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The purpose of this narrative review was to comprehensively elaborate the various components of artificial intelligence (Al), their ap-
plications in spine surgery, practical concerns, and future directions. Over the years, spine surgery has been continuously transformed in
various aspects, including diagnostic strategies, surgical approaches, procedures, and instrumentation, to provide better-quality patient
care. Surgeons have also augmented their surgical expertise with rapidly growing technological advancements. Al is an advancing field
that has the potential to revolutionize many aspects of spine surgery. \We performed a comprehensive narrative review of the various
aspects of Al and machine learning in spine surgery. To elaborate on the current role of Al in spine surgery, a review of the literature was
performed using PubMed and Google Scholar databases for articles published in English in the last 20 years. The initial search using the
keywords “artificial intelligence” AND “spine,” “machine learning” AND “spine,” and “deep learning” AND “spine” extracted a total of
78, 60, and 37 articles and 11,500, 4,610, and 2,270 articles on PubMed and Google Scholar. After the initial screening and exclusion of
unrelated articles, duplicates, and non-English articles, 405 articles were identified. After the second stage of screening, 93 articles were
included in the review. Studies have shown that Al can be used to analyze patient data and provide personalized treatment recommenda-
tions in spine care. It also provides valuable insights for planning surgeries and assisting with precise surgical maneuvers and decision-
making during the procedures. As more data become available and with further advancements, Al is likely to improve patient outcomes.
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Introduction

Over the past few decades, a dramatic transition has
occurred in spine surgery. Surgeons have evolved from
performing open to performing minimally invasive tu-
bular and endoscopic surgeries to provide better patient
outcomes with minimal trauma to the internal environ-

ment. Parallel advancements have also progressed in
medical research and research tools. Medical research
involves data analysis of various dimensions. However,
the availability of vast amounts of data prevents data-
driven methods from translating into clinically relevant
models [1]. Artificial intelligence (AI) is emerging as a
critical tool in the assessment of diverse healthcare data.
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Machine learning (ML) algorithms, a subtype of Al,
can be used to analyze patient-related data and suggest
strategies that would help clinicians during treatment.
Spine surgeries have their set of risks and complica-
tions, and the information and assistance provided by
AT could help surgeons avoid minor to catastrophic
adverse events in patient care. Several authors have ex-
amined the effect of Al in specialties such as radiology,
oncology, primary care, and basic sciences, and reports
suggest favorable prospects for Al [2-4]. Thus, this nar-
rative review aimed to briefly discuss the applications of
Al in spine surgery and its future directions.

Literature search

An elaborate search was performed using the follow-
ing keywords: “artificial intelligence” AND “spine,”
“machine learning” AND “spine,” “deep learning”
AND “spine” on PubMed and Google Scholar (scholar.
google.com) on August 10, 2023. Crucial questions and
research regarding AI in spine surgery were identified,
and relevant articles on these topics were included.

Results

The initial search using the keywords “artificial intel-

» <«

ligence” AND “spine;,” “machine learning” AND “spine;”

and “deep learning” AND “spine” extracted a total of
78, 60, and 37 articles and 11,500, 4,610, and 2,270 ar-
ticles on PubMed and Google Scholar, respectively. In
the initial screening, articles unrelated to Al, duplicate
articles, and non-English articles were excluded based
on the abstracts or titles of the articles. This initial
screening resulted in the identification of 405 articles.
Complete manuscripts were obtained for all selected
articles and thoroughly scrutinized during the second
stage of article selection. All articles not concerning the
Al application in spine surgery, articles regarding Al in
other medical specialties, articles not on the concerned
questions, and non-English articles were excluded.
Randomized controlled trials, level 1 studies, and re-
view articles were preferred (Fig. 1). Finally, 93 articles
were included in this review. Screening for the included
articles based on Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses or Methodological
Index for Nonrandomized studies criteria was not per-
formed.

AT and its components in medicine

In medicine, AI seeks to emulate the characteristics
of human intelligence, such as learning, communica-
tion, decision-making, and adaptation to changing
environments in a clinical setting. Thus, it includes

I nitial search on August 10, 2023

Search was performed using keywords “artificial intelligence”” AND “spine,
“deep learning” AND “spine”” on PubMed and Google Scholar databases.

2 <

‘machine learning” AND “spine,”

Y

78, 60, and 37 articles initially identified on “PubMed” database
11,500, 4,610, and 2,270 articles identified on “Google Scholar” database

'

Initial screening

E xclusion of duplicated articles, articles unrelated to artificial intelligence, and articles in non-English literature

based on abstracts or titles of the articles

Y

405 Articles were identified.

Y

Stage 2 screening

All articles not concerning artificial intelligence, not pertaining to concerned questions, case reports, animal
studies, articles in non-English language, and duplicated articles were excluded on the basis of detailed scrutiny

of complete manuscripts.

{

89 Articles were finally included for the narrative review.

Fig. 1. Flowchart depicting the methodology of article selection.
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Fig. 2. Various domains which are the integral parts of artificial intelligence
(AI) in medical field. ML, machine learning; NLP, natural language process-
ing; DL, deep learning; CV, computer vision.
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Fig. 3. Decision tree model of artificial intelligence (AI) showing AO classi-
fication of thoracolumbar fractures in their algorithm. As shown, it has a base
knot, branches and terminal nodes.

diverse domains, of which ML is of particular interest
and has major applicability in medicine (Fig. 2). ML is
a subset of Al that uses computational models to learn
large complex data and generate useful predictive out-
puts without any explicit programing. The fundamen-
tal principles of ML are based on intricate statistical
and mathematical optimization using numerical data
[5]. Decision tree learning, support vector machines
(SVMs), and artificial neural networks (ANNs) are
three common ML models. These models are based on
supervised learning methodologies in which the ma-
chine is trained to predict the outputs based on previ-
ously collected inputs for which the outputs are known;
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Fig. 4. In a basic two dimensional support vector machine algorithm, data
points are classified on either side of the decision boundary. The decision
boundary is termed “hyperplane.”
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Fig. 5. (A) Shows the framework in an artificial neural network (ANN). The
input data passes through numerous hidden networks to arrive at an output.
(B) Human neuronal structure which is the basis of ANN network. The input
is passed from dendrites to the cell body and through myelinated axons to the
synape/adjacent neuron.

hence, a “labeled” dataset is used [6]. A decision tree
is a graphical representation technique that provides a
visual depiction of various decisions with the base knot
and various branches attached to the knot and ending
in terminal nodes (Fig. 3). Because of their peculiar
structure, they are easier to interpret by clinicians. The
SVM is adapted for nonlinear classification and regres-
sion, considering each input as a multidimensional vec-
tor. SVM algorithms incorporate decision boundaries
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called hyperplanes (Fig. 4). In spine pathologies, disk
degeneration grading and identification of the type of
scoliotic curves can be performed using SVM algo-
rithms. In the ANN model, the machine integrates data
using the linkage of artificial neurons. The information
flows through several layers of the hidden neuronal
network; finally, the processed output is generated (Fig.
5). This ANN multilayered strategy is also known as
“deep learning” [7]. Other AI tools include natural lan-
guage processing (NLP) and computer vision [8]. NLP
involves mining and analyzing text-based data that can
be incorporated into analytic algorithms [9]. In simple
terms, NLP quickly extracts patient data from electron-
ic records, including lifestyle and several other health
determinants that could otherwise be cumbersome
for human evaluation. Computer vision is another
advanced tool that aids in the evaluation and process-
ing of patient imaging data with higher precision and
clarity. It often uses convoluted ANN pathways for im-
age segmentation and analysis. U-Net is an example of
these networks that are primarily used in neurosurgical
imaging [10].

By using these specialized tools, Al facilitates and
augments patient healthcare by assisting clinicians in
four important aspects: diagnosis (provides inference
based on patient data including signs, symptoms, and
investigations), therapy (aids in surgical decision-
making and enhancing postoperative patient care),
prognosis (enables the surgeon to predict patient-
specific outcomes and modify treatment strategies),
and research (with the available patient data, Al can
enhance complex statistical analysis to innovative ideas
and research in spine care).

Diagnosis of spinal ailments with Al

Numerous studies in Al regarding various aspects of
low back pain have been published [11-14], especially
disk-related pathologies. Reports have shown that fac-
tors such as disk degeneration, endplate defects, Modic
changes, and vertebral osteoarthritis can be automati-
cally detected in magnetic resonance imaging using
AT algorithms such as SVMs and ANNs [15-18]. “Seg-
mentation” of medical images to provide pixel-specific
data has been an important contribution of computer
vision in spinal imaging [19]. Gong et al. [20] proposed
a network framework called “Axial-SpineGAN” for si-
multaneous segmentation and diagnosis of spinal struc-
tures using axial magnetic resonance imaging (MRI).
Recently, magnetic resonance (MR) image augmenta-
tion using an ANN was approved by the Federal Drug

Administration [21]. This technology facilitates MRI
in a fraction of the normal study time, and the pro-
posed benefits include improved patient satisfaction,
enhanced image quality, and fewer motion artifacts.
Regarding disk degeneration, the Pfirmann grading
system has been validated in multiple studies; however,
few authors have reported interobserver variability and
heterogeneity in the results obtained using this grading
system [22,23]. ML tools such as convoluted neural net-
works (CNNs) and deep learning can extract “radiomic
data” from MR images that are quite difficult to inter-
pret by visual inspection with the naked eye, and stud-
ies have shown an accuracy of 97% in assessing disk de-
generation [24]. Salient features such as the shape and
intensity of the disks can be evaluated in detail using
the feature-extraction technique and critically analyzed
[25]. Similarly, texture analysis of ligamentous struc-
tures in spinal MRI produced parameters for more ac-
curate detection of lumbar canal stenosis [26]. Won et
al. [27] compared the efficacy of grading lumbar canal
stenosis in axial MRI between radiology experts and
trained CNN, and the final agreement rates of decision-
making among them were 77.9% and 74.9%, respec-
tively, which were not significant. Other transformative
innovations of Al in diagnostic imaging include MR
fingerprinting and the identification of tissue properties
using synthetic MRI. These techniques can be useful for
the preoperative assessment of osteoporosis and early
detection of spondyloarthropathies [28,29]. Apart from
MRI, Al also has implications in the evaluation of plain
radiographs [30,31] and computed tomography scans
[32,33].

ML models, such as regression SVM and deep ANN,
were adopted for calculating Cobb’s angle in patients
with scoliosis and yielded satisfactory results with an
error rate of <3° [34,35]. Lyu et al. [36] incorporated a
neural networking algorithm in a three-dimensional
(3D) ultrasound scan to detect the best quality image
for detecting the deformity and reported an accuracy
of 100%. Jaremko et al. [37] studied 18 testing samples
using a three-layered back-propagation ANN to es-
timate Cobb’s angle in laser scan images of patients
with deformity. They observed that the ANN of full
torso imaging could distinguish Cobb’s angle >30°
with acceptable sensitivity and specificity [37]. These
computer-aided systems, by their automated measure-
ments, provide reliable and objective assessments of
the deformity.

Recently, Zhu et al. [38] collected data from 775
patients who underwent cervical spine surgery and
screened 84 patient variables to identify differences be-
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tween patients with positive and negative cervical ossi-
fication of the posterior longitudinal ligament (OPLL).
They proposed an ML-driven nomogram to predict
patients with cervical OPLL and could identify the risk
factors and other associated characteristics of cervical
OPLL. A few researchers have also developed comput-
er-aided detection systems for the automated detection
of spinal metastatic lesions in the thoracolumbar spine
[39,40]. With more improvements in Al technology,
the future could be automated reporting of radiologi-
cal investigations, saving time and providing optimal
results comparable with human reporting. Existing
studies on the diagnosis of lumbar disk degeneration
are shown in Table 1 [41-78].

Al-driven perioperative approach

Al allows for the comprehensive study of patient-spe-
cific anatomy and anatomical variations and the imple-
mentation of individualized surgeries. Lateral access
lumbar spine surgeries have been on a rising trend, par-
ticularly in adult spinal deformities, owing to the mag-
nitude of deformity correction they offer in both coro-
nal and sagittal planes. However, complications such as
lumbar plexus injury and ureteric and visceral injuries
are a concern because of the narrow safety corridor. AI-
enhanced ultrasound imaging was developed by Carson
et al. [79] for the identification of internal and adjacent
neural structures in lateral lumbar fusion surgeries, and
the reported accuracy of nerve detection was >95%.
Other recent advances such as robotic and navigation-
guided procedures have revolutionized spine and spi-
nal cord surgeries with their three-dimensional, real-
time, and haptic feedback mechanisms. The Da Vinci
Surgical System (Intuitive Surgical, Sunnyvale, CA,
USA), SpineAssist (MAZOR Robotics Inc., Caesarea,
Israel), ROSA (Medtech SA, Montpellier, France), and
Excelsius GPS Robot (Globus Medical Inc., Audubon,
PA, USA) are the commonly available surgical robots
(Fig. 3). Studies have reported excellent outcomes with
robotics in pedicle screw insertion, tumor excision,
and spinal deformity correction surgeries [80,81]. In
addition to their role in complex and challenging spine
procedures, robots have been reported to be very useful
in targeted procedures such as radiofrequency abla-
tion, biopsy, and vertebral augmentation (kyphoplasty/
vertebroplasty) [82]. Al-powered robots would be aug-
mented with various DL and computer vision sensors
(vision devices such as two-dimensional/3D cameras,
fine tactile/vibration, proximity sensors, accelerom-
eters, and other environmental sensors) that feed them

with sensing data that they could analyze and act upon
in real-time. These systems provide enhanced dexter-
ity, precision, and stability during surgeries, allowing
surgeons to perform complex operations with greater
accuracy. However, the integration of Al algorithms in
robotic navigation is still in its early stages and will gain
much more prominence in the years to come.

Opioids are important rescue analgesics in spine sur-
gery. More importantly, opioid therapy requires vigi-
lant supervision, particularly in the older population,
as it can induce dependence and cause adverse events
following long-term use. Karhade et al. [83] proposed
an Al-based model to stratify patients at risk of opioid
dependence. Using this model, surgeons can identify
at risk patients and adapt alternate pain management
strategies, thereby mitigating the risks associated with
opioid use [83]. Recently, Ayling et al. [84] examined
the adverse events following lumbar spine surgeries
for degenerative pathologies and reported that ap-
proximately 2.4% and 19.2% of patients had one of
the major or minor perioperative adverse events, re-
spectively. These adverse events not only increase hos-
pitalization costs but also significantly affect surgical
outcomes. Studies using the random forest approach
to predict perioperative complications in adult spinal
deformity surgery showed an accuracy of prediction
of 87.6% [85]. Similarly, Wang et al. [86] employed a
risk-stratification tool using ANNs in 12,492 patients
to identify candidates who might be safe for ambula-
tory anterior cervical discectomy and fusion surgery,
thereby reducing the chances of prolonged hospitaliza-
tion. In addition, AI has been successfully evaluated to
plan the discharge of patients following elective spine
surgeries. The application of such algorithms would
not only guide surgeons but also help patients reduce
their healthcare costs and improve patient satisfaction.

Predictive and prognostic analytics using Al

Many prognostic tools are available in spine literature
and are widely used in practice for the grading and prog-
nosis of spinal disorders. Evaluating and analyzing these
data and scoring systems for a larger population can be
challenging for clinicians who use traditional statistical
methods. ML algorithms are superior to conventional
statistical models because they can analyze larger data-
sets and interpret nonlinear relationships in the given
data. In patients with cervical spondylotic myelopathy,
Khan et al. [87] used polynomial SVM learning to iden-
tify patients at risk of functional deterioration following
surgery. The study included 757 patients, and the re-
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ported accuracy of detection was approximately 74.3%.
McGrit et al. [88] examined data from 750 to 1,200 pa-
tients undergoing low back surgery and used regression
analysis to predict the Oswestry Disability Index 1 year
after surgery with an accuracy of up to 84%. Kim et al.
[89] observed the incidence of postoperative C5 palsy
in patients with OPLL and reported superior efficacy
of ML algorithms with logistic regression models in the
prediction of C5 palsy. Several similar studies using ML
algorithms have reported outcome prediction following
cervical and lumbar spine surgeries [90-92]. Hopkins et
al. [93] performed a retrospective study of 4,046 patients
undergoing posterior spinal fusion surgeries and identi-
fied patients at risk of developing surgical site infection
using Al protocols. They reported positive and negative
predictive values of 92.56% and 98.45%, respectively [93].
Hemiplegia/paraplegia, multilevel fusion, congestive
cardiac failure, chronic pulmonary failure, and cerebro-
vascular disease were the risk factors with the highest
significance in their study.

The spine is the most common site of skeletal me-
tastasis, and approximately 70% of patients with ma-
lignancy could develop spinal metastasis [94]. Post-
operative outcomes and overall survival rates in these
patients have improved over the years. Karhade et al.
[95] analyzed 1,790 patients with spinal metastasis
and deployed Bayesian algorithm (ML) to identify 30-
day mortality rates following spinal metastasis surgery.
An open-access web application was also developed
to identify these high-risk patients using ML algo-
rithms. The authors concluded that as the volume of
data in oncology increases, the creation of learning
models and use of these systems as accessible tools
may significantly enhance prognosis and appropriate
management. A similar study included 1,053 patients
with spinal epidural abscesses and showed promising
results on the internal validation of ML algorithms to
predict in-hospital and 90-day postdischarge mortality
in these patients [96]. Al has thus emerged as a deci-
sion support tool, enabling surgeons’ clinical decision-
making process to be augmented by their predictive
power. In addition to these clinical utilities, computer
vision-based algorithms record the rehabilitation and
functional assessment of patients with spinal cord in-
jury. Likitlersuang et al. [97] designed a tool using an
egocentric camera system to detect the functional in-
teractions of the hand with objects during activities of
daily living in patients with cervical spinal cord injury
during rehabilitation. This device can directly collect
quantitative information on hand functions in home
and community settings.
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Al in evidence-based spine research

With the introduction of AI systems, the term “smart
gait” is becoming popular, where an integrated human
gait data analysis such as human activity recognition,
gait phase detection, gait event prediction, fall detec-
tion, recognition of a person’s age and sex, and abnor-
mal gait detection using Al tools can be performed.
One of the important clinical signs in patients with ra-
diculopathy caused by lumbar degenerative conditions
is the listing of their trunk. This could alter the weight-
bearing areas of the feet and cause variations in the
gait pattern. Hayashi et al. [98] used SVM algorithms
to analyze gait alteration in patients with L4 and L5
radiculopathy caused by lumbar canal stenosis and re-
ported an accuracy of 80.4%. Similar published studies
in the AT literature have focused on the identification of
loads and stress patterns in various ligaments and joints
of the foot, ankle, and knee, ensuring their use in or-
thopedic disorders such as adult-acquired flatfoot and
osteoarthritis.

Adult spinal deformity is a complex pathology with
heterogeneous clinical presentation and management
options. Ames et al. [99] applied hierarchical cluster-
ing using Al to propose a classification model that
would guide surgeons in deciding the appropriate sur-
gical treatment. They are mainly useful in identifying
patients at low risk and those likely to improve with
surgical procedures. Regarding spinal fixation in these
patients, pedicle screw instrumentation is preferred for
deformity correction to regain sagittal and coronal bal-
ance. Several finite-element studies on the biomechan-
ical properties and pullout strength of pedicle screws
have been performed. However, these studies could
not be individualized to patient-specific factors such as
osteoporosis and sarcopenia, which are more prevalent
in this population. Practically, the surgeon appraises
the screw hold only by subjectively assessing the inser-
tional torque of the screws. An experimental model to
assess the pullout strength of pedicle screws using ML
was developed by Khatri et al. [100], and they studied
various parameters such as pedicle screw insertion
angle, depth, density, and reinsertion. They observed
that the model would also have a good clinical applica-
tion with the inclusion of variables from the patient
database, such as age, bone mineral density, and levels
of activity. In addition, the authors suggested that fail-
ure mechanisms such as toggling and cyclical loading
of pedicle screws can be investigated by incorporating
the AI database.
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Ethical concerns and future perspectives

Although the effects and contributions of AI and ML
could be largely rewarding, the validity of the input data
must be thoroughly investigated along with the integra-
tion of unstructured, scattered data to avoid erroneous
predictions. External validation studies are needed to
confirm the clinical efficacy in patients [8]. Selection bi-
ases could be a problem with these algorithms because
the population data used for machine training may
not necessarily be representative of the overall patient
population. Another medicolegal consideration is the
security and privacy of the patient data necessary for
training these tools because it could result in breaches
in the confidentiality of patient databases and cyber
theft. Thus, data collection must be regulated in AT de-
pository software to avoid privacy disclosure. During
the early phase of their use, the need for data scientists
to interpret health data could be one of the barriers to
the widespread use of Al

Many institutions, medical device companies, and
pharmaceuticals have received significant incentives
and funding to promote newer innovations such as Al
and ML. These AI algorithms must not be programed
to recommend specific pathways to increase the priori-
tization of designers and their funding companies. An
ethical and regulatory framework must be developed
for these algorithms so that AI can operate within
well-defined norms.

In a recent systematic review, Liawrungrueang et
al. [101] observed that AI and its integration with
augmented reality (AR) and virtual reality (VR) ap-
pears promising for improving overall surgical safety.
They also stated that VR surgical simulators create a
secure environment for targeted surgical scenarios and
foster self-guided learning. These extensive datasets
can be processed by Al programs and aid in a deeper
understanding of specific performance metrics during
simulated operative tasks. In minimally invasive spine
procedures, combining AR in the surgical workflow
would be a major improvement because it would pro-
vide a 3D visualization of the anatomical structures.
Considering all the effects of Al in the coming years,
it will serve as an invaluable additive tool in the surgi-
cal armamentarium; however, it could never replace
the vast clinical knowledge and skills of surgeons.

Conclusions

AT and ML are emerging as promising tools in various
aspects of healthcare. In spine surgery, they would serve

as a valuable augmentation for clinicians to support
their decision-making and make a more accurate cali-
bration of the treatment plan. Thus, the future of Al is
quite imminent, and these models could transform the
practice of reactive medicine into an era of predictive,
preventive, and personalized patient care.
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