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Single-cell nascent RNA sequencing unveils 
coordinated global transcription

Dig B. Mahat1, Nathaniel D. Tippens1, Jorge D. Martin-Rufino2, Sean K. Waterton1,3, Jiayu Fu1,4, 
Sarah E. Blatt1,5 & Phillip A. Sharp1 ✉

Transcription is the primary regulatory step in gene expression. Divergent 
transcription initiation from promoters and enhancers produces stable RNAs from 
genes and unstable RNAs from enhancers1,2. Nascent RNA capture and sequencing 
assays simultaneously measure gene and enhancer activity in cell populations3. 
However, fundamental questions about the temporal regulation of transcription and 
enhancer–gene coordination remain unanswered, primarily because of the absence 
of a single-cell perspective on active transcription. In this study, we present scGRO–
seq—a new single-cell nascent RNA sequencing assay that uses click chemistry—and 
unveil coordinated transcription throughout the genome. We demonstrate the 
episodic nature of transcription and the co-transcription of functionally related 
genes. scGRO–seq can estimate burst size and frequency by directly quantifying 
transcribing RNA polymerases in individual cells and can leverage replication- 
dependent non-polyadenylated histone gene transcription to elucidate cell cycle 
dynamics. The single-nucleotide spatial and temporal resolution of scGRO–seq 
enables the identification of networks of enhancers and genes. Our results suggest 
that the bursting of transcription at super-enhancers precedes bursting from 
associated genes. By imparting insights into the dynamic nature of global transcription 
and the origin and propagation of transcription signals, we demonstrate the ability  
of scGRO–seq to investigate the mechanisms of transcription regulation and the role 
of enhancers in gene expression.

Transcription is a discontinuous process characterized by short bursts 
and long inter-burst silent periods4,5. Decoding the origin and circuits 
of burst signals is crucial for understanding the mechanisms of tran-
scription regulation during the cell cycle, development and disease. 
Core promoter elements, transcription factors and enhancers are 
implicated in the regulation of burst kinetics, but their precise role in 
determining overall transcription output remains unsettled6,7. Whether 
the widely accepted view of stochastic transcription of individual genes 
conceals co-transcription of functionally related genes and coordina-
tion between enhancer–gene pairs holds broad significance in under-
standing gene regulation. From a clinical perspective, assessing the 
contribution of enhancers in the regulation of protein-coding genes 
can unlock a largely unexplored genomic landscape for therapeutics.

Active enhancers are occupied by transcription factors and RNA 
polymerase, similar to the gene promoters they regulate, which results 
in the synthesis of non-coding, non-polyadenylated and unstable 
RNA3,8. Enhancers are highly specific to cell types and states9, and exert 
cis-regulatory effects over long genomic distances10. Genome-wide 
association studies further underscore the role of enhancers in gene 
regulation, showing that more than 90% of genomic loci associated 
with traits and diseases are found in non-coding regions with many 
overlapping enhancers11. However, linking enhancers that harbour 

causal variants to genes remains challenging. Although low through-
put, genome-editing tools can potentially map enhancer–gene pairs, 
but the pleiotropic nature6 and weak effect of individual enhancers 
hinder their utility.

Existing genomic tools that probe the coding and non-coding 
genome without perturbation by assessing chromatin conformation, 
histone modifications and chromatin accessibility have shed light on 
the molecular events that lead up to enhancer-mediated gene activa-
tion. However, these tools do not fully confirm the actual activation 
event12. Despite having similar chromatin features, the distinguish-
ing feature of an active enhancer from its inactive counterpart is its 
transcription13. Nascent RNA sequencing assays, such as global run-on 
and sequencing (GRO–seq)2 and precision run-on and sequencing 
(PRO–seq)14, enable the simultaneous quantification of transcription 
in genes and enhancers. However, these bulk cell assays average the 
discontinuous transcription from individual cells, which makes it chal-
lenging to decipher transcription dynamics and to assign enhancer–
gene relationships.

Here we present a new single-cell nascent RNA sequencing method, 
which we term scGRO–seq, that uses copper(I)-catalysed azide-alkyne 
cycloaddition (CuAAC or click chemistry)15 to assess genome-wide 
nascent transcription in individual cells in a quantitative manner. Our 
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analyses of genes and enhancers across 2,635 individual mouse embry-
onic stem (ES) cells provide a comprehensive view of the dynamic nature 
of transcription. We leverage elongating RNA polymerases as built-in 
clocks and measure the distance travelled from the transcription start 
site (TSS) to estimate transcriptional burst kinetics. Using a class of 
cell-cycle-phase-specific genes undetected by most single-cell meth-
ods, we quantify the dynamics of transcription during the cell cycle. 
We use the single-nucleotide temporal resolution of genome-wide 
transcription in individual cells to reveal the co-transcribed gene–gene 
and enhancer–gene networks that are turned on within a few minutes 
of each other. Using a set of validated enhancer–gene pairs, our data 
suggest that transcription initiates at enhancers before the activation 
of transcription at the associated genes. Overall, scGRO–seq bridges a 
gap in the study of temporal control of transcription and the functional 
association of enhancers and genes. These insights will shed light on 
gene regulatory mechanisms in essential cellular processes and disease.

Development of scGRO–seq
The primary challenge in capturing and sequencing nascent RNA from 
individual cells is attaching unique single-cell tags onto nascent RNA. 
Existing nascent RNA sequencing methods selectively capture tagged 
nascent RNA from a cell population, which makes single-cell deconvolu-
tion impossible. By contrast, single-cell RNA sequencing (scRNA-seq) 
methods capture mRNA by annealing with the poly(A) tail and attaching 
single-cell barcode sequences by reverse transcription (RT). Nascent 
RNA lacks a terminal poly(A) tract or any other consensus sequence 
and must be selectively labelled and enriched from abundant total 
cellular RNA.

We designed a new strategy to selectively label nascent RNA through 
a nuclear run-on reaction in the presence of modified nucleotide 
triphosphates (NTPs) compatible with CuAAC conjugation. CuAAC is 
highly efficient and selective, robust under diverse reaction conditions, 
enzyme-free and compatible with automation. First, we developed, 
optimized and systematically characterized an assay for genome-wide 
transcriptome using click chemistry (AGTuC): a cell-population-based 
nascent RNA sequencing method that uses 3′-(O-propargyl)-NTPs in 
mouse ES cells (Extended Data Figs. 1a–f and 2a–d). It takes about 8 h 
to prepare an AGTuC library. However, the high concentration of ionic 
detergent in AGTuC disrupts nuclear membranes during the run-on 
reaction, which makes RNA from individual cells indistinguishable for 
single-cell barcoding. We therefore developed an iteration of AGTuC 
whereby nascent RNAs in individual nuclei are labelled with alkyne 
through run-on with 3′-(O-propargyl)-NTPs but without disrupting the 
nuclear membrane (termed intact-nuclei AGTuC (inAGTuC)) (Extended 
Data Figs. 3a–j and 4a–h). We prepared inAGTuC libraries in 96-well 
plates with 12 cells per well (c.p.w.), 120 c.p.w. and 1,200 c.p.w. (which is 
roughly equivalent to 1,000, 10,000 and 100,000 nuclei, respectively). 
We tested for correlation between this method and with PRO–seq 
(Extended Data Fig. 5a–d), and the results demonstrated the feasibility 
of profiling nascent RNA with small sample sizes. Based on the cor-
relation slope, the inAGTuC library with as low as about 1,000 nuclei 
showed similar efficiency as PRO–seq in detecting nascent transcrip-
tomes. The higher efficiency, lower cost, shorter library preparation 
time and lower sample input make AGTuC and inAGTuC viable alterna-
tives to existing methods such as PRO–seq. By enabling the compart-
mentalization of intact nuclei that contain click-compatible nascent 
RNA and 5′-azide single-cell-barcoded (5′-AzScBc) DNA molecules 
using fewer nuclei, inAGTuC laid the ground for single-cell nascent 
RNA sequencing.

Building on this foundation, we applied our newly developed chem-
istry to single cells (Fig. 1a). For congruence with the original nascent 
RNA sequencing method of GRO–seq, we named this single-cell version 
scGRO–seq. Intact nuclei containing nascent RNA labelled with prop-
argyl, following a nuclear run-on reaction with 3′-(O-propargyl)-NTPs, 

were sorted individually into 96-well plates. Each well contained 
a small volume of 8 M urea, which lyses the nuclear membrane and 
denatures RNA polymerase and releases propargyl-labelled nascent 
RNA. The addition of CuAAC reagents led to the covalent linkage of 
propargyl-labelled nascent RNA to a unique 5′-AzScBc DNA molecule 
in each well. After CuAAC, single-cell-barcoded nascent RNAs from 
96 wells were pooled, reverse transcribed in the presence of a tem-
plate switching oligonucleotide (TSO), PCR amplified and sequenced 
(Extended Data Fig. 6). Despite a span of more than 3 years between 
the generation of various scGRO–seq library replicates, the differ-
ent batches showed strong correlation at the level of the 96-well plate 
(Extended Data Fig. 7a).

The scGRO–seq results recapitulated the inAGTuC and PRO–seq 
profiles at both genes and enhancers (Fig. 1b) and provided a compre-
hensive map of nascent transcription in individual cells. We performed 
17 batches of scGRO–seq experiments with 39 96-well plates and 3,744 
cells, of which 36 plates and 2,635 cells passed the threshold (Meth-
ods). We captured an average of 3,665 reads and 1,503 features (genes 
and enhancers) per cell (Fig. 1c and Extended Data Fig. 7b). Moreover, 
pseudo-bulk scGRO–seq counts from collapsed single cells in genes and 
enhancers correlated well with bulk counts from inAGTuC (Fig. 1d). An 
analysis of the sequencing depth indicated the possibility that more 
reads and features per cell could be discovered with further develop-
ment of the technology and deeper sequencing (Extended Data Fig. 7c). 
However, scGRO–seq is less efficient in capturing nascent RNA from 
promoter–proximal pause sites. We attribute this limitation to the 
reduced run-on efficiency of paused RNA polymerase II (PolII) in the 
absence of a high concentration of strong detergent16. This difference 
in promoter–proximal run-on efficiency was reflected in the reduced 
correlation between scGRO–seq and PRO–seq libraries (Extended Data 
Fig. 7d), as well as in the metagene profiles around the TSS of genes and 
enhancers (Extended Data Fig. 7e,f).

After confirming that scGRO–seq recapitulates results from bulk 
nascent RNA sequencing methods, we benchmarked scGRO–seq 
against other RNA-based single-cell assays. The closest single-cell 
method that probes nascent transcription is intron seqFISH, which is 
a multiplexed single-molecule in situ nascent RNA hybridization and 
imaging method17. We confirmed that the correlation between scGRO–
seq and intron seqFISH is similar to the correlation reported between 
intron seqFISH and GRO–seq (Fig. 1e). By contrast, scGRO–seq poorly 
correlated with scRNA-seq (Extended Data Fig. 1g), which is probably 
due to differences in mRNA stability and capture methods. Neverthe-
less, as expected, scGRO–seq reads were more likely to be intronic or 
intergenic than scRNA-seq reads (Fig. 1f). Overall, the suite of genomic 
assays presented here utilizes a new biochemical approach to provide 
a snapshot of genome-wide transcription at various cell resolutions, 
including individual cells.

Direct measurement of burst kinetics
Estimates of transcriptional kinetics primarily come from low- 
throughput live-cell imaging or fluorescent in situ hybridization in 
fixed cells18,19. The intron seqFISH method is limited to predefined 
gene targets, requires specialized probes and assumes that all intronic 
RNAs have the same kinetic fate. Approaches based on next-generation 
sequencing (NGS) are comprehensive and technically more acces-
sible. However, the current methods measure polyadenylated mRNA 
from single cells20 and fit a simple two-state mathematical model to 
infer transcriptional kinetics7. Bridging this gap, scGRO–seq combines 
high-throughput measurement of transcription with NGS, thereby 
enabling the detection of transcribing RNA polymerases genome-wide 
at single-nucleotide resolution (Fig. 2a).

With this new approach, we examined the evidence of bursting 
de novo without previous assumptions by quantifying the incidence 
of transcribing RNA polymerases. If transcription occurs in bursts, we 
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would anticipate a higher occurrence of more than one RNA polymerase 
per burst (multiplets) than would be expected by chance. Based on the 
approximately 10% capture efficiency of scGRO–seq estimated from 
comparison with intron seqFISH (Methods), the probability of detect-
ing two consecutive RNA polymerases on a gene is 1%. To account for 
differences in unique molecular identifiers (UMIs) per cell, we devised 
a null model using permutation. We permuted reads among cells while 
keeping UMIs per cell and polymerase position unchanged (Methods; 
n = 200 permutations). We then compared the real data to the permuted 
control data and observed fewer singlets (n = 1,052, false discovery rate 

(FDR) = 0.05) and a greater number of multiplets (n = 828, FDR = 0) in 
the real data, which provided evidence for the bursting nature of tran-
scription (Fig. 2b). This result represents a significant 2.4% excess of 
multiplets in real data compared with permuted data. Transcriptional 
bursting would also result in more closely spaced RNA polymerases 
than what would be observed by random chance. When examining the 
distance between multiplets, we observed enrichment of closely spaced 
RNA polymerases (P < 0.05, two-sample Kolmogorov–Smirnov (KS) 
test) (Fig. 2c and Extended Data Fig. 8a), which further strengthened 
the evidence of bursting.
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Fig. 1 | Schematics and benchmarking of single-cell nascent RNA sequencing. 
a, A summary of the scGRO–seq workflow. b, Representative genome browser 
screenshots showing scGRO–seq UMIs at a single-cell resolution, the aggregate 
scGRO–seq profile, the inAGTuC profile, the PRO–seq profile and chromatin 
marks around a gene (left) and an enhancer (right). c, Distribution of scGRO–seq 
UMIs per cell. d, Correlation between aggregate scGRO–seq and inAGTuC UMIs 
per million sequences in the body of genes (left, n = 19,961) and enhancers 
(right, n = 12,542). UMIs from the 500 bp regions from each end of the genes 

and 250 bp regions from each end of the enhancers analysed were removed to 
only include nascent RNA from elongating RNA polymerases. Data are plotted 
on a log–log scale to show the range of data distribution. e, Correlation 
between scGRO–seq UMIs per cell from up to the first 20 kb of genes and intron 
seqFISH counts per cell in the body of genes used in the intron seqFISH study 
(n = 9,666). f, Distribution of scGRO–seq and scRNA-seq UMIs in various 
genomic regions.
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With confidence in the ability of scGRO–seq to discern bursting, we 
directly measured burst kinetics using scGRO–seq counts and their 
genomic positions. We estimated burst size as the average number of 
RNA polymerases per burst, whereas burst frequency was calculated 
as the number of bursts per allele per unit of time required for RNA 
polymerase to traverse through the burst window (Fig. 2d), corrected 
for capture efficiency (Methods). We considered genes longer than 11 kb 
(n = 13,564) and excluded 500 bp regions at either end that are known 
to harbour paused polymerases21, thereby using the remaining 10 kb as 
the burst window. We assigned reads to a single allele based on previous 
evidence showing that alleles in mouse ES cells burst independently to 
generate monoallelic RNA22. With an average RNA PolII elongation rate 
of 2.5 kb min–1 (ref. 23), using a 10 kb region limited the burst detection 
window to 4 min. This short burst window was consistent with bursts 
from one allele and aligned with previous reports24. We simulated 
kinetic measurements using synthetic data to validate the accuracy 
of the model and observed robust performance (Extended Data Fig. 8b). 
We then estimated the kinetic parameters of transcriptional bursts for 
expressed genes (Fig. 2e and Supplementary Table 1). Burst sizes ranged 
primarily between 1 and 4 RNA polymerases per burst, with a mean 
burst size of 1.23. The mean duration of approximately 2 h until the next 
burst obtained using scGRO–seq data matched the 2 h of the global 
nascent transcription oscillation cycle reported using intron seqFISH. 
Using the burst parameters estimated from scGRO–seq data, we again 

tested our model by simulation and observed robust performance 
(Extended Data Fig. 8c). Burst frequency results from scGRO–seq data 
correlated well with intron seqFISH data (Fig. 2f), and the correlation 
was even stronger for genes with a higher burst frequency (Extended 
Data Fig. 8d). However, we observed a poor correlation between burst 
frequencies from scGRO–seq and scRNA–seq data, as well as between 
intron seqFISH and scRNA-seq data (Extended Data Fig. 8e). This find-
ing highlights potential limitations in kinetic estimates derived from 
mature transcripts. In contrast to a previous report18, we did not find 
an impact of gene length on kinetic estimates (Extended Data Fig. 8f). 
We further confirmed that the burst frequencies calculated from 10 kb 
and 5 kb burst windows showed strong agreement (Extended Data 
Fig. 8g), which indicated the reliability of burst kinetic calculations 
from scGRO–seq data.

Core promoter elements can modulate burst parameters7,25. We 
observed a significant variation in core promoter elements with burst 
kinetics (Fig. 2g). Specifically, genes with the TATA element exhibited a 
larger burst size than genes lacking it (P = 4.6 × 10−9), and the presence 
of the initiator sequence further increased the burst size (P = 2.5 × 10−13). 
The higher burst size but lower burst frequency of genes with TATA 
elements agreed with previous findings26.

Transcription factors are also thought to regulate burst kinetics. 
Using a curated transcription factor binding database27,28, we exam-
ined the effect of transcription factors on burst parameters. Gene set 
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enrichment analysis indicated that some transcription factors regulate 
burst size, whereas others regulate burst frequency (Supplementary 
Table 2). MYC and AFF4 are examples of each category. Genes bound by 
MYC had larger burst sizes, whereas AFF4 target genes were enriched 
for higher burst frequencies (Fig. 2h). Our observation supports a 
previous report whereby MYC increased the burst size by increasing 
the burst duration29, and the association of the AFF4 transcription 
factor correlated with burst frequency30. Overall, we show that direct 
and comprehensive observation of transcription using scGRO–seq 
facilitates the study of transcription kinetics at the single-cell level.

Cell cycle inference from histone genes
Investigating gene programs during cell cycle stages is essential for 
understanding biology and disease31. Polyadenylated RNA-dependent 
scRNA-seq methods rely on mature transcripts of cell cycle marker 
genes to determine the cell cycle state. However, the time required 
for mRNA processing, export and accumulation introduces a time lag. 
Except for a few total RNA-based single-cell methods32,33, scRNA-seq fails 
to detect replication-dependent histone genes—the best character-
ized cell-cycle-phase-specific genes exclusively transcribed during the 
S phase34—owing to the lack of polyadenylation35. scGRO–seq enabled 
the detection of active transcription of replication-dependent histone 
genes in the histone locus body (Extended Data Fig. 9a) that could be 
used to classify cells in S phase. For G1/S and G2/M phase-specific genes, 
we used a set of transcriptionally characterized genes from a RNA veloc-
ity and deep-learning study of mouse ES cells36. Hierarchical clustering 
based on the expression of these three sets of cell-cycle-phase-specific 
genes revealed three significant clusters of individual cells (Fig. 3a).

Mouse ES cells have a short G1 phase and an extended S phase37. 
De novo classification of mouse ES cells based on the nascent tran-
scription of these newly integrated marker genes recapitulated the 

lengths of cell cycle phases (Fig. 3b). Notably, cells in G1/S and G2/M 
phases exhibited higher transcription levels compared with cells in 
the S phase (Wilcoxon rank-sum test, P = 6.3 × 10−07 and P = 1.2 × 10−06, 
respectively) (Fig. 3c). We observed an approximately 40% decrease in  
total transcription when cells transition from the G1/S phase to the 
S phase, with a subsequent 20% increase after exiting the S phase to the 
G2/M phase. This observation indicates that transcription continues 
during DNA replication, albeit at a reduced level. The transition from the 
G2/M phase to the G1 phase is marked by an increase in transcription38, 
which restores the transcription level observed during the G1 phase, 
thereby completing the cycle. An analysis of differentially expressed 
genes in cell cycle phases also revealed that certain genes restore tran-
scription levels to those observed in the G1/S phase as they transitioned 
from the S phase to the G2/M phase, whereas others regained partial 
transcription (Fig. 3d and Supplementary Table 3). At the same time, 
some did not recover their transcription until exiting from G2/M to 
G1/S. By quantifying the active transcription of non-polyadenylated 
histone genes and a small subset of marker genes, scGRO–seq reveals 
a dynamic transcription program throughout the cell cycle.

Co-transcription of interdependent genes
Co-expression of functionally related genes, as measured by accumu-
lated mRNA, is widely reported39. However, assessing whether these 
genes are transcriptionally coordinated in steady-state has been chal-
lenging. By utilizing nascent transcription within the first 10 kb of the 
gene body, thereby limiting the co-transcription detection window 
to 4 min, we calculated pairwise Pearson correlation values between 
expressed genes (Fig. 4a). Gene pairs with a correlation coefficient 
greater than 0.1 and a q value of less than 0.05, and an empirical FDR of 
less than 5% from 1,000 permutations, were considered co-transcribed 
(Supplementary Table 4). These stringent criteria controlled for 
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Fig. 3 | Cell cycle inference by non-polyadenylated replication-dependent 
histone gene expression. a, Heatmap of hierarchical clustering of single cells 
representing transcription of G1/S-specific, S-specific and G2/M-specific genes. 
The dendrogram colours represent cell clusters with cell-cycle-phase-specific 
gene transcription. b, Fraction of cells in the three primary clusters distinguished 
by transcription of G1/S-specific, S-specific and G2/M-specific genes.  
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the median, the box represents the data between the first and third quantiles, 
the whiskers indicate the 1.5 interquartile range, and points outside the 
whiskers indicate outliers. d, Differentially expressed genes among the three 
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G2/M-specific genes. The genes used to classify cells are denoted in bold and 
coloured boxes. Histones (RD) represent aggregate reads from replication- 
dependent histone genes.
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sampling biases and other confounding effects. We identified about 
0.7% of the 112,807,710 gene pairs tested (n = 800,888) as signifi-
cantly co-transcribed. We generated a graphical network from these 
significant pairs and identified 59 modules (genes per module > 10) 
of co-transcribed genes. This gene–gene transcriptional correlation 
probably reflects common temporal gene activation by a transcription 
factor or could reflect mechanistic coupling of transcription activation 
by clusters of genes separated across regions of chromosomes.

Conducting gene ontology analysis on these co-transcribed mod-
ules compared with all transcribed genes, we found enrichment of 
several related molecular functions, including cell cycle regulation, 
RNA splicing, translational control, DNA repair and circadian rhythm 
(Fig. 4b, Extended Data Fig. 9b and Supplementary Table 5). By scanning 
the promoters of co-transcribed genes, we discovered an enrichment 
of known transcription factor motifs, such as FOXO3 enriched in the 
promoters of co-transcribed genes associated with the ‘regulation of 
cell-cycle phase transition’ gene ontology term. A previous study40 
showed that FOXO3, in coordination with the DNA replication fac-
tor CDT1, is crucial in regulating cell cycle progression. We compared 
the co-transcription patterns of gene pairs obtained from scGRO–seq 
with those from intron seqFISH, and the results revealed concordant 
co-transcription profiles (Fig. 4c). This high-throughput and capabil-
ity of scGRO–seq to directly examine transcriptional coordination 
between any gene pair or network of genes provides valuable insights 
into the functional organization of the genome.

Enhancer–gene temporal coordination
Regulation of gene expression by distal regulatory elements is an area 
of broad interest. scGRO–seq captures transcripts from both genes and 
active enhancers, thereby enabling the measurement of co-activation 
in single cells. We analysed scGRO–seq reads within the first 10 kb of 
genes and at least 3 kb on each strand transcribing outwards around 
enhancers (Methods). We excluded 500 bp regions around the TSS of 

genes and enhancers to avoid paused polymerase. We also included 
clusters of enhancers known as super-enhancers (SEs) that do not 
overlap with gene regions41.

We used stringent criteria in permutation and correlation tests to 
identify enhancer–gene pairs that exhibit co-transcription (Methods). 
Out of 6,985,904 test pairs, 0.6% (n = 44,361) passed the threshold of 
the pairwise correlation coefficient, multiple hypothesis corrected 
chi-square P value and empirical FDR from 1,000 permutations (Supple-
mentary Table 6). We observed a significant enrichment (two-sample 
KS test, P = 5.5 × 10−09) of enhancer–gene co-transcription primar-
ily within 200 kb of each other compared with uncorrelated pairs 
(Fig. 5a). SE–gene pairs were similarly enriched (two-sample KS test, 
P = 1.3 × 10−09) within 400 kb of each other (Extended Data Fig. 10a). 
When examining functionally related genes clustered together on the 
same chromosome42, we found multiple enhancers correlated with 
each gene (Extended Data Fig. 10b), probably a further manifestation 
of cell cycle regulation.

We investigated a set of validated enhancers known to regulate 
pluripotency transcription factors43–46. We observed significant cor-
relations between the transcription of Sox2 and Nanog and their dis-
tal enhancers (Extended Data Fig. 10c). If enhancers and their target 
genes are temporally coupled and co-transcribed, we speculated that 
co-transcription of the pair could be even more prominent at finer 
temporal resolution. To test this idea, we divided enhancers and genes 
into 5 kb bins (representing a 2-min transcription window) and found 
that at least 1 enhancer bin correlated significantly with its target gene 
for all 4 genes (Fig. 5b). Notably, the correlated enhancer bin generally 
appeared further from its TSS than the gene bin, which implied that 
enhancer transcription may initiate before promoter transcription.

To test the enhancer–gene timing hypothesis, we examined a set of 
seven non-intronic mouse ES cell SEs validated by CRISPR perturba-
tion47. CRISPR-mediated knockout of Sall1 SE reduced Sall1 expres-
sion by 92%, and we found a correlation between multiple enhancer 
bins and this gene (Fig. 5c). Overall, four out of seven SE–gene pairs 

a

0.05 0.10
Enrichment fraction

0.001

0.002

0.003

0.004

q
 v

al
ue

Foxo3

0.001

0.01

0.1

1

0.001 0.01 0.1 1

10,000
20,000
30,000
40,000

||||

Gene B
(Prkdc)

Gene A
(Smarcc1)

0 10 20 30
Distance from TSS (kb)

Nuclear pore
Ubiquitin-dependent protein catabolic process

Cell cycle checkpoint signalling
DNA integrity checkpoint signalling

Heterochromatin formation
PML body

Circadian rhythm
Telomere organization

mRNA splice site selection
Regulation of histone methylation

Regulation of cell cycle phase transition
Inactivation of X chromosome

Stress granule assembly
Histone acetylation

Translation initiation factor activity
Cellular response to LIF

U1 snRNP
Regulation of cell cycle process

Cytoplasmic stress granule
DNA repair

Translational initiation
mRNA 3′ UTR binding

RNA localization
Nuclear speck

Histone modi�cation
Chromatin organization

Regulation of translation
RNA transesteri�cation reactions

RNA splicing
Ribonucleoprotein complex

mRNA binding

0

sc
G

R
O

–s
eq

 c
o-

tr
an

sc
rip

tio
n

Intron seqFISH co-transcription

0
Pearson correlation coef�cient

0.2 0.4 0.6

0

0.25

1.00

0.75

0.50

C
hi

-s
q

ua
re

 P
 v

al
ue

FD
R

-c
or

re
ct

ed
P

 v
al

ue

1.00

0.75

0.50

0.25

0

Mdm2

Ino80 Taok1 Larp7

Prkdc
Mnat1

Senp2

Smarcc1

Npm1

Orc1

Ddx3x

Ankrd17

Fem1b
Dbf4

Zwint

Thoc1

Jade1

Trp53
Chfr

Anp32b

Ddx39b

y = 0.29x, r2 = 0.59

b

c

N
o.

 o
f n

ei
gh

b
ou

rs

Fig. 4 | Coordinated transcription of functionally related genes. a, Top,  
a pair of co-transcribed genes. Reads within the first 10 kb of the gene pair  
(blue circle) expressed in the same cells are connected by a yellow line. Reads 
beyond the first 10 kb (grey circles and lines) were not used in the gene–gene 
correlation. Bottom, pair-wise Pearson correlation was calculated from a 
binarized genes by cells matrix. The relationship among the Pearson correlation 
coefficient, uncorrected chi-square P value and the FDR-corrected P value using 
the Benjamini–Hochberg correction method for pairwise gene–gene correlation. 
b, Gene ontology (GO) terms enriched in co-transcribed gene modules.  

The transcription factor motif enriched in the promoters of genes associated 
with the GO term and the co-transcribed genes that contributed to the 
enrichment of the GO term is shown as an example on the right (red line 
indicating ρ > 0.15). A complete list of GO terms and the co-transcribed genes 
contributing to the enrichment of the GO terms is provided in Supplementary 
Table 5. c, Correlation of co-transcription of significantly co-transcribed gene 
pairs (n = 164,380) between scGRO–seq and intron seqFISH data. Axes represent 
the fraction of cells in which a gene pair is co-transcribed.



222  |  Nature  |  Vol 631  |  4 July 2024

Article

showed correlations of at least one bin. Notably, we observed that in 
most cases, enhancer transcription began earlier or around the same 
time as the transcription of their target genes (Fig. 5d). This temporal 
pattern could have mechanistic implications for enhancer–gene regu-
lation. However, any conclusions will require a much deeper dataset. 
Nevertheless, our findings offer a glimpse into the temporal order in 
enhancer–gene transcription.

Discussion
We developed scGRO–seq to enable the assessment of co-transcription 
and prediction of enhancer–gene regulatory networks in their native 
context. By reporting the activity of genes and distal regulatory ele-
ments—and therefore the functional consequences of transcrip-
tional signals and networks—scGRO–seq is inherently multimodal 
for understanding transcription regulation in high detail. We illus-
trated these advantages by determining burst size and frequency for 
expressed genes, transcription dynamics during cell cycle phases and 
genome-wide gene–gene and enhancer–gene co-transcription detec-
tion. We restricted this study to mouse ES cells for comparison with 
large available datasets for validation.

The current scGRO–seq methodology has its limitations. The pres-
ervation of nuclear integrity, achieved through a low sarkosyl concen-
tration, failed to promote the run-on of RNA polymerases in the pause 
complex, thereby limiting the detection of promoter–proximal paused 
polymerases. The read depth and cell numbers limited our analyses 
of burst kinetics and co-transcription of gene–gene and enhancer–
gene pairs. Improved efficiency in future iterations will facilitate more  
precise evaluation of these phenomena.

scGRO–seq is also limited by the abundance of nascent RNA per cell at 
any given time, which is considerably lower than that of mature mRNA. 
Nascent RNA detection requires technology that does not depend 
on a polyadenylated terminus, which initially raised doubts about 
the feasibility of nascent RNA sequencing in single cells48. However, 
implementing highly efficient CuAAC has overcome this limitation, 
enabling the capture of approximately 10% of nascent RNA with the 

current single-cell protocol. To streamline the process and to ensure 
compatibility with future automation, we optimized the biochemical 
steps by replacing multiple rounds of nascent RNA purification and 
nucleic acid ligation with click chemistry. Further adaptations, includ-
ing high-throughput droplet encapsulation and enhanced capture 
efficiency, will extend the applicability of our scGRO–seq method in 
both research and clinical settings.

For clinical specimens, particularly for challenging tissues such 
as the brain and pancreas, which contain high levels of RNase, isola-
tion of nuclei is preferred over intact cells. Single-cell methods such 
as sNuc-seq49 profile polyadenylated RNA inside the nucleus of such  
tissues, but paint an incomplete view of single-cell gene expression. By 
contrast, the entire scGRO–seq substrate is present inside the nucleus. 
Furthermore, the compatibility of CuAAC-based nascent RNA sequenc-
ing methods with bulk low-input samples and single cells makes them 
desirable methods for clinical investigations. The adaptability and effi-
ciency of scGRO–seq introduce new avenues for investigating transcrip-
tional dynamics and regulatory mechanisms across diverse biological 
contexts, enriching our understanding of gene expression regulation 
and its ramifications in physiological and pathological conditions.
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Methods

scGRO–seq conceptualization
Capturing nascent RNA with sufficient efficiency from single cells for 
meaningful analysis was deemed challenging. However, recognizing 
the potential insights into transcription mechanisms that single-cell 
nascent RNA sequencing could offer, we set out to develop a single-cell 
version of the GRO–seq method a decade after its use in cell popula-
tions. Our efforts were met with two significant challenges: selectively 
capturing a small fraction of nascent RNA among various RNA spe-
cies within a cell and accurately distinguishing nascent RNAs from 
individual cells.

The primary limitation we encountered was capture efficiency. The 
quantity of nascent RNA from transcribing RNA polymerases in an 
individual cell, mainly due to the intermittent nature of transcription 
with short bursts and long latency periods, is significantly lower than 
the mRNA copies that accumulate over time. Traditional nascent RNA 
capture methods yield only a meagre number of nascent RNAs from 
single cells. Miniaturizing GRO–seq using strategies derived from 
scRNA-seq was not feasible because nascent RNA lacks the consen-
sus polyadenylation sequence used in RNA-seq. Instead, GRO–seq 
and related methods selectively label nascent RNA in bulk cells using 
modified nucleotides and use single-stranded RNA–RNA ligation with 
PCR handles on both ends. This ligation process proved unsuitable for 
scGRO–seq owing to its low efficiency and the need for nascent RNA 
purification before ligation, which risks depleting the already scarce 
nascent RNA from single cells.

To overcome these challenges, we devised a strategy that involved 
labelling nascent RNA in cells and attaching single-cell barcodes to 
the labelled nascent RNA without requiring purification from other 
cellular RNA. After exploring several approaches without success, 
we turned to click chemistry, specifically CuAAC. We speculated that 
by sourcing or synthesizing CuAAC-compatible chain-terminating 
nucleotide triphosphate analogues and performing nuclear run-on 
with the modified nucleotides to selectively label nascent RNA, we 
could label nascent RNA from individual cells with 5′-AzScBc DNA with 
a PCR handle. Then, we could pool the barcoded nascent RNA from 
multiple cells for selective RT in the presence of a TSO and subsequent 
PCR amplification for sequencing.

To successfully implement this strategy, we identified three important 
biochemical hurdles to address. First, we needed to demonstrate the 
ability of native RNA polymerase to incorporate 3′-(O-propargyl)-NTPs 
during nuclear run-on reactions. Second, preserving the intactness of 
nuclei during the run-on reaction was essential to enable the separa-
tion of individual nuclei for single-cell barcoding. Finally, we had to 
confirm the ability of reverse transcriptase to traverse the triazole 
ring junction formed during CuAAC. Successful resolution of the first 
and third hurdles would pave the way for CuAAC-based nascent RNA 
sequencing in cell populations, whereas overcoming the second hurdle 
would establish the foundation for scGRO–seq.

Development of AGTuC
To develop a nascent RNA tagging method suitable for capturing a small 
fraction of RNA from single cells, we initiated our approach by focusing 
on a cell-population-based strategy. We aimed to develop an enhanced 
nascent RNA tagging method that optimally integrates selective label-
ling and single-cell barcode tagging, bypassing the need for RNA puri-
fication. Among the tested methods, we identified click chemistry as 
the most suitable option because of its high selectivity, efficiency, 
robustness in diverse experimental conditions, cost-effectiveness and 
speed. Our goal was to selectively label nascent RNA through a nuclear 
run-on reaction, conjugate a single-stranded DNA PCR handle (that 
can accommodate a single-cell barcode for future use in single-cell 
analysis), reverse transcribe the RNA–DNA conjugate and prepare a 
NGS library.

To achieve single-nucleotide resolution of transcribing polymer-
ases and efficient RT, we identified two click-chemistry-compatible, 
chain-terminating nucleotides with a relatively small functional group: 
3′-(O-propargyl)-ATP and 3′-azido-3′-dATP (Extended Data Fig. 1a). Nas-
cent RNA labelled with 3′-(O-propargyl)-NTPs forms a 1,4-disubstituted 
1,2,3-triazole junction with azide-labelled DNA through CuAAC, as 
shown in Click-Code-Seq50, whereas nascent RNA labelled with 3′-azido-
3′-dNTPs forms a slightly bulkier junction with dibenzocyclooctyne 
labelled DNA through strain-promoted alkyne-azide cycloadditions 
(Extended Data Fig. 1b). Nuclear run-on with 3′-(O-propargyl)-ATP 
and CuAAC showed superior efficiency compared with 3′-azido-
3′-dATP and strain-promoted alkyne-azide cycloadditions (Extended  
Data Fig. 1c).

To convert the clicked RNA–DNA conjugate to cDNA, we tested eight 
different reverse transcriptase enzymes, varied the temperature and 
duration of RT and evaluated three TSOs (Extended Data Fig. 1d–f, 
some results not shown). Our optimized method, which we AGTuC, was 
then performed in 5 million mouse ES cell nuclei. AGTuC nascent RNA 
profiles closely resembled PRO–seq profiles (Extended Data Fig. 2a) 
and exhibited strong correlations at both gene and enhancer levels 
(Extended Data Fig. 2b,c). Notably, the AGTuC library protocol involved 
significantly fewer steps than PRO–seq and could be completed in a sin-
gle day (Extended Data Fig. 2d). AGTuC is a simpler, faster and cheaper 
alternative to GRO–seq and PRO–seq for nascent RNA sequencing 
from cell populations.

Development of inAGTuC
To adapt CuAAC-mediated nascent RNA sequencing to single cells, we 
explored the feasibility of performing AGTuC in single cells. Implement-
ing AGTuC at the single-cell level presented challenges as the nuclear 
run-on reaction with 0.5% sarkosyl disrupts the nuclear membrane 
before cell barcodes could be attached during the post-run-on CuAAC 
step, which leads to unintended mixing of nascent RNA from different 
cells. One potential solution was to perform AGTuC in single tubes, 
which would prevent nascent RNA mixing. However, this approach 
requires RNA purification after the run-on reaction, but purification 
results in further depletion of exceedingly low amounts of nascent 
RNA in single cells. Alternatively, omitting RNA purification would 
lead to an abundance of 3′-(O-propargyl)-NTPs supplied in excess 
during the run-on reaction, which could outcompete 5′-AzScBc DNA  
during CuAAC.

To address this challenge, we developed inAGTuC, a new strategy 
that enables labelling nascent RNA with 3′-(O-propargyl)-NTPs while 
preserving nuclear integrity. This approach overcomes the issues 
associated with nascent RNA mixing before single-cell barcoding. We 
proposed that performing the run-on reaction without disrupting 
the nuclear membrane would facilitate the easy removal of excess 
nucleotides through a few centrifugation and resuspension steps 
while retaining propargyl-labelled nascent RNA within the nuclei. This 
approach would produce clean nuclei with labelled nascent RNA, free 
from excess reactive nucleotides, which could be compartmentalized 
with 5′-AzScBc DNA for CuAAC. We could minimize further RNA loss 
by pooling and processing the single-cell-barcoded nascent RNA from 
multiple cells.

To achieve an efficient run-on reaction, PRO–seq and AGTuC disrupt 
the polymerase complex with 0.5% sarkosyl detergent, of which nuclear 
membrane lysis is collateral damage. We sought to identify the lowest 
sarkosyl concentration that maintains nuclear membrane integrity 
while maximizing run-on efficiency and found that a 20× reduction in 
sarkosyl concentration preserved nuclear intactness, with only a 20% 
reduction in run-on efficiency (Extended Data Fig. 3a,b). To maximize 
the capture efficiency of nascent RNA, we optimized the molecular 
crowding effect of PEG 8000 and the ratio of Cu(I) to the CuAAC accel-
erating ligand BTTAA (Extended Data Fig. 3c). Although a low sarko-
syl concentration preserves nuclear integrity, it also retains the RNA 



polymerase complex intact, thereby shielding the propargyl-labelled 
3′ end of nascent RNA from reacting with 5′-AzScBc DNA. We investi-
gated nascent RNA release from the RNA polymerase complex using 
common denaturants and found that 6 M urea and TRIzol was efficient 
(Extended Data Fig. 3d). However, the denaturant in TRIzol hindered 
CuAAC reaction (Extended Data Fig. 3e). Notably, urea also offered 
the added benefit of retaining the RNA–DNA conjugate in the aqueous 
phase during TRIzol clean-up to remove PEG 8000 from the CuAAC 
reaction (Extended Data Fig. 3f). For reaction clean-up, we assessed vari-
ous methods, finding cellulose membrane to be effective in removing 
CuAAC reagents (Extended Data Fig. 3g), whereas silica matrix columns 
performed well in retaining RNA and ssDNA (Extended Data Fig. 3h). 
Subsequently, we evaluated DNA polymerase for library preparation 
and DNA size-selection methods (Extended Data Fig. 3i,j).

Considering the goal of working with single cells, we performed 
inAGTuC with cell numbers between 5 million used in AGTuC and 1 cell 
planned for scGRO–seq. Specifically, we placed 100 to 1,000 intact 
nuclei in each well of a 96-well plate containing urea. Nascent RNA in 
each well was barcoded with a unique 5′-AzScBc DNA by CuAAC and 
pooled from the 96 wells, and a sequencing library was prepared as in 
AGTuC. The inAGTuC libraries exhibited similar profiles in gene bodies 
compared with PRO–seq and AGTuC. However, they could not capture 
the paused peaks at the 5′ end of genes and enhancers (Extended Data 
Fig. 4a–c). This observation is consistent with the need for a higher 
sarkosyl concentration for efficient run-on of paused polymerase com-
plexes. The four inAGTuC libraries correlated well with each other 
(Extended Data Fig. 4d), with the potential to discover more insights 
with deeper sequencing (Extended Data Fig. 4e,f). Despite only partially 
capturing nascent RNA from a paused complex, the inAGTuC libraries 
correlated well with those from AGTuC and PRO–seq (Extended Data 
Fig. 4g).

To systematically characterize the compatibility of inAGTuC with 
even fewer cells, we prepared four inAGTuC libraries in a 96-well plate, 
with 12 c.p.w., 120 c.p.w. and 1,200 c.p.w., which is roughly equivalent 
to 1,000, 10,000 and 100,000 nuclei, respectively. We also included a 
1,200 c.p.w. plate, omitting Cu(I) as a negative control. Despite lower 
coverage, the inAGTuC library with 12 c.p.w. (total of about 1,000 cells) 
successfully captured the overall nascent RNA profile. It exhibited 
a good correlation with 120 c.p.w. (total of about 10,000 cells) and 
1,200 c.p.w. (total of around 100,000 cells) (Extended Data Fig. 5a–c).

3′-(O-propargyl)-nucleotide synthesis
For this study, several CuAAC-compatible nucleotide analogues modi-
fied with azide or alkyne functionalities were evaluated. Ultimately, 
3′-(O-propargyl)-NTPs were selected for three main reasons: (1) these 
analogues lack 3′ hydroxyl groups, making them chain-terminating and 
enabling single-nucleotide resolution of the 3′ end of nascent RNA; (2) 
the CuAAC reaction produces a compact junction due to the presence 
of a single carbon bond between the sugar group of the nucleotide and 
the propargyl group at the 3′ end position; and (3) they are relatively 
cost-effective compared with biotin-modified nucleotides commonly 
used in PRO–seq.

3′-(O-Propargyl)-ATP (NU-945) was offered by Jena Biosciences. 
To complete the set, custom synthesis requests were made for 
3′-(O-propargyl)-CTP (NU-947), 3′-(O-propargyl)-GTP (NU-946) and 
3′-(O-propargyl)-UTP (NU-948), all of which are now available for pur-
chase from Jena Biosciences.

Single-cell barcoded DNA adaptors
During scGRO–seq development, 3 sets of 96 5′-AzScBc DNA were syn-
thesized by GeneLink. Each design encompassed four components: a 
5′ azide positioned at the 5′ terminus, a 10–12 nucleotide sequence for 
the single-cell barcode, a 4–6 nucleotide sequence for the UMI and a 
PCR handle. The 5′ azide modification was obtained following a previ-
ously described method51. Specifically, an oligonucleotide containing 

5′ iodo-dT was synthesized through solid-support phosphoramidite 
oligonucleotide synthesis, and subsequent replacement of the iodo 
group with an azide group was achieved through a reaction with sodium 
azide at 60 °C for 1 h. The sequences of three different 5′-AzScBc DNA 
are available in Supplementary Table 7.

The hairpin structure of the 86-nucleotide 5′-AzScBc DNA (Supple-
mentary Fig. 3a) is formed through self-folding. The RT process is initi-
ated using the 3′ end of the oligonucleotide, which serves as a built-in 
primer. This design ensures a 1:1 stoichiometry between the PCR handle 
and the RT primer, minimizing mispriming and nonspecific amplifica-
tion during RT. The folded hairpin structure also generates a restriction 
site for the EagI enzyme, which is digested before PCR amplification.

Undesired extension by reverse transcriptase is effectively prevented 
by a three-carbon spacer at the 3′ end of the 43-nucleotide 5′-AzScBc 
DNA52. This version of the azide adaptor harbours a 5-nucleotide ACAGG 
sequence after the azide-dT at its 5′ end (Supplementary Fig. 3b). Dur-
ing RT, the extension of primers annealing to unclicked 5′-AzScBc, the 
addition of non-templated CCC and the incorporation of TSO results 
in undesired cDNA that are preferred substrates for PCR amplifica-
tion. If unaddressed, these amplicons can overwhelm the sequencing 
library. The ACAGG sequence plays a crucial role in depleting these 
PCR amplicons.

A previously described method named DASH uses recombinant Cas9 
protein and gRNA complex to digest and deplete undesired dsDNA53. 
The ACAGG sequence is necessary to generate a gRNA target sequence 
in the undesired PCR amplicons (underlined sequence). In PCR ampli-
cons formed between nascent RNA and 5′-AzScBc DNA, the comple-
mentation of gRNA is interrupted by the presence of a nascent RNA 
sequence, which makes the desired products incompatible with DASH. 
AGG serves as the protospacer adjacent motif.

Cell line
The V6.5 mouse ES cells used in this study were established by the Jae-
nisch Laboratory (Whitehead Institute, Massachusetts Institute of 
Technology) from the inner cell mass of a 3.5-day-old mouse embryo 
from a C57BL/6(F) × 129/sv(M) cross.

Cell culture
Mouse ES cells were cultured in Dulbecco’s modified Eagle medium 
(Gibco, 11995), plus 10% fetal bovine serum (HyClone, SH30070.03), 
supplemented with 1× penicillin–streptomycin (Gibco, 15140), 1× 
non-essential amino acids (Gibco, 1140), 1× l-glutamine (Gibco, 25030), 
1× β-mercaptoethanol (Sigma, M6250) and 1,000 U ml–1 leukaemia 
inhibitory factor (Sigma, ESG1107) on tissue-culture-treated 10 cm 
plates (Corning, CLS430167) pre-coated with 0.2% gelatin (Sigma, 
G1890) prepared in PBS (Fisher, MT21031CV). Cells were grown at 37 °C 
and 5% CO2 and passed with HEPES buffered saline solution (Lonza, 
CC-5024) and 0.25% trypsin-EDTA (Gibco, 25200) when 70% confluency 
was reached (every 2 days).

Sample preparation
Tissue culture cells were prepared for nuclear run-on reaction by either 
nuclei isolation or cell permeabilization as described below. All centrifu-
gation steps were performed at 1,000g for 5 min. Cells were collected 
by removing the tissue culture medium, rinsing with PBS and placing 
the plates on ice. Cells were scraped while still on ice. The cells were 
collected into a 15 ml conical tube and centrifuged at 1,000g for 5 min.

For nuclei isolation, the pellet was resuspended in ice-cold dounc-
ing buffer (10 mM Tris-Cl pH 7.4, 300 mM sucrose, 3 mM CaCl2, 2 mM 
MgCl2, 0.1% Triton X-100, 0.5 mM DTT, 0.1× Halt protease inhibitor and 
0.02 U µl–1 RNase inhibitor) and transferred to a 7 ml dounce homog-
enizer (Wheaton, 357542). After incubation on ice for 5 min, the cells 
were dounced 25 times with a tight pestle, transferred back to the 15 ml 
conical tube and centrifuged to pellet the nuclei. The pellet was washed 
twice in a douncing buffer.
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For cell permeabilization, the pellet was resuspended in ice-cold 

permeabilization buffer (10 mM Tris-Cl pH 7.4, 300 mM sucrose, 10 mM 
KCl, 5 mM MgCl2, 1 mM EGTA, 0.05% Tween-20, 0.1% NP-40, 0.5 mM 
DTT, 0.1× Halt protease inhibitor and 0.02 U µl–1 RNase inhibitor). After 
incubation on ice for 5 min, the cells were centrifuged to pellet the 
nuclei. The pellet was washed twice in the permeabilization buffer.

The washed pellet was resuspended in storage buffer (10 mM Tris-Cl 
pH 8.0, 5% glycerol, 5 mM MgCl2, 0.1 mM EDTA, 5 mM DTT, 1× Halt pro-
tease inhibitor and 0.2 U µl–1 RNase inhibitor) at a concentration of 
5 × 106 nuclei per 50 µl of storage buffer, flash-frozen in liquid nitrogen 
and stored at −80 °C. The nuclei and permeabilized cells in the storage 
buffer can be stored for up to 5 years at −80 °C, making them readily 
available for nuclear run-on experiments.

Nuclear run-on with 3′-(O-propargyl)-nucleotides
A volume of 50 µl of 2× nuclear run-on buffer (20 mM Tris-Cl 
pH 8.0, 10 mM MgCl2, 400 mM KCl, 50 µM 3′-(O-propargyl)-ATP, 
50 µM 3′-(O-propargyl)-CTP, 50 µM 3′-(O-propargyl)-GTP, 50 µM 
3′-(O-propargyl)-UTP, 0.05% Sarkosyl, 1 mM DTT, 2× Halt protease 
inhibitor and 0.4 U µl–1 RNase inhibitor) was prepared per sample and 
heated to 37 °C. Once thawed from −80 °C, permeabilized cells or nuclei 
were added to the heated tube containing nuclear run-on buffer and 
incubated for 5 min at 37 °C with gentle tapping at the incubation mid-
point. Permeabilized cells or nuclei were centrifuged at 500g for 2 min 
at 4 °C, and the supernatant was aspirated off. The pellet was washed 
3 times in 150 µl resuspension buffer (5 mM Tris-Cl pH 8.0, 2.5% glyc-
erol, 2.5 mM MgAc2, 0.05 mM EDTA, 1.25 mM MgCl2, 60 mM KCl, 3 mM 
DTT, 0.2× Halt protease inhibitor and 0.2 U µl–1 RNase inhibitor). After 
the final wash, the permeabilized cells or nuclei were resuspended in 
a 2 ml resuspension buffer and passed through a 35 µm nylon mesh 
(Falcon, 352235).

Single-cell sorting and nuclei sorting
For single-cell and nuclei sorting, 96-well plates with 2.5 µl 8 M urea were 
prepared using a multichannel or 96-well pipettor (Avidien MicroPro 
300, 30835029). Single cell and nuclei populations characterized by 
forward and side scattering were sorted by FACS into the 96-well plate 
containing urea. The sorted plates can be used in CuAAC directly or 
sealed with aluminium foil or a plastic seal and stored at −80 °C.

CuAAC
A 96-well plate containing 5′-AzScBc DNA with a unique cell barcode 
in each well previously synthesized and aliquoted was thawed from 
−80 °C. Sodium ascorbate, PEG 8000, CuSO4 and accelerating ligand 
BTTAA were prepared and dispensed into each well of the 96-well 
plate containing 5′-AzScBc DNA. The CuAAC reaction mix was dis-
pensed into individual wells containing single cells in urea using a 
multichannel or 96-well pipette. The final concentration of CuAAC 
reaction in each well was 30 nM 5′-AzScBc DNA, 800 mM sodium ascor-
bate, 15% PEG 8000, 1 mM CuSO4, 5 mM BTTAA and 2.66 M urea in a 
7.5 µl volume. The 96-well plates were sealed, vortexed for 10 s in an 
orbital vortexer and centrifuged for 1 min at 500g before incubation  
for 2 h at 50 °C.

After incubation, the CuAAC reaction was quenched with 5 mM EDTA 
and pooled from 96 wells into a 1.5 ml Eppendorf tube. PEG 8000 was 
removed using TRIzol. The remaining CuAAC reagents (sodium ascor-
bate, CuSO4 and BTTAA) were removed with a centrifugal filter with 
3 kDa cellulose membrane (Amicon, 2020-04). The purified RNA was 
fragmented with 10 mM ZnCl2 for 5 min at 65 °C.

RT through the triazole link and pre-amplification
RT of the clicked RNA–DNA conjugate was performed with highly 
processive Moloney murine leukaemia virus (M-MuLV) reverse tran-
scriptase lacking RNase H activity but capable of RNA-dependent and 
DNA-dependent polymerase activity, non-templated addition and 

template switching (Thermo Fisher, EP0751). RT reaction (1× RT buffer, 
0.5 mM dNTPs, 0.8 U µl–1 RNase inhibitor, 16% PEG 8000, 1 µM RT primer 
(except for hairpin-forming 5′-AzScBc DNA), and 1 µm TSO) was incu-
bated with the RNA–DNA conjugate for 2 h at 50 °C. The cDNA was 
size-selected in 10% denaturing PAGE away from the unclicked 5′-AzScBc 
DNA and empty cDNA formed between the 5′-AzScBc DNA and TSO.

The purified cDNA was PCR amplified for 6 cycles to generate dsDNA 
with NEBNext Ultra II Q5 High-Fidelity 2× master mix (NEB, M0544) 
and 0.5 µM PCR primers with unique dual index using the PCR cycles 
presented in Supplementary Table 8.

Removal of empty adaptors using DASH
The dsDNA from the pre-amplification of cDNA was subjected to 
DASH to remove the undesired amplicons formed by RT of unclicked 
5′-AzScBc DNA and TSO, as described above. Cas9–gRNA complex 
(6.6 µM Streptococcus pyogenes Cas9 nuclease (NEB, M0386T),  
20 µM gRNA, 1× NEBuffer r3.1 and nuclease-free duplex buffer  
(IDT, 11-05-01-04)) was prepared by incubation for 15 min at 25 °C.  
The incubated complex was added to the cleaned PCR reaction and 
incubated for 1 h at 37 °C.

PCR amplification and NGS
The DASHed library was PCR amplified with NEBNext Ultra II Q5 
High-Fidelity 2× master mix (NEB, M0544) and 0.5 µM PCR primers 
with a unique dual index using the two-step PCR cycles presented in 
Supplementary Table 9.

The NGS library was sequenced on Illumina NovaSeq SP100 flow 
cells with 64 nucleotides forward read, 43 nucleotides reverse read, 8 
nucleotides index 1 and 8 nucleotides index 2.

Alignment and pre-processing
Adaptor sequences were removed from paired-end fastq files using Cut-
adapt54. In brief, the read 1 sequence CCCCTGTCTCTTATACACAT and 
the read 2 sequence AGATCGGAAGAGCGTCGTGT were trimmed with a 
maximum error rate of 0.15, requiring a minimum overlap of 12 nucleo-
tides between the read and adapter. The resulting adapter-trimmed 
reads were demultiplexed using Flexbar55. Cell barcodes and UMIs 
were extracted from the 5′ end of read 1, applying a barcode error 
rate of 0.15 and retaining reads of at least 14 nucleotides in length. 
The adapter-clipped and demultiplexed reads were first mapped to 
the mouse ribosomal genome using bowtie2 (ref. 56) in --very-sensitive 
mode. The reads unmapped to the ribosomal genome were mapped 
to the mouse genome (mm10 build) in --very-sensitive mode. After 
mapping, duplicate reads were identified and removed utilizing UMI 
and mapping coordinates with UMI-tools57.

Filtering experimental batches and cells
The scGRO–seq batches with r2 values of at least 0.6 against at least 60% 
of all batches were selected for further analysis. Cells were required to 
contain a minimum of 1,000 UMIs and 750 features for further analysis. 
Our study involved 17 batches of scGRO–seq experiments across 39 
96-well plates, encompassing a total of 3,744 cells. Of these, 36 plates 
(each containing a minimum of 24 high-quality cells) and 2,635 cells 
met the threshold.

Estimation of capture efficiency
The average capture efficiency of scGRO–seq was estimated to be 
approximately 10%. We used data from the intron seqFISH study17, 
which quantified the abundance of 34 introns by single-molecule fluo-
rescent in-situ hybridization (smFISH). Based on the slope of the line of 
best fit between data from smFISH and intron seqFISH, the detection 
efficiency of intron seqFISH was estimated to be 44%. When scGRO–
seq was compared with intron seqFISH, the detection efficiency of 
scGRO–seq was 26% of intron seqFISH. Based on these two detection 
efficiencies, the estimated capture efficiency of scGRO–seq is about 



10% (26% of 44% is approximately 10%). This estimate is based on the 
8 min of median time required for intron to be spliced out once it is 
transcribed, which ranges from 5 to 10 min according to several stud-
ies using diverse methods58–64. Thus, the capture efficiency of 10% is an 
average approximation and can vary among cells and batches.

Enhancer annotation
Active transcription regulatory elements (TREs) in mouse ES cells 
were identified with PRO–seq data using dREG65. Further filtering of 
the dREG results, carried out to eliminate TREs within or proximal to 
1,500 bp of the RefSeq annotated genes (n = 23,980), identified 68,299 
high-confidence TREs. The remaining TREs within 500 bp of each other 
were combined, which resulted in the final list of 12,542 enhancers. To 
capture nascent RNA derived from elongating RNA polymerases at 
these enhancers, the TREs were extended at least 1500 bp from the TSS 
in both directions. The overlapping enhancers were stitched together 
after extension.

Transcription unit calling
groHMM (https://www.bioconductor.org/packages/release/bioc/
vignettes/groHMM/inst/doc/groHMM.pdf) was used to call de novo 
transcription unit on PRO–seq data. All combinations of tuning param-
eters (−50, −100, −200, and −400 for LP and 5, 10, and 15 for UTS) were 
tested. LP represents the ‘log-transformed transition probability of 
switching from transcribed state to non-transcribed state’, and UTS 
represents ‘the variance of the emission probability for reads in the 
non-transcribed state’. In our test, −50 LP and 10 UTS performed best 
for optimal transcription unit calling.

Evidence of bursting
Transcriptional bursting was examined de novo using scGRO–seq data 
by measuring two parameters: the multiplicity of RNA polymerases 
and the distance between the RNA polymerases. The bursting model 
suggests that transcription occurs in short bursts punctuated by 
long silent periods, which results in on and off states. The alternative 
model is the relatively uniform transcription initiation by primarily 
solitary RNA polymerase. We expected two observations under the  
bursting model.

First, we expected a higher incidence of more than one RNA polymer-
ase per burst and a concurrent depletion of single RNA polymerases. 
To test the evidence of bursting, we selected genes longer than 11 kb 
(n = 13,564) and trimmed 0.5 kb regions from the 5′ and 3′ ends of the 
gene that are known to harbour paused polymerases. With an average 
transcription rate of 2.5 kb min–1, the remaining 10 kb region resulted 
in an observation window of 4 min. Based on the evidence of monoal-
lelic transcription described in the main text and a short observation 
window of 4 min, we assigned all signals for a gene in individual cells to 
one allele. We quantified the observed incidence of zero, one (singlets) 
and more than one RNA polymerase (multiplets) per allele. The majority 
of alleles had zero polymerase. To calculate the expected incidences 
of RNA polymerases under the non-bursting model, we permuted the 
cell identity of scGRO–seq reads 200 times without changing the read 
positions. The permutation maintains the number of UMIs per cell, 
breaks the bursting-mediated association between RNA polymerases, 
and mimics the RNA polymerases distribution under the non-bursting 
model. We quantified the permuted incidences of zero, singlets and 
multiplets.

Second, if more than one RNA polymerase is observed in the burst 
window, either due to transcriptional bursting or random chance, we 
expected the transcription bursting model would result in more closely 
spaced molecules than expected by the random chance. We took all 
multiplets in observed or permuted data and calculated the distance 
between RNA polymerase molecules within each pair. We binned the 
distances in 50 bp bins and calculated the ratio of RNA polymerase 
pairs between the observed and permuted data.

Burst kinetics
Genes over 11 kb (n = 13,564) were selected for studying transcriptional 
bursting kinetics, and 500 nucleotide regions at both ends known to 
harbour paused polymerases were truncated. In cases in which genes 
exceeded 10 kb after trimming, they were shortened to 10 kb starting 
from the initiation site of the gene. With an average transcription rate of 
2.5 kb min–1, this 10 kb burst window served an average burst duration 
of 4 min. The calculation of burst size and burst frequency proceeded 
as described below.

Burst size. For each gene, the number of cells with at least one read 
within the 10 kb burst window (number of bursts) was identified, and 
then the average UMIs per burst was computed. If a consistent single 
read per burst was observed, the burst size of that gene was set to 1. How-
ever, if the average burst size was 1.2, the residual burst above 1 indicated 
a higher burst size. Accounting for the 10% capture efficiency, wherein 
the likelihood of capturing paired reads within a burst window is 1%, the 
residual burst was proportionally adjusted by the capture efficiency. 
The equation for the burst size is shown in Supplementary Fig. 4 (top).

Burst frequency. For each gene, the burst frequency was determined 
as the number of bursts per allele (two alleles in autosomal and one in 
sex chromosomes) per transcription time. The transcription time was 
calculated as the duration needed to traverse the 10 kb burst window 
with a uniform transcription rate of 2.5 kb min–1, translating to 4 min. The 
calculated burst frequency was normalized by the capture efficiency, tak-
ing the burst size into account. Although burst events with a larger burst 
size, like ten, would be consistently detected even with 10% capture effi-
ciency, normalization was applied for cases in which a burst size like four 
would result in a 60% false negative rate, which indicated a non-existent 
burst despite active bursting. Thus, burst frequency normalization was 
scaled by burst size to ensure accurate quantification. The equation for 
the burst frequency is shown in Supplementary Fig. 4 (bottom).

Genes with core promoter elements like TATA and Initiator sequences 
were retrieved from the Eukaryotic Promoter Database (http://epd.
vital-it.ch)66. Genes containing a pause button, a sequence associated 
with promoter–proximal paused RNA polymerase, were recovered 
from the CoPRO dataset67.

Simulation of idealized burst kinetics
We simulated read counts for populations of single cells to evaluate 
the performance of our estimators for burst rate and size. In the first 
simulation, we randomly generated the true burst size (Tsize) for all 
human genes from a normal distribution (mean = 2, standard devia-
tion = 3). Similarly, we generated true burst rates (Trate) for all human 
genes from a normal distribution (mean = 1, standard deviation = 1). 
Tsize less than 1 was corrected to 1, and Trate less than 0.1 burst per hour 
was corrected to 0.1. These parameters were used to simulate UMIs 
per gene per cell as follows:
1.	 For each cell and each gene, a sample from a Poisson distribution 

with rate parameter λ = Trate.
2.	Scale the sampled burst by Tsize and round to the nearest integer.
3.	After generating molecule counts for all genes and all cells, randomly 

subsample to a specified level (for example, 10% sampling efficiency) 
without replacement.

In the second simulation, Tsize and Trate were taken from our genome- 
wide estimates described in Fig. 2, and UMIs per gene per cell were 
similarly generated. Simulations were performed ten times to ensure 
consistent results.

Cell cycle analysis
Three sets of transcriptionally characterized genes were used to 
characterize the cell cycle phase in individual cells. Transcription of 

https://www.bioconductor.org/packages/release/bioc/vignettes/groHMM/inst/doc/groHMM.pdf
https://www.bioconductor.org/packages/release/bioc/vignettes/groHMM/inst/doc/groHMM.pdf
http://epd.vital-it.ch
http://epd.vital-it.ch
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68 replication-dependent histone genes on chromosome 3, chromo-
some 6, chromosome 11 and chromosome 13 were used to determine 
the S phase collectively. Transcription of four genes (Orc1, Ccne1, Ccne2 
and Mcm6) were used to assign G1/S phase, and six genes (Wee1, Cdk1, 
Ccnf, Nusap1, Aurka and Ccna2) were used to assign G2/M phase. Cells 
with more than a read in one of the genes or reads in more than one 
gene were hierarchically clustered, which revealed three major clus-
ters of the cell-cycle-phase-specific transcription pattern. The other 
three smaller clusters without distinct transcription patterns were not 
considered for downstream analyses. Differentially expressed genes 
among G1/S, S and G2/M phases of the cell cycle were identified using 
the ‘FindAllFeatures’ function of Seurat68 (single-cell analysis package).

Gene–gene co-transcription
The co-transcription of genes was determined using two criteria: cor-
relation and permutation. scGRO–seq reads were collected from up to 
the first 10 kb of genes after 500 bp regions at both ends were trimmed 
(n = 15,666). The genes by cells expression matrix was binarized. For the 
correlation approach, pairwise correlation was performed for all gene 
pairs, and the P value was calculated using the chi-square test. It was 
adjusted for multiple hypothesis tests using the Benjamini–Hochberg 
correction method.

Permutation was performed by shuffling the cell identifiers of reads 
while maintaining their gene assignments. The permutation method 
accounts for several unknown and known biases and, more importantly, 
maintains the number of reads in each cell. The observed and permuted 
co-transcription frequencies of gene pairs were calculated. The empiri-
cal P value for a gene pair was determined by counting the incidence 
of equal or higher co-transcription frequency in 1,000 permutations 
compared with the observed co-transcription frequency.

Gene pairs with correlation coefficients of greater than 0.1 and 
multiple hypothesis corrected P values of less than 0.05 from the cor-
relation approach and an empirical P value of less than 0.05 from the 
permutation approach were considered co-transcribed. A network of 
pairwise co-transcribed genes was created using the Leiden algorithm, 
and the modules were selected for gene ontology analyses using the 
clusterProfiler R package.

Enhancer–gene co-transcription
Enhancer–gene co-transcription was determined following the logic 
of gene–gene co-transcription, substituting genes on one arm with 
enhancers. scGRO–seq reads were collected from up to the first 10 kb 
of genes after 500 bp regions at both ends were trimmed, and from 
at least a 3 kb region around enhancers (1,500 bp sense and 1,500 bp 
antisense) after a 500 bp region around the TSS was removed to 
avoid paused polymerases. Strand-specific reads on either side of the 
enhancer TSS were combined to determine enhancer expression. The 
features (genes + enhancers) by cell expression matrix was binarized, 
and the co-transcribed enhancer–gene pairs were determined using 
the correlation and permutation tests, similar to the approach used 
in the gene–gene co-transcription calculation. The UMIs per cell are 
maintained in each permutation. Enhancer–gene pairs only from the 
same chromosomes were retained for downstream analyses. We also 
included non-overlapping SEs identified in mouse ES cells.

Enhancers of pluripotency factors
Validated enhancers associated with pluripotency transcription fac-
tors OCT4 (also known as POU5F1), SOX2, Nanog and KLF4 were col-
lected from studies referenced in the main text. To define time bins 
within genes, genes were divided into 5 kb bins (2-min bins calculated 
using the 2.5 kb min–1 constant transcription rate of elongating RNA 
polymerases) in the sense and antisense direction until the end of the 
transcription wave called by groHMM69, or they overlapped bins from 
other genes. For enhancers, the TSS was first determined based on the 
strongest OCT4, SOX2 and Nanog chromatin immunoprecipitation 

and sequencing (ChIP–seq) peaks. The precise position was deter-
mined by evaluating the divergent transcription around them. The 
reads from corresponding bins in sense and antisense directions  
were combined.

CRISPR-validated SEs
A set of validated SEs and their target genes were used from a previ-
ously published study referenced in the main text. SEs in gene introns 
or associated with miRNA were excluded due to the ambiguity in 
assigning reads and short gene length, respectively. For the time bin 
analyses, genes and SEs were divided into four 5 kb bins (2-min with the 
2.5 kb min–1 constant transcription rate of elongating polymerases) 
in the sense and antisense direction, limiting the analyses to the first 
20 kb. Using a 20 kb region in this analysis yields four 5 kb bins. The TSS 
was first determined based on the strongest OCT4, SOX2 and Nanog 
ChIP–seq peaks, and precise position was determined by evaluating the 
divergent transcription around them. The reads from corresponding 
bins in sense and antisense directions were combined. The scrambled 
random pairs in SE–gene time bin analysis represent the co-transcribed 
bins between SEs and genes that are not the verified pairs.

External data
Various data types were analysed, compared and benchmarked 
against this study. PRO–seq data (GSE169044), ChIP data for p300 
(GSM2360934), ATAC–seq (GSE169044), CDK9 (GSM1082347), RNA 
PolII (GSM318444), H3K4me1 (GSM281695), H3K4me3 (GSM1082344), 
H3K27Ac (GSM594579), OCT4 (GSM1082340), SOX2 (GSM1082341) 
and Nanog (GSM1082342) were downloaded from the Gene Expres-
sion Omnibus database. PRO–seq libraries were prepared using the 
same cells used for scGRO–seq under identical conditions70. Intron 
seqFISH data on mouse ES cells were downloaded from table S1 of  
ref. 17. The genes-by-cells intron seqFISH matrix was binarized, and 
burst frequency was calculated assuming the signal in each gene comes 
from a burst equivalent to the 10 kb region used in scGRO–seq, given 
the probes were designed against the introns at the 5′ regions of genes. 
Mouse ES cell scRNA-seq was used from a previous study7, and the burst 
kinetics was downloaded from 41586_2018_836_MOESM5_ESM.xlsx file 
associated with this study.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing files for scGRO–seq, inAGTuC and AGTuC experiments have 
been deposited into the NCBI’s Gene Expression Omnibus database 
and are accessible through GEO series accession number GSE242176. 
The published datasets used in this study were obtained from the 
GEO repository (identifiers GSE169044, GSM2360934, GSM1082347, 
GSM318444, GSM281695, GSM1082344, GSM594579, GSM1082340, 
GSM1082341 and GSM1082342), supplementary table S1 of ref. 17, and 
41586_2018_836_MOESM5_ESM.xlsx file of ref. 7.

Code availability
The code used in this study is available from GitHub (https://github.
com/jaymahat/scGROseq).
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Extended Data Fig. 1 | click-chemistry mediated nascent RNA conjugation 
to single-stranded DNA and optimization of reverse transcription.  
a, Click-chemistry compatible nucleotides tested in AGTuC development.  
A few nucleotide triphosphates were custom synthesized or sourced with few 
properties in mind - smaller size, chain termination ability, and the possibility 
of incorporation by native RNA polymerases. b, Structure of the triazole 
linkage formed by CuAAC between the nascent-RNA terminally labeled with 
3′-(O-Propargyl)-NTPs and the azide-labeled DNA (top left), the linkage formed 
by SPAAC between the nascent-RNA terminally labeled with 3′-Azido-3′-dNTPs 
and DBCO DNA (right). The phosphodiester linkage in a native oligonucleotide 
is shown for comparison (bottom left). c, Incorporation efficiency of 
3′-(O-Propargyl)-ATP or 3′-Azido-3′-dATP by native RNA polymerase in nuclear 
run-on reaction. The propargyl or azide labeled nascent RNA is clicked with  
Cy5 via CuAAC (Azide-Cy5 or Alkyne-Cy5) or SPAAC (DBCO-Cy5), resolved  
in a denaturing polyacrylamide gel electrophoresis (PAGE), and quantified  
by measuring the Cy5 fluorescent from the gel image. The blue dotted line 

represents the quantified gel region. d, Relative quantification of reverse 
transcription (RT) efficiency of two commercial enzymes traversing through 
the triazole link formed between the alkyne-labeled RNA and azide-labeled 
DNA by CuAAC. RT was performed in the presence of either native dCTP or 
radioisotope a-32P dCTP, and the RT reaction was resolved in denaturing PAGE 
and imaged sequentially for nucleic acid signal (top gel) and radioisotope 
signal (bottom gel). e, Quantification of aborted intermediate and completed 
desired products (RT through triazole and TSO used) formed during the one hour 
or three hours of RT using TSO with terminal Locked-Nucleic-Acid-Guanosine 
(LG) or 2′-Fluoro-Guanosine (FG). f, Confirmation and relative quantification of 
CuAAC, RT, and PCR of clicked product formed between the alkyne-labeled RNA 
and azide-labeled DNA by three commercial Reverse transcriptase enzymes. 
Note: The blue bar, line, or border represents the “winner” condition. 
Polyacrylamide gel electrophoresis for c, d, and f was repeated at least twice 
with the addition or subtraction of some conditions presented here. For gel 
source data, see Supplementary Fig. 1.



Extended Data Fig. 2 | Comparison between AGTuC and PRO-seq.  
a, Representative genome-browser screenshots with two replicates of  
AGTuC and PRO-seq showing a region in chromosome 15 (left) and a region  
in chromosome 3 containing the Sox2 gene and its distal enhancer (right)  
of the mouse genome (mm10). b, Correlation between AGTuC and PRO-seq 
UMIs per million sequences in gene bodies (left, n = 19,961) and enhancers 
(right, n = 12,542). UMIs from the 500 bp regions from each end of the genes 
and 250 bp regions from each end of the enhancers were removed to only 

include nascent RNA from elongating RNA polymerases, and the data was 
plotted on a log-log scale to show the range of data distribution. c, Metagene 
profiles of AGTuC and PRO-seq UMIs per million per 10 base pair bins around 
the TSS of genes (left, n = 19,961) and enhancers (right, n = 12,542). The line 
represents the mean, and the shaded region represents a 95% confidence 
interval. d, Major steps with the approximate time required in AGTuC library 
preparation.
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Extended Data Fig. 3 | Optimization of intact nuclei run-on reaction and 
NGS library preparation steps. a, Physical appearance of Trypan Blue stained 
nuclei under microscope treated with various sarkosyl concentrations.  
b, Relative quantification of nuclear run-on efficiency with various sarkosyl 
concentrations. Nascent RNA collected after nuclear run-on reaction with 
either native CTP or click-compatible 3′-(O-Propargyl)-CTP was clicked with 
Cy5-azide, resolved in denaturing PAGE, and imaged for Cy5 fluorescence.  
c, Effect of different ratios of CuAAC accelerating ligand BTTAA in CuAAC 
efficiency. RNA-propargyl was clicked with azide-DNA containing Cy5 in the 
presence of various ratios of BTTAA:CuSO4, resolved in denaturing PAGE,  
and imaged for Cy5 fluorescence. d, Relative quantification of denaturing 
efficiency of commonly used denaturing agents to release the nascent RNA 
from RNA polymerase complex. Intact nuclei after run-on with 3′-(O-Propargyl)- 
NTPs were treated with denaturing agents in the presence of azide-labeled 
beads and CuAAC reagents, allowing nascent RNA to click with the beads. 
Beads were stained with RNA-binding dye and measured for fluorescence by 
FACS. e, Effect of denaturing agent’s presence in CuAAC efficiency. The blue 
outline in the image of denaturing PAGE denotes the click product between the 
RNA-alkyne and azide-DNA. f, Role of urea in the residence of clicked RNA-DNA 
conjugate in either supernatant or interphase of Trizol during the clean-up of 

CuAAC reaction, as quantified by the scintillation count of 32P radioisotope.  
g, Desalting (removal of CuSO4, BTTAA, and sodium ascorbate from CuAAC 
reaction) efficiency of polymerized dextran and cellulose membrane. 
Fluorescence from Cy5-labeled RNA-DNA conjugate was measured in elution 
fractions from columns packed with polymerized dextran and elution from 
different pore-size cellulose membrane centrifugation tubes with or without 
PEG 8000. h, Relative recovery of ssDNA or RNA from phenol:chloroform or 
silica-based matrix column purification. Clicked RNA-DNA conjugate was 
radioisotope labeled using Polynucleotide kinase and γ-32P ATP, and the cleaned 
reaction was quantified using a scintillation counter. i, PCR amplification 
efficiency of clicked RNA-DNA conjugate using different commercial PCR 
amplification kits. The PCR reaction was resolved in native PAGE, stained with 
SYBR Gold, and quantified using ImageJ software. j, Relative recovery of 
size-selected dsDNA. A mock NGS library (purified PCR product) was selected 
for the desired size using various size-selection methods, and the recovered 
dsDNA was quantified using a dsDNA-specific fluorescence kit (Qubit). The bar 
represents the average of two independent replicates. Note: The blue bar, line, 
or border represents the “winner” condition. Polyacrylamide gel electrophoresis 
for b, c, and e was repeated at least twice with the addition or subtraction of 
some conditions presented here. For gel source data, see Supplementary Fig. 2.



Extended Data Fig. 4 | Benchmarking inAGTuc against AGTuC and PRO-seq. 
a, Representative genome-browser screenshots with two replicates of inAGTuC, 
AGTuC, and PRO-seq showing a region in chromosome 8 (left) and a region in 
chromosome 4 of the mouse genome (mm10). b, c, Comparison of inAGTuC 
metagene profiles with PRO-seq and AGTuC using UMIs per million per 10 base 
pair bins around (b) the TSS of genes (n = 19,961) and (c) enhancers (n = 12,542). 
The line represents the mean, and the shaded region represents a 95% confidence 
interval. d, Correlations of inAGTuC UMIs per million sequences in gene  
bodies (n = 19,961) between the four replicates. e, Distribution of UMIs per well 
(left) and features per well (right) in four replicates of 96-well plate inAGTuC 

libraries. Each well contains 100 nuclei. f, Relationship between the UMIs per 
well and the number of features detected per well in four replicates of 96-well 
plate inAGTuC libraries. g, Correlation between inAGTuC and AGTuC UMIs per 
million sequences in the body of genes (n = 19,961) and enhancers (n = 12,542). 
h, Correlation between inAGTuC and PRO-seq UMIs per million sequences in the 
body of genes (n = 19,961) and enhancers (n = 12,542). For panels g and h, UMIs 
from the 500 bp regions from each end of the genes and 250 bp regions from 
each end of the enhancers were removed to only include nascent RNA from 
elongating RNA polymerases, and the data was plotted on a log-log scale to show 
the range of data distribution.
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Extended Data Fig. 5 | Feasibility demonstration of inAGTuC with fewer cells. 
a, Representative genome-browser screenshots of inAGTuC library from one 
96-well plate with each well containing either 12, 120, or 1200 cells per well 
(cpw) showing two regions in chromosome 17 of the mouse genome (mm10). 
inAGTuC library with 1200 cpw but without Cu(I) in the CuAAC reaction  
(fourth track) and the PRO-seq library (fifth track) serve as the negative  
and positive control, respectively. b, Correlations among 12 cpw, 120 cpw,  

and 1200 cpw inAGTuC libraries in the body of genes (n = 19,961). c, Distribution 
of UMIs per well (top) and genes per well (bottom) in 12 cpw, 120 cpw, and 1200 
cpw inAGTuC libraries. d, Correlations between PRO-seq and 12 cpw, 120 cpw, 
and 1200 cpw inAGTuC libraries in the body of genes (n = 19,961). For panels  
b and d, UMIs from the 500 bp regions from each end of the genes were removed 
to only include nascent RNA from elongating RNA polymerases, and the data 
was plotted on a log-log scale to show the range of data distribution.



Extended Data Fig. 6 | scGRO-seq library preparation. Major steps involved 
in scGRO-seq library preparation.
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Extended Data Fig. 7 | Additional benchmarking of scGRO-seq. a, Coefficient 
of determination (r2) between each 96-well plate from scGRO-seq batches that 
passed the quality-control threshold. r2 was calculated from average UMIs per 
96 cells in all genes and enhancers. b, Distribution of scGRO-seq features 
(genes + enhancers) per cell. c, Relationship between the number of features 
detected per cell and the UMIs per cell (left) or UMIs in features per cell (right) 
in scGRO-seq. Colors indicate different batches of scGRO-seq. d, Correlation 
between scGRO-seq and PRO-seq UMIs per million sequences in gene bodies 
(left, n = 19,961) and enhancers (right, n = 12,542). UMIs from the 500 bp regions 
from each end of the genes and 250 bp regions from each end of the enhancers 
were removed to only include nascent RNA from elongating RNA polymerases, 
and the data was plotted on a log-log scale to show the range of data distribution. 

e, Metagene profiles of scGRO-seq compared with inAGTuC UMIs per million 
per 10 base pair bins around the TSS of genes (left, n = 19,961) and enhancers 
(right, n = 12,542). The line represents the mean, and the shaded region 
represents the 95% confidence interval. f, Comparison of metagene profiles 
between scGRO-seq and PRO-seq UMIs per million per 10 base pair bins around 
the TSS of genes (left, n = 19,961) and enhancers (right, n = 12,542). The line 
represents the mean, and the shaded region represents 95% confidence interval. 
g, Correlation between scGRO-seq and scRNA-seq UMIs per cell in the body of 
genes (left, n = 19,961). UMIs from the 500 bp regions from each end of the genes 
were removed to only include nascent RNA from elongating RNA polymerases, 
and the data was plotted on a log-log scale to show the range of data distribution.



Extended Data Fig. 8 | Effect of transcription level, gene length, and burst 
duration in transcription burst kinetics. a, Distribution of distances between 
consecutive RNA polymerases in the first 10 kb of the gene body in single cells 
compared with distances from permuted data (randomized cell ID while 
maintaining UMIs per cell but unchanged read position, left) or uniform  
data (randomized read position along the gene but unchanged cell ID, right). 
Distances up to 2.5 kb are shown. b, Test of burst kinetics estimators by 
simulating burst size and burst frequency. c, Test of our burst kinetics estimators 
by simulating read counts using burst size and frequency inferred from observed 

scGRO-seq dataset. d, Correlation of burst frequency of genes higher than 0.1 
in both datasets between scGRO-seq and intron seqFISH. e, Correlation 
between the burst frequency from scGO-seq (top) and intron seqFISH (bottom) 
with the burst frequency from scRNA-seq. f, The effect of gene length (from 
100 bp to 10 kb after trimming 500 bp on either end of the genes) on burst size 
and frequency. g, Correlation between burst frequencies calculated from the 
burst window of either the first 5 kb or the first 10 kb gene bodies. In panels  
b-g with the log-log scale, the data was plotted on a log-log scale to show the 
range of data distribution. The y = mx fit was derived from linear data.
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Extended Data Fig. 9 | Co-transcription of genes with shared function.  
a, Genome-browser screenshot of the histone locus body in mouse chromosome 
13 showing transcription of replication-dependent histone genes. b, Network 
of enriched gene ontology terms in co-transcribed genes prepared using 

“enrichGO” function in clusterProfiler R package. A connecting gray line 
represents at least a 10% overlap of genes between the GO terms. The color of 
the dots represents the p-value calculated by the clusterProfiler, and the dot 
size represents the number of contributing genes in the GO term.



Extended Data Fig. 10 | Organization of enhancer-gene co-transcription 
networks. a, Distance between correlated and non-correlated SE-gene pairs 
within 2.5 Mb of each other. b, Co-transcription network of functionally related 
genes clustered together on the same chromosome shown as examples. Red 
edges between the enhancer-gene pairs indicate rho > 0.15, and rho > 0.1 and 

<0.15 are shown in gray. c, Co-transcription between the Sox2 gene and its distal 
enhancer (left), and the Nanog gene and its three enhancers (right). Green bars 
represent the annotated SE regions, and the 5 kb bins in sense and antisense 
strands are represented in magenta and yellow-green bars.
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