNA is clicked with
Cy5via CuAAC (Azide-CySor Alkyne-CyS5) or SPAAC (DBCO-CyS5), resolved
inadenaturing polyacrylamide gel electrophoresis (PAGE), and quantified

by measuring the CyS5 fluorescent from the gelimage. The blue dotted line

represents the quantified gel region. d, Relative quantification of reverse
transcription (RT) efficiency of two commercial enzymes traversing through
thetriazolelink formed between the alkyne-labeled RNA and azide-labeled
DNADby CuAAC.RT was performed inthe presence of either native dCTP or
radioisotope a-**P dCTP, and the RT reaction was resolved in denaturing PAGE
andimaged sequentially for nucleic acid signal (top gel) and radioisotope
signal (bottom gel). e, Quantification of aborted intermediate and completed
desired products (RT through triazole and TSO used) formed during the one hour
or three hours of RT using TSO with terminal Locked-Nucleic-Acid-Guanosine
(LG) or 2-Fluoro-Guanosine (FG). f, Confirmation and relative quantification of
CuAAC, RT,and PCRof clicked product formed between the alkyne-labeled RNA
and azide-labeled DNA by three commercial Reverse transcriptase enzymes.
Note: The bluebar, line, or border represents the “winner” condition.
Polyacrylamide gel electrophoresis for ¢, d, and fwas repeated at least twice
with the addition or subtraction of some conditions presented here. For gel
source data, see Supplementary Fig. 1.
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AGTuC protocol:

Starting material:
tissue culture, organs, biopsies (fresh or flash frozen, but not crosslinked)

!

Nuclei isolation | (1 hr)
dounce homogenization or lysis of cell membrane

|

Nuclear run-on with 3’-(O-Propargyl)-NTPs | (0.5 hr)

!

Fragmentation of RNA | (0.5 hr)
Zinc-chloride or base-hydrolysis

!

CuAAC with adaptor DNA | (2 hr)

!

Optional - Enrichment of nascent RNA | (1 hr)
Enzymatic degradation of non-nascent RNA and excess single-cell-barcoded-DNA

|

Reverse transcription with template switching oligo | (1 hr)

|

PCR amplification and size-selection by SPRI | (2 hr)

|

Paired-end short-read sequencing and data analysis

include nascent RNA from elongating RNA polymerases, and the datawas
plotted onalog-logscale to show the range of data distribution. ¢, Metagene
profiles of AGTuC and PRO-seq UMIs per million per 10 base pair bins around
the TSS of genes (left, n=19,961) and enhancers (right,n=12,542). Theline
represents the mean, and the shaded region representsa95% confidence
interval.d, Major steps with the approximate time required in AGTuC library
preparation.
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concentrations. Nascent RNA collected after nuclear run-on reaction with
either native CTP or click-compatible 3"-(O-Propargyl)-CTP was clicked with
CyS5-azide, resolved in denaturing PAGE, and imaged for Cy5 fluorescence.

c, Effect of different ratios of CUAAC accelerating ligand BTTAA in CUAAC
efficiency. RNA-propargyl was clicked with azide-DNA containing CySinthe
presence of various ratios of BTTAA:CuSO,, resolved indenaturing PAGE,
andimaged for Cy5 fluorescence. d, Relative quantification of denaturing
efficiency of commonly used denaturing agents torelease the nascent RNA
from RNA polymerase complex. Intact nuclei after run-on with 3-(0O-Propargyl)-
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Beads were stained with RNA-binding dye and measured for fluorescence by
FACS. e, Effect of denaturing agent’s presence in CuAAC efficiency. The blue
outlineintheimage of denaturing PAGE denotes the click product between the
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Fluorescence from Cy5-labeled RNA-DNA conjugate was measured in elution
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PEG8000.h, Relativerecovery of ssDNA or RNA from phenol:chloroform or
silica-based matrix column purification. Clicked RNA-DNA conjugate was
radioisotope labeled using Polynucleotide kinase and y-**P ATP, and the cleaned
reaction was quantified using a scintillation counter. i, PCR amplification
efficiency of clicked RNA-DNA conjugate using different commercial PCR
amplificationkits. The PCRreaction was resolved in native PAGE, stained with
SYBR Gold, and quantified using ImageJ software. j, Relative recovery of
size-selected dsDNA.Amock NGSlibrary (purified PCR product) was selected
forthe desired size using various size-selection methods, and the recovered
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Extended DataFig. 4 |Benchmarki
a,Representative genome-browser s

UMIs per million

nginAGTucagainst AGTuCand PRO-seq.
creenshots with two replicates of inAGTuC,

AGTuC, and PRO-seqshowing aregioninchromosome 8 (left) and aregionin
chromosome 4 of the mouse genome (mm10). b, ¢, Comparison of inAGTuC
metagene profiles with PRO-seq and AGTuC using UMIs per million per 10 base
pairbinsaround (b) the TSS of genes (n =19,961) and (c) enhancers (n =12,542).

UMIs per million

UMIs per million

libraries. Each well contains 100 nuclei. f, Relationship between the UMIs per
well and the number of features detected per wellin four replicates of 96-well
plateinAGTuClibraries. g, Correlation betweeninAGTuC and AGTuC UMIs per
millionsequencesinthe body of genes (n=19,961) and enhancers (n=12,542).
h, CorrelationbetweeninAGTuC and PRO-seq UMIs per million sequencesin the
body of genes (n=19,961) and enhancers (n =12,542). For panelsgand h, UMIs

Thelinerepresents themean,and theshaded regionrepresentsa95%confidence
interval.d, Correlations of inAGTuC UMIs per million sequencesingene

bodies (n=19,961) between the four replicates. e, Distribution of UMIs per well
(left) and features per well (right) in four replicates of 96-well plateinAGTuC

fromthe 500 bpregions fromeach end of the genes and 250 bp regions from
eachendofthe enhancers wereremoved toonlyinclude nascent RNA from
elongating RNA polymerases, and the datawas plotted on alog-log scale to show
therange of datadistribution.
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Extended DataFig. 5| Feasibility demonstration ofinAGTuC with fewer cells.
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was plotted onalog-logscale to show the range of data distribution.



scGRO-seq protocol:

Starting material:
tissue culture, organs, biopsies (fresh or flash frozen, but not crosslinked)

|

Nuclei isolation
dounce homogenization or lysis of cell membrane

l

Intact nuclear run-on with 3’-(O-Propargyl)-NTPs
Removal of excess 3’-(O-Propargyl)-NTPs

|

Single nuclei deposition in multi-well plates containing Urea
Cell dispenser, cell sorter, or limiting dilution

|

CuAAC with single-cell-barcoded-DNA
Automated or manual dispense

|

Clean- up and Isolation of single-cell barcoded nascent RNA
Enzymatic degradation of non-nascent RNA and excess single-cell-barcoded-DNA (optional)

|

Fragmentation of RNA
Zinc-chloride or base-hydrolysis

|

Reverse transcription with template switching oligo

|

Selection of cDNA
Size-selection or enzymatic degradation

|

Incorporation of NGS adaptors by PCR pre-amplification

|

Removal of empty amplicon by CRISPR
Formed by reverse transcription of excess single-cell-barcoded-DNA incorporating TSO

|

Final PCR amplification and size-selection

|

Paired-end short-read sequencing and data analysis

Extended DataFig. 6 |scGRO-seq library preparation. Major stepsinvolved
inscGRO-seq library preparation.
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Extended DataFig.7|Additional benchmarking of scGRO-seq. a, Coefficient
of determination (r>) between each 96-well plate from scGRO-seq batches that
passed the quality-control threshold. r?was calculated from average UMIs per
96 cellsin allgenes and enhancers. b, Distribution of sScGRO-seq features
(genes+enhancers) per cell. ¢, Relationship between the number of features
detected per cell and the UMIs per cell (left) or UMIs in features per cell (right)
inscGRO-seq. Colorsindicate different batches of scGRO-seq.d, Correlation
between scGRO-seq and PRO-seq UMIs per million sequencesin gene bodies
(left,n=19,961) and enhancers (right, n=12,542). UMIs from the 500 bp regions
fromeachend of the genes and 250 bp regions from each end of the enhancers
were removed to only include nascent RNA from elongating RNA polymerases,
and the datawas plotted on alog-log scale to show the range of data distribution.

Distance from enhancer TSS (bp)

e, Metagene profiles of scGRO-seq compared withinAGTuC UMIs per million
per10 base pair binsaround the TSS of genes (left, n =19,961) and enhancers
(right,n=12,542). Thelinerepresents the mean, and the shaded region
represents the 95% confidence interval. f, Comparison of metagene profiles
betweenscGRO-seqand PRO-seq UMIs per million per 10 base pair bins around
the TSS of genes (left, n=19,961) and enhancers (right,n=12,542). Theline
represents the mean, and the shaded region represents 95% confidence interval.
g, Correlation between scGRO-seq and scRNA-seq UMIs per cellin the body of
genes (left,n=19,961). UMIs from the 500 bp regions from eachend of the genes
wereremoved to only include nascent RNA from elongating RNA polymerases,
and the datawas plotted on alog-logscale to show the range of datadistribution.
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Extended DataFig. 9| Co-transcription of genes with shared function.

a, Genome-browser screenshot of the histone locus body in mouse chromosome
13 showing transcription of replication-dependent histone genes. b, Network
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|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software except lllumina NExtSeq 5000 and NovaSeq basecalling was used.

Data analysis The R (v 4.2.2) scripts written in Jupyterlab (v 3.4.3) used for data analyses are publicly available on GitHub (https://github.com/jaymahat/
scGROseq). We additionally used Python (v 3.6.4), cutadapt (v 1.16), bamtools (v 2.5.1), samtools (v 1.10), bedtools (v2.29.2), bowtie2 (v
2.3.5.1), flexbar (v 3.5), fastqc (v 0.11.5), DESeq2 (v 1.38.0), Seurat (v 4.3.0), clusterProfiler (v 4.6.0), IGV (v 2.13.0), and GSEA (v 4.3.3).
Transcription unit calling was performed using groHMM (https://github.com/dankoc/groHMM)). Enhancers were called using dREG-HD
(https://github.com/Danko-Lab/dREG.HD).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw and processed data generated in this study are deposited in Gene Expression Omnibus under accession number GSE242176. The published datasets
analyzed for this study were obtained from the GEO repository (GSE169044, GSM2360934, GSE169044, GSM1082347, GSM318444, GSM281695, GSM1082344,
GSM594579, GSM1082340, GSM1082341, GSM1082342), Supplementary Table S1 of a published manuscript (https://doi.org/10.1016/j.cell.2018.05.035) and
reprocessed, and 41586_2018_836_MOESM5_ESM.xIsx file of a published manuscript (https://doi.org/10.1038/s41586-018-0836-1).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We performed scGRO-seq on 39 96-well plates and 3,744 cells, of which 36 plates and 2,635 cells passed the threshold.
No Sample size calculation was performed. We collapsed the scGRO-seq libraries to generate psuedo-bulk and compared against inAGTuC,
AGTuC, and PRO-seq library prepared from millions of nuclei. We found robust recapitulation of nascent-RNA profiles generated from 2,635

single cells and deemed that the scGRO-seq sample size is sufficient for the analyses we performed in this manuscript.

Data exclusions  The scGRO-seq batches with r2 of at least 0.6 against at least 60% of all batches were selected for further analysis. Cells were
required to contain a minimum of 1,000 UMIs and 750 features for further analysis.

Replication We performed scGRO-seq on 39 96-well plates and 3,744 cells, of which 36 plates and 2,635 cells passed the threshold.

The 36 replicates of scGRO-seq libraries were prepared over the span of three years. The robustness of correlation among various batches as
presented in Extended Data Fig. 7a demonstrates the reproducibility of scGRO-seq method.

At least two replicates were prepared for inAGTuC and AGTuC libraries.

Randomization  Mouse embryonic stem cells after run-on with 3'-O-Propargyl NTPs were randomly sorted into 96-well plates. 16 frozen 96-well plates with
single mES cell in each well out of 40-60 plates prepared for each experiment were randomly selected for scGRO-seq library preparation.

Blinding Blinding was not necessary. We performed scGRO-seq library preparation 39 times and the samples were randomly handled by three
researches at various stages. The roles assigned in tissue culture of mES cells, harvesting of nuclei, run-on with 3'-O-Propargyl NTPs was
random among the three researchers.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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Plants

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) V6.5 mouse embryonic stem cells (mESCs) was used in this study. It was established by the Jaenisch laboratory (Whitehead
Institute, Massachusetts Institute of Technology) from the inner cell mass (ICM) of a 3.5-day-old mouse embryo from a
C57BL/6(F) X 129/sv(M) cross.

Authentication V6.5 mouse embryonic stem cells were authenticated under microscope for tissue culture phenotype, size of nuclei during
FACS, and more importantly, the nascent RNA profile compared with previously published nascent RNA profiles from mouse
embryonic stem cells.

Mycoplasma contamination Cell lines were tested for mycoplasma contamination on a regular basis using a PCR-based test and confirmed for
mycoplasma-free.

Commonly misidentified lines  n/a
(See ICLAC register)

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication gg;;;ﬁ};éug;})}./ authentication-proceduresfor-each-seed-stock-tised-or-novel-genotype-generated—bescribe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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