Skip to main content
. 2024 Jun 8;27:101119. doi: 10.1016/j.mtbio.2024.101119

Table 2.

Chemically propelled nanomotors with potential biomedical applications.

Fuel Primary Constituent Materials Catalytic way Size Speed Fuel Concentration Merits and demerits Ref
H2O2 Au@MnO2 MnO2 191 nm 8 pixel/frame 0.1 mM Abundant fuel (H2O2); Oxygen generation, alleviating hypoxia. Weak ability to identify tumor heterogeneity. [84]
H2O2 MnO2, PEG-PDLLA MnO2 300 μm 15–20 μm/s 5–50 mM [85]
H2O2 CAT -β@ZIF Catalase (CAT) 1 μm 0.65–0.81 μm2/s 0.3–3% [86]
H2O2 ZIF-67/Fe3O4/DOX Co2+ and 2-Methylimidazole 5 μm 76.38 μm/s 10 % [87]
H2O2 L-arginine, HPAM Catalase 170 nm 0.5–4 μm/s 5–20 mM [56]
H2O2 Fe2O3,PEG-b-PS Iron oxide nanoparticles (IONPs) 342.9 nm 307 nm/s 200 μM [88]
H2O2 Pt,PEG-b-PS Pt 152 nm 23 μm/s 35 % [89]
H2O2 Pt,PEG-b-PS Pt 150 nm 8.97 μm/s Tumor microenvironment [90]
H2O2 Pt,PEG-b-PS
PEG-b-PCL
Pt 30 nm 39 μm/s 4.98 mM [91]
H2O2 CAT,PEG-b-PS Catalase 500 nm 60 μm/s 111 mM [92]
H2O2 CAT,GOx,CAuNCs@HA Catalase 171.53 nm 25.25 μm/s 100 μM [93]
H2O2 CREKA-Ce@PDA/DOX NBs CeO2 150 nm 9.5 μm/s 4.9 mM [94]
H2O2 UCNPs@mSiO2-TAPP @Au-3-MPBA Catalase 59.8 nm 1.727 μm2/s 50 mM [95]
H2O2 JAuNR-Pt Pt 108 nm 10.18 μm/s 200 μM [96]
H2O2 Au@Pt Pt 100 nm 43.85 ± 5.49 μm/s 10 mM [97]
H2O2 Cu-JMCNs Cu 356 ± 4 nm 5–11 μm2/s Not provided [77]
H2O2 JHP@Catalase Catalase 521 nm 0.63 ± 0.03 μm2/s 2.5 wt% [98]
Urea MSNP-Ur/PEG-Ab Urease 481 nm 1.2 μm2/s 50 mM Strong targeting towards regions with higher urea levels (kidneys, prostate, bladder cancer). Poor applicability, not suitable for urea-free sites. [99]
Urea Ur-PDA NC Urease 5 μm 10.67 μm/s 100 mM [100]
Urea UPJNMs,Ur- PEG-AuNP Urease 90 μm 11.1 μm2/s 10 mM [101]
Urea LM@PDA@CF & Ur Urease 348 nm 0.825 μm2/s 50 mM [102]
Urea LL-37@K7-Pol@MSNPs@Ur Urease 1.87 μm 0.58 μm2/s 200 mM [103]
Urea HSiO2FA-Urease-I Urease Not provided 12 μm/s 25 mM [104]
Urea HSiO2FA-Urease-O Urease Not provided 11 μm/s 50 mM [104]
Urea JRs@ HAase@ Ur Urease,hyaluronidase 93–260 nm 4–8 μm/s 5 mM [105]
Urea JHP@Urease Urease 495 nm 0.96 ± 0.04 μm2/s 300 mM [98]
Urea UM - NEs Urease 254 nm 4.7 μm/s 50 mM [106]
Arginine L-arginine, HPAM NO synthase (NOS),Reactive oxygen species (ROS) 385 nm 13 μm/s 3.75 mg/mL Nitric oxide production; improving tumor microenvironment. Low sustained efficacy, limited fuel capacity (arginine); Reliant on tumor nitric oxide synthase. [56]
Arginine HFLA-DOX NOS, ROS 50 nm 13.3 μm2/s 10 % [107]
Arginine HFCA NOS, ROS 40 nm 10 μm2/s Not provided [108]
Arginine PCBMA - LA NOS, ROS 220 nm 3.5 μm/s 15 % [109]
Arginine PMA-TPP/PTX NOS, ROS 200 nm 3 μm/s Not provided [110]
Arginine DPNMs,L-Arg, CaO2 NOS, ROS 361 nm 6 μm/s 2.7 mM [111]
Arginine PCBMA-LA NOS, ROS 220 nm 1.8 μm/s 121.7 μg/mL [109]
Arginine TAP nanomotors NOS, ROS 200 nm 5 μm/s Not provided [112]
Glucose AG–DMSNs,L-Arg AuNPs gold nanoparticles (AuNPs) dendritic mesoporous silica nanoparticles (AG-DMSNs),H2O2 80 nm 11 μm/s 27.8 mM Primary energy source for cells; Biocompatible fuel; Abundant in biological systems. Multiple conversion steps; Less efficient compared to direct chemical fuels. [113]
Glucose SiO2@Au&PMO Janus Glucose
Catalase
350 nm 6.34 μm2/s 100 mM [114]
Glucose GC6@cPt ZIFs Glucose
Catalase
70–120 nm 2.08 μm/s 10 × 10−3 M [115]