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The purpose of this narrative review was to comprehensively elaborate the various components of artificial intelligence (AI), their ap-
plications in spine surgery, practical concerns, and future directions. Over the years, spine surgery has been continuously transformed in 
various aspects, including diagnostic strategies, surgical approaches, procedures, and instrumentation, to provide better-quality patient 
care. Surgeons have also augmented their surgical expertise with rapidly growing technological advancements. AI is an advancing field 
that has the potential to revolutionize many aspects of spine surgery. We performed a comprehensive narrative review of the various 
aspects of AI and machine learning in spine surgery. To elaborate on the current role of AI in spine surgery, a review of the literature was 
performed using PubMed and Google Scholar databases for articles published in English in the last 20 years. The initial search using the 
keywords “artificial intelligence” AND “spine,” “machine learning” AND “spine,” and “deep learning” AND “spine” extracted a total of 
78, 60, and 37 articles and 11,500, 4,610, and 2,270 articles on PubMed and Google Scholar. After the initial screening and exclusion of 
unrelated articles, duplicates, and non-English articles, 405 articles were identified. After the second stage of screening, 93 articles were 
included in the review. Studies have shown that AI can be used to analyze patient data and provide personalized treatment recommenda-
tions in spine care. It also provides valuable insights for planning surgeries and assisting with precise surgical maneuvers and decision-
making during the procedures. As more data become available and with further advancements, AI is likely to improve patient outcomes.
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Introduction

Over the past few decades, a dramatic transition has 
occurred in spine surgery. Surgeons have evolved from 
performing open to performing minimally invasive tu-
bular and endoscopic surgeries to provide better patient 
outcomes with minimal trauma to the internal environ-

ment. Parallel advancements have also progressed in 
medical research and research tools. Medical research 
involves data analysis of various dimensions. However, 
the availability of vast amounts of data prevents data-
driven methods from translating into clinically relevant 
models [1]. Artificial intelligence (AI) is emerging as a 
critical tool in the assessment of diverse healthcare data. 

http://crossmark.crossref.org/dialog/?doi=10.31616/asj.2023.0382&domain=pdf&date_stamp=2024-06-30
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Machine learning (ML) algorithms, a subtype of AI, 
can be used to analyze patient-related data and suggest 
strategies that would help clinicians during treatment. 
Spine surgeries have their set of risks and complica-
tions, and the information and assistance provided by 
AI could help surgeons avoid minor to catastrophic 
adverse events in patient care. Several authors have ex-
amined the effect of AI in specialties such as radiology, 
oncology, primary care, and basic sciences, and reports 
suggest favorable prospects for AI [2-4]. Thus, this nar-
rative review aimed to briefly discuss the applications of 
AI in spine surgery and its future directions.

Literature search

An elaborate search was performed using the follow-
ing keywords: “artificial intelligence” AND “spine,” 
“machine learning” AND “spine,” “deep learning” 
AND “spine” on PubMed and Google Scholar (scholar.
google.com) on August 10, 2023. Crucial questions and 
research regarding AI in spine surgery were identified, 
and relevant articles on these topics were included.

Results

The initial search using the keywords “artificial intel-
ligence” AND “spine,” “machine learning” AND “spine,” 

and “deep learning” AND “spine” extracted a total of 
78, 60, and 37 articles and 11,500, 4,610, and 2,270 ar-
ticles on PubMed and Google Scholar, respectively. In 
the initial screening, articles unrelated to AI, duplicate 
articles, and non-English articles were excluded based 
on the abstracts or titles of the articles. This initial 
screening resulted in the identification of 405 articles. 
Complete manuscripts were obtained for all selected 
articles and thoroughly scrutinized during the second 
stage of article selection. All articles not concerning the 
AI application in spine surgery, articles regarding AI in 
other medical specialties, articles not on the concerned 
questions, and non-English articles were excluded. 
Randomized controlled trials, level 1 studies, and re-
view articles were preferred (Fig. 1). Finally, 93 articles 
were included in this review. Screening for the included 
articles based on Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses or Methodological 
Index for Nonrandomized studies criteria was not per-
formed.

AI and its components in medicine

In medicine, AI seeks to emulate the characteristics 
of human intelligence, such as learning, communica-
tion, decision-making, and adaptation to changing 
environments in a clinical setting. Thus, it includes 

S earch was performed using keywords “artificial intelligence” AND “spine,” “machine learning” AND “spine,” 
“deep learning” AND “spine” on PubMed and Google Scholar databases.

78, 60, and 37 articles initially identified on “PubMed” database
11,500, 4,610, and 2,270 articles identified on “Google Scholar” database

E xclusion of duplicated articles, articles unrelated to artificial intelligence, and articles in non-English literature 
based on abstracts or titles of the articles

All articles not concerning artificial intelligence, not pertaining to concerned questions, case reports, animal 
studies, articles in non-English language, and duplicated articles were excluded on the basis of detailed scrutiny 

of complete manuscripts.

405 Articles were identified.

I nitial search on August 10, 2023

Initial screening

Stage 2 screening

89 Articles were finally included for the narrative review.

Fig. 1. Flowchart depicting the methodology of article selection.
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hence, a “labeled” dataset is used [6]. A decision tree 
is a graphical representation technique that provides a 
visual depiction of various decisions with the base knot 
and various branches attached to the knot and ending 
in terminal nodes (Fig. 3). Because of their peculiar 
structure, they are easier to interpret by clinicians. The 
SVM is adapted for nonlinear classification and regres-
sion, considering each input as a multidimensional vec-
tor. SVM algorithms incorporate decision boundaries 

diverse domains, of which ML is of particular interest 
and has major applicability in medicine (Fig. 2). ML is 
a subset of AI that uses computational models to learn 
large complex data and generate useful predictive out-
puts without any explicit programing. The fundamen-
tal principles of ML are based on intricate statistical 
and mathematical optimization using numerical data 
[5]. Decision tree learning, support vector machines 
(SVMs), and artificial neural networks (ANNs) are 
three common ML models. These models are based on 
supervised learning methodologies in which the ma-
chine is trained to predict the outputs based on previ-
ously collected inputs for which the outputs are known; 

Fig. 2. Various domains which are the integral parts of artificial intelligence 
(AI) in medical field. ML, machine learning; NLP, natural language process-
ing; DL, deep learning; CV, computer vision. 

 AI     ML     NLP     DL     CV
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Fig. 3. Decision tree model of artificial intelligence (AI) showing AO classi-
fication of thoracolumbar fractures in their algorithm. As shown, it has a base 
knot, branches and terminal nodes.

Fig. 4. In a basic two dimensional support vector machine algorithm, data 
points are classified on either side of the decision boundary. The decision 
boundary is termed “hyperplane.”

“Hyperplane”

Fig. 5. (A) Shows the framework in an artificial neural network (ANN). The 
input data passes through numerous hidden networks to arrive at an output. 
(B) Human neuronal structure which is the basis of ANN network. The input 
is passed from dendrites to the cell body and through myelinated axons to the 
synape/adjacent neuron. 
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called hyperplanes (Fig. 4). In spine pathologies, disk 
degeneration grading and identification of the type of 
scoliotic curves can be performed using SVM algo-
rithms. In the ANN model, the machine integrates data 
using the linkage of artificial neurons. The information 
flows through several layers of the hidden neuronal 
network; finally, the processed output is generated (Fig. 
5). This ANN multilayered strategy is also known as 
“deep learning” [7]. Other AI tools include natural lan-
guage processing (NLP) and computer vision [8]. NLP 
involves mining and analyzing text-based data that can 
be incorporated into analytic algorithms [9]. In simple 
terms, NLP quickly extracts patient data from electron-
ic records, including lifestyle and several other health 
determinants that could otherwise be cumbersome 
for human evaluation. Computer vision is another 
advanced tool that aids in the evaluation and process-
ing of patient imaging data with higher precision and 
clarity. It often uses convoluted ANN pathways for im-
age segmentation and analysis. U-Net is an example of 
these networks that are primarily used in neurosurgical 
imaging [10].

By using these specialized tools, AI facilitates and 
augments patient healthcare by assisting clinicians in 
four important aspects: diagnosis (provides inference 
based on patient data including signs, symptoms, and 
investigations), therapy (aids in surgical decision-
making and enhancing postoperative patient care), 
prognosis (enables the surgeon to predict patient-
specific outcomes and modify treatment strategies), 
and research (with the available patient data, AI can 
enhance complex statistical analysis to innovative ideas 
and research in spine care).

Diagnosis of spinal ailments with AI

Numerous studies in AI regarding various aspects of 
low back pain have been published [11-14], especially 
disk-related pathologies. Reports have shown that fac-
tors such as disk degeneration, endplate defects, Modic 
changes, and vertebral osteoarthritis can be automati-
cally detected in magnetic resonance imaging using 
AI algorithms such as SVMs and ANNs [15-18]. “Seg-
mentation” of medical images to provide pixel-specific 
data has been an important contribution of computer 
vision in spinal imaging [19]. Gong et al. [20] proposed 
a network framework called “Axial-SpineGAN” for si-
multaneous segmentation and diagnosis of spinal struc-
tures using axial magnetic resonance imaging (MRI). 
Recently, magnetic resonance (MR) image augmenta-
tion using an ANN was approved by the Federal Drug 

Administration [21]. This technology facilitates MRI 
in a fraction of the normal study time, and the pro-
posed benefits include improved patient satisfaction, 
enhanced image quality, and fewer motion artifacts. 
Regarding disk degeneration, the Pfirmann grading 
system has been validated in multiple studies; however, 
few authors have reported interobserver variability and 
heterogeneity in the results obtained using this grading 
system [22,23]. ML tools such as convoluted neural net-
works (CNNs) and deep learning can extract “radiomic 
data” from MR images that are quite difficult to inter-
pret by visual inspection with the naked eye, and stud-
ies have shown an accuracy of 97% in assessing disk de-
generation [24]. Salient features such as the shape and 
intensity of the disks can be evaluated in detail using 
the feature-extraction technique and critically analyzed 
[25]. Similarly, texture analysis of ligamentous struc-
tures in spinal MRI produced parameters for more ac-
curate detection of lumbar canal stenosis [26]. Won et 
al. [27] compared the efficacy of grading lumbar canal 
stenosis in axial MRI between radiology experts and 
trained CNN, and the final agreement rates of decision-
making among them were 77.9% and 74.9%, respec-
tively, which were not significant. Other transformative 
innovations of AI in diagnostic imaging include MR 
fingerprinting and the identification of tissue properties 
using synthetic MRI. These techniques can be useful for 
the preoperative assessment of osteoporosis and early 
detection of spondyloarthropathies [28,29]. Apart from 
MRI, AI also has implications in the evaluation of plain 
radiographs [30,31] and computed tomography scans 
[32,33].

ML models, such as regression SVM and deep ANN, 
were adopted for calculating Cobb’s angle in patients 
with scoliosis and yielded satisfactory results with an 
error rate of <3° [34,35]. Lyu et al. [36] incorporated a 
neural networking algorithm in a three-dimensional 
(3D) ultrasound scan to detect the best quality image 
for detecting the deformity and reported an accuracy 
of 100%. Jaremko et al. [37] studied 18 testing samples 
using a three-layered back-propagation ANN to es-
timate Cobb’s angle in laser scan images of patients 
with deformity. They observed that the ANN of full 
torso imaging could distinguish Cobb’s angle >30° 
with acceptable sensitivity and specificity [37]. These 
computer-aided systems, by their automated measure-
ments, provide reliable and objective assessments of 
the deformity.

Recently, Zhu et al. [38] collected data from 775 
patients who underwent cervical spine surgery and 
screened 84 patient variables to identify differences be-
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tween patients with positive and negative cervical ossi-
fication of the posterior longitudinal ligament (OPLL). 
They proposed an ML-driven nomogram to predict 
patients with cervical OPLL and could identify the risk 
factors and other associated characteristics of cervical 
OPLL. A few researchers have also developed comput-
er-aided detection systems for the automated detection 
of spinal metastatic lesions in the thoracolumbar spine 
[39,40]. With more improvements in AI technology, 
the future could be automated reporting of radiologi-
cal investigations, saving time and providing optimal 
results comparable with human reporting. Existing 
studies on the diagnosis of lumbar disk degeneration 
are shown in Table 1 [41-78].

AI-driven perioperative approach

AI allows for the comprehensive study of patient-spe-
cific anatomy and anatomical variations and the imple-
mentation of individualized surgeries. Lateral access 
lumbar spine surgeries have been on a rising trend, par-
ticularly in adult spinal deformities, owing to the mag-
nitude of deformity correction they offer in both coro-
nal and sagittal planes. However, complications such as 
lumbar plexus injury and ureteric and visceral injuries 
are a concern because of the narrow safety corridor. AI-
enhanced ultrasound imaging was developed by Carson 
et al. [79] for the identification of internal and adjacent 
neural structures in lateral lumbar fusion surgeries, and 
the reported accuracy of nerve detection was >95%. 
Other recent advances such as robotic and navigation-
guided procedures have revolutionized spine and spi-
nal cord surgeries with their three-dimensional, real-
time, and haptic feedback mechanisms. The Da Vinci 
Surgical System (Intuitive Surgical, Sunnyvale, CA, 
USA), SpineAssist (MAZOR Robotics Inc., Caesarea, 
Israel), ROSA (Medtech SA, Montpellier, France), and 
Excelsius GPS Robot (Globus Medical Inc., Audubon, 
PA, USA) are the commonly available surgical robots 
(Fig. 3). Studies have reported excellent outcomes with 
robotics in pedicle screw insertion, tumor excision, 
and spinal deformity correction surgeries [80,81]. In 
addition to their role in complex and challenging spine 
procedures, robots have been reported to be very useful 
in targeted procedures such as radiofrequency abla-
tion, biopsy, and vertebral augmentation (kyphoplasty/
vertebroplasty) [82]. AI-powered robots would be aug-
mented with various DL and computer vision sensors 
(vision devices such as two-dimensional/3D cameras, 
fine tactile/vibration, proximity sensors, accelerom-
eters, and other environmental sensors) that feed them 

with sensing data that they could analyze and act upon 
in real-time. These systems provide enhanced dexter-
ity, precision, and stability during surgeries, allowing 
surgeons to perform complex operations with greater 
accuracy. However, the integration of AI algorithms in 
robotic navigation is still in its early stages and will gain 
much more prominence in the years to come.

Opioids are important rescue analgesics in spine sur-
gery. More importantly, opioid therapy requires vigi-
lant supervision, particularly in the older population, 
as it can induce dependence and cause adverse events 
following long-term use. Karhade et al. [83] proposed 
an AI-based model to stratify patients at risk of opioid 
dependence. Using this model, surgeons can identify 
at risk patients and adapt alternate pain management 
strategies, thereby mitigating the risks associated with 
opioid use [83]. Recently, Ayling et al. [84] examined 
the adverse events following lumbar spine surgeries 
for degenerative pathologies and reported that ap-
proximately 2.4% and 19.2% of patients had one of 
the major or minor perioperative adverse events, re-
spectively. These adverse events not only increase hos-
pitalization costs but also significantly affect surgical 
outcomes. Studies using the random forest approach 
to predict perioperative complications in adult spinal 
deformity surgery showed an accuracy of prediction 
of 87.6% [85]. Similarly, Wang et al. [86] employed a 
risk-stratification tool using ANNs in 12,492 patients 
to identify candidates who might be safe for ambula-
tory anterior cervical discectomy and fusion surgery, 
thereby reducing the chances of prolonged hospitaliza-
tion. In addition, AI has been successfully evaluated to 
plan the discharge of patients following elective spine 
surgeries. The application of such algorithms would 
not only guide surgeons but also help patients reduce 
their healthcare costs and improve patient satisfaction.

Predictive and prognostic analytics using AI

Many prognostic tools are available in spine literature 
and are widely used in practice for the grading and prog-
nosis of spinal disorders. Evaluating and analyzing these 
data and scoring systems for a larger population can be 
challenging for clinicians who use traditional statistical 
methods. ML algorithms are superior to conventional 
statistical models because they can analyze larger data-
sets and interpret nonlinear relationships in the given 
data. In patients with cervical spondylotic myelopathy, 
Khan et al. [87] used polynomial SVM learning to iden-
tify patients at risk of functional deterioration following 
surgery. The study included 757 patients, and the re-
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ported accuracy of detection was approximately 74.3%. 
McGrit et al. [88] examined data from 750 to 1,200 pa-
tients undergoing low back surgery and used regression 
analysis to predict the Oswestry Disability Index 1 year 
after surgery with an accuracy of up to 84%. Kim et al. 
[89] observed the incidence of postoperative C5 palsy 
in patients with OPLL and reported superior efficacy 
of ML algorithms with logistic regression models in the 
prediction of C5 palsy. Several similar studies using ML 
algorithms have reported outcome prediction following 
cervical and lumbar spine surgeries [90-92]. Hopkins et 
al. [93] performed a retrospective study of 4,046 patients 
undergoing posterior spinal fusion surgeries and identi-
fied patients at risk of developing surgical site infection 
using AI protocols. They reported positive and negative 
predictive values of 92.56% and 98.45%, respectively [93]. 
Hemiplegia/paraplegia, multilevel fusion, congestive 
cardiac failure, chronic pulmonary failure, and cerebro-
vascular disease were the risk factors with the highest 
significance in their study.

The spine is the most common site of skeletal me-
tastasis, and approximately 70% of patients with ma-
lignancy could develop spinal metastasis [94]. Post-
operative outcomes and overall survival rates in these 
patients have improved over the years. Karhade et al. 
[95] analyzed 1,790 patients with spinal metastasis 
and deployed Bayesian algorithm (ML) to identify 30-
day mortality rates following spinal metastasis surgery. 
An open-access web application was also developed 
to identify these high-risk patients using ML algo-
rithms. The authors concluded that as the volume of 
data in oncology increases, the creation of learning 
models and use of these systems as accessible tools 
may significantly enhance prognosis and appropriate 
management. A similar study included 1,053 patients 
with spinal epidural abscesses and showed promising 
results on the internal validation of ML algorithms to 
predict in-hospital and 90-day postdischarge mortality 
in these patients [96]. AI has thus emerged as a deci-
sion support tool, enabling surgeons’ clinical decision-
making process to be augmented by their predictive 
power. In addition to these clinical utilities, computer 
vision-based algorithms record the rehabilitation and 
functional assessment of patients with spinal cord in-
jury. Likitlersuang et al. [97] designed a tool using an 
egocentric camera system to detect the functional in-
teractions of the hand with objects during activities of 
daily living in patients with cervical spinal cord injury 
during rehabilitation. This device can directly collect 
quantitative information on hand functions in home 
and community settings.

AI in evidence-based spine research

With the introduction of AI systems, the term “smart 
gait” is becoming popular, where an integrated human 
gait data analysis such as human activity recognition, 
gait phase detection, gait event prediction, fall detec-
tion, recognition of a person’s age and sex, and abnor-
mal gait detection using AI tools can be performed. 
One of the important clinical signs in patients with ra-
diculopathy caused by lumbar degenerative conditions 
is the listing of their trunk. This could alter the weight-
bearing areas of the feet and cause variations in the 
gait pattern. Hayashi et al. [98] used SVM algorithms 
to analyze gait alteration in patients with L4 and L5 
radiculopathy caused by lumbar canal stenosis and re-
ported an accuracy of 80.4%. Similar published studies 
in the AI literature have focused on the identification of 
loads and stress patterns in various ligaments and joints 
of the foot, ankle, and knee, ensuring their use in or-
thopedic disorders such as adult-acquired flatfoot and 
osteoarthritis.

Adult spinal deformity is a complex pathology with 
heterogeneous clinical presentation and management 
options. Ames et al. [99] applied hierarchical cluster-
ing using AI to propose a classification model that 
would guide surgeons in deciding the appropriate sur-
gical treatment. They are mainly useful in identifying 
patients at low risk and those likely to improve with 
surgical procedures. Regarding spinal fixation in these 
patients, pedicle screw instrumentation is preferred for 
deformity correction to regain sagittal and coronal bal-
ance. Several finite-element studies on the biomechan-
ical properties and pullout strength of pedicle screws 
have been performed. However, these studies could 
not be individualized to patient-specific factors such as 
osteoporosis and sarcopenia, which are more prevalent 
in this population. Practically, the surgeon appraises 
the screw hold only by subjectively assessing the inser-
tional torque of the screws. An experimental model to 
assess the pullout strength of pedicle screws using ML 
was developed by Khatri et al. [100], and they studied 
various parameters such as pedicle screw insertion 
angle, depth, density, and reinsertion. They observed 
that the model would also have a good clinical applica-
tion with the inclusion of variables from the patient 
database, such as age, bone mineral density, and levels 
of activity. In addition, the authors suggested that fail-
ure mechanisms such as toggling and cyclical loading 
of pedicle screws can be investigated by incorporating 
the AI database.



Asian Spine J 2024;18(3):458-471

https://doi.org/10.31616/asj.2023.0382  467

Ethical concerns and future perspectives

Although the effects and contributions of AI and ML 
could be largely rewarding, the validity of the input data 
must be thoroughly investigated along with the integra-
tion of unstructured, scattered data to avoid erroneous 
predictions. External validation studies are needed to 
confirm the clinical efficacy in patients [8]. Selection bi-
ases could be a problem with these algorithms because 
the population data used for machine training may 
not necessarily be representative of the overall patient 
population. Another medicolegal consideration is the 
security and privacy of the patient data necessary for 
training these tools because it could result in breaches 
in the confidentiality of patient databases and cyber 
theft. Thus, data collection must be regulated in AI de-
pository software to avoid privacy disclosure. During 
the early phase of their use, the need for data scientists 
to interpret health data could be one of the barriers to 
the widespread use of AI.

Many institutions, medical device companies, and 
pharmaceuticals have received significant incentives 
and funding to promote newer innovations such as AI 
and ML. These AI algorithms must not be programed 
to recommend specific pathways to increase the priori-
tization of designers and their funding companies. An 
ethical and regulatory framework must be developed 
for these algorithms so that AI can operate within 
well-defined norms.

In a recent systematic review, Liawrungrueang et 
al. [101] observed that AI and its integration with 
augmented reality (AR) and virtual reality (VR) ap-
pears promising for improving overall surgical safety. 
They also stated that VR surgical simulators create a 
secure environment for targeted surgical scenarios and 
foster self-guided learning. These extensive datasets 
can be processed by AI programs and aid in a deeper 
understanding of specific performance metrics during 
simulated operative tasks. In minimally invasive spine 
procedures, combining AR in the surgical workflow 
would be a major improvement because it would pro-
vide a 3D visualization of the anatomical structures. 
Considering all the effects of AI, in the coming years, 
it will serve as an invaluable additive tool in the surgi-
cal armamentarium; however, it could never replace 
the vast clinical knowledge and skills of surgeons.

Conclusions

AI and ML are emerging as promising tools in various 
aspects of healthcare. In spine surgery, they would serve 

as a valuable augmentation for clinicians to support 
their decision-making and make a more accurate cali-
bration of the treatment plan. Thus, the future of AI is 
quite imminent, and these models could transform the 
practice of reactive medicine into an era of predictive, 
preventive, and personalized patient care.
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