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Key Points

• YY1 cooccupies with
SMC3 at a large
cohort of promoters
genome wide and
represses SMC3
expression in HSPCs.

• Establish a distinct
regulatory circuit of 2
chromatin structural
factors and its impact
on HSC quiescence
and metabolism.
Yin Yang 1 (YY1) and structural maintenance of chromosomes 3 (SMC3) are 2 critical

chromatin structural factors that mediate long-distance enhancer-promoter interactions

and promote developmentally regulated changes in chromatin architecture in

hematopoietic stem/progenitor cells (HSPCs). Although YY1 has critical functions in

promoting hematopoietic stem cell (HSC) self-renewal and maintaining HSC quiescence,

SMC3 is required for proper myeloid lineage differentiation. However, many questions

remain unanswered regarding how YY1 and SMC3 interact with each other and affect

hematopoiesis. We found that YY1 physically interacts with SMC3 and cooccupies with

SMC3 at a large cohort of promoters genome wide, and YY1 deficiency deregulates the

genetic network governing cell metabolism. YY1 occupies the Smc3 promoter and represses

SMC3 expression in HSPCs. Although deletion of 1 Smc3 allele partially restores HSC

numbers and quiescence in YY1 knockout mice, Yy1−/− Smc3+/− HSCs fail to reconstitute

blood after bone marrow transplant. YY1 regulates HSC metabolic pathways and maintains

proper intracellular reactive oxygen species levels in HSCs, and this regulation is

independent of the YY1–SMC3 axis. Our results establish a distinct YY1–SMC3 axis and its

impact on HSC quiescence and metabolism.
Introduction

Yin Yang 1 (YY1) is a ubiquitous zinc finger transcription factor and polycomb group protein (PcG) that
can activate or repress transcription of target genes,1,2 promote chromatin/chromosome structural
changes, and form gene-regulatory DNA loops between proximal and distal promoters and enhancer
binding sites through homodimer interactions.3,4 YY1 orchestrates PcG-mediated gene repression by
recruiting other PcG members to specific chromatin sites to control histone modifications.5-7 YY1 plays
important roles in gene regulation, early embryonic development, X-chromosome inactivation, DNA
repair, normal hematopoiesis, as well as hematopoietic cancers.8-11 Although YY1 is required for both
B- and T-lymphocyte development,8,12-16 its functions in hematopoietic stem cell (HSC) development
were incompletely characterized. Our previous study demonstrates that a conditional Yy1 knockout in
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HSCs decreases long-term repopulating activity, and that ectopic
YY1 expression expands HSCs. YY1 deficiency deregulates the
genetic network governing HSC proliferation, impairs stem cell
factor/c-Kit signaling, and disrupts mechanisms conferring HSC
quiescence.17 Nevertheless, the underlying mechanisms by which
YY1 regulates HSC quiescence and self-renewal are still largely
unknown.

Cohesin is a multimeric protein complex that is important for sister
chromatid cohesion and segregation during mitosis. Cohesin
consists of a ring-like structure comprised of structural mainte-
nance of chromosomes (SMC)1, SMC3, and RAD21, bound to
STAG1 or STAG2, which wraps around chromatin.18,19 SMC1 and
SMC3 form the core component of the cohesin complex.19

Cohesin encircles chromatin fibers without directly binding to
DNA and plays critical roles in chromosome segregation, DNA
repair, and DNA looping.20-22 Depletion of cohesin core compo-
nents promotes HSC expansion to skew toward myeloid differen-
tiation.23-26 Homozygous deletion of Smc3 causes bone marrow
(BM) aplasia in mice and SMC3-deficient mice die shortly. Smc3
haploinsufficiency increases HSC self-renewal and cooperates
with myeloid leukemia oncogene Flt3-internal tandem duplications
to induce acute myeloid leukemia.26 Knockdown of cohesin com-
plex proteins by short hairpin RNA (shRNA) can lead to myelo-
proliferative neoplasms in mice.23

Enhancers and gene promoters interact with each other to regulate
the expression of target genes. An established paradigm for
enhancer function involves chromatin looping in which the 2 sites
are brought physically close together.27-30 Proteins that facilitate
chromatin looping alter local and higher-order chromatin structure,
and therefore these proteins are defined as chromatin structural
factors. YY1, cohesion, and CCCTC-binding factor (CTCF) are all
essential chromatin structural factors.3,4,22,31-35 In addition, YY1
and cohesin complex proteins are critical for regulating HSC
fate.23-26,35 Many questions remain unanswered regarding how
chromatin structural factors interact with each other and impact
hematopoiesis. Our RNA-sequencing (RNA-seq) analysis
comparing wild-type and Yy1−/− HSCs demonstrated that Smc3 is
upregulated in YY1-deficient cells, and genes regulated by YY1 are
significantly enriched in cell cycle progression, cell division, chro-
mosome condensation and segregation, and cytoskeleton and
spindle organization.17 Thus, we hypothesized that YY1 is a critical
regulator of the cohesin complex protein SMC3, and that there is a
distinct YY1–SMC3 axis-dependent/-independent regulation of
HSC functions.

Herein, we demonstrate that YY1 and cohesin complex proteins
cooccupy a large cohort of promoters genome wide by physically
interacting with the cohesin protein SMC3. YY1 deficiency
deregulates the genetic network governing cell metabolism. YY1
represses SMC3 expression and occupies the Smc3 promoter in
hematopoietic stem and progenitor cells (HSPCs). Although
SMC3 is upregulated in YY1-null BM cells (BMCs), SMC3 protein
expression was normalized in Yy1−/− Smc3+/− cells. Although
deletion of 1 Smc3 allele partially rescues long-term HSC (LT-
HSC) percentage in YY1-deficient mice and leads to a partial
restoration of HSC quiescence, Yy1−/−Smc3+/− cells fail to
reconstitute blood in mice that received BM transplantation. YY1-
deficient HSCs have increased intracellular reactive oxygen
25 JUNE 2024 • VOLUME 8, NUMBER 12
species (ROS) levels, and the regulation of proper ROS level is
independent of the YY1–SMC3 axis. Our results establish a
distinct regulatory circuit of 2 chromatin structural factors and its
impact on HSC quiescence and metabolism.

Methods

ChIP-seq data analysis

Chromatin immunoprecipitation sequencing (ChIP-seq) data for
CTCF, H3K27ac, SMC1, SMC3, and YY1 as well as associated
input were downloaded from Gene Expression Omnibus (GEO;
accession identifiers: GSE22562, GSE62380, and
GSE68195).36-38 ENCyclopedia Of DNA Elements (ENCODE)
ChIP-seq pipeline (version 2.1.6) was used to align reads to mouse
genome (mm10) and call peaks. Protein-coding transcripts and
long noncoding RNAs from GENCODE basic annotation (version
M22) were used to define exons and introns. Proximal promoter is
defined as 1 kb upstream of a gene, and distal promoter is defined
as 4 kb upstream of a proximal promoter. H3K27ac peaks were
considered as enhancers and the rest of the genomic regions were
defined as intergenic. The genomic locations of ChIP-seq peaks
from chromosomes 1 to 19 and X are determined by peak overlap
with the aforementioned 6 types of genomic regions. Gene
Ontology (GO) term overrepresentation was analyzed by the goana
function from the Bioconductor package limma (version 3.50.1).

Cleavage under targets and tagmentation analysis

According to published protocol39 (see supplemental Material for
details), the cleavage under targets and tagmentation (CUT&Tag)
libraries were constructed with hematopoietic precursor cell-7
(HPC-7) cells infected with MigR1-shLuc or MigR1-shYY1. CUT&-
Tag FASTQ files were first processed by removing the adapter
“CTGTCTCTTATACACATCT” using the Cutadapt software
(version 4.5) and then aligned to the mouse genome (version mm10)
by Bowtie2 (version 2.5.1). Duplicated fragments were marked and
removed by Picard (version 3.1.1). Peaks were called by MACS2
(version 2.2.9.1) for each replicate under a q-value cutoff of 10−6.
Only peaks from chromosome 1 through 19, X, or Y, and not
overlapping with any of the ENCODE problematic genomic regions
(https://www.encodeproject.org/files/ENCFF547MET/) were kept.
Because every sample has 3 replicates, we defined peaks for a
sample as the genomic regions belonging to peaks called in all 3
replicates and with a minimum genomic span of 10 base pairs (bp).
Peak location type and GO term overrepresentation were processed
in the same way as in ChIP-seq analysis.

Mice

To induce the expression of cyclization recombinase (Cre), 8-week-
old mice were injected with 100 μg of pI-pC (GE Healthcare Life
Science) every other day for 4 doses. Approximately equal pro-
portions of male and female mice were used, and aggregated data
were presented because sex-specific differences were not found
(supplemental Figure 9). All experiments described in this manu-
script were performed 7 days after the last injection of pI-pC,
unless stated otherwise. All experiments involving mice were
approved by the institutional laboratory animal care and use com-
mittee of the University of Wisconsin-Madison and conform to the
appropriate regulatory standards.
YY1 CONTROLS SMC3 EXPRESSION AND INTERACTION 3077
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BM transplantation

Competitive BM transplantation assay was performed as previously
described.17 Total BMCs were transplanted to lethally irradiated (8.5
Gy) recipient mice (CD45.1+). At 4week after transplantation, recipient
mice were treated with 4 doses of pI-pC every other day. Peripheral
blood chimerism was evaluated by flow cytometry every 4 weeks.

Flow cytometric analysis

Directly conjugated or biotin-conjugated antibodies specific for the
following surface antigens were purchased from eBioscience: CD3
(145-2C11), CD4 (RM4-5), CD8 (53-6.7), B220 (RA3-6B2),
TER119 (TER-119), Gr-1 (RB6-8C5), IgM (eB121-15F9), CD19
(eBio1D3), interleukin 7Rα (A7R34), CD45.2 (104), CD45.1 (A20),
Sca1 (D7), c-Kit (2B8), Mac1 (M1/70), and Thy1.2 (53-2.1). CD48
(103427) and CD150 (TC15-12F12.2) were purchased from Bio-
Legend. Ghostdye Violet510 (Tonbo Bioscience) was used to
exclude nonviable cells. Data were acquired from LSR Fortessa (BD
Biosciences) and analyzed using BD FlowJo version 10.0.7 software.

Cell cycle analyses

BMCswere fixedwith 4%paraformaldehyde, permeabilizedwith 0.1%
saponin in phosphate-buffered saline, and stained with fluorescein
isothiocyanate–conjugated Ki67 (BD Biosciences) and DAPI (4′,6-
diamidino-2-phenylindole; Thermo Fisher) in addition to HSC, Lin−

Sca1+c-kit+ (LSK), myeloid progenitors (MP; Lin− Sca1−c-kit+), and
multipotent progenitor (MPP) markers.

RNA-seq data analysis

RNA-seq reads were aligned by Spliced Transcripts Alignment to a
Reference (version 2.5.2b) to the mouse genome (version mm10)
with GENCODE basic gene annotations (version M22). Gene
expression levels were quantified by RNA-Seq by Expectation-
Maximization (version 1.3.0), and differential expression was
analyzed by edgeR (version 3.36.0). A differentially expressed gene
was required to have at least twofold changes, an adjusted P value
< .05, and transcript per million ≥1 in all the replicates in at least 1
of 2 conditions in comparison. Gene set enrichment analysis was
performed by fgsea (version 1.20.0) with M2 curated gene sets
from the Molecular Signatures database (version 2022.1.Mm). The
RNA-seq data have been deposited to GEO with an access
identity GSE239743 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE239743) and a secure token, yrsruwgurxgjfqh.

Statistical analysis

All statistical analyses were conducted using GraphPad Prism
version 7.04. The Student t test was used to determine statistical
significance between Mx1-Cre and Yy1f/fMx1-Cre groups. Differ-
ences between the 4 groups were determined using a 1-way
analysis of variance followed by Tukey post hoc test. Two-way
analysis of variance followed by Tukey post hoc test was used to
compare cells in different phases of the cell cycle, as measured by
Ki67 and DAPI flow cytometry analysis. P values ≤ .05 were
considered statistically significant.

Results

YY1 and cohesin complex proteins cooccupy a large

cohort of promoters genome wide

To assess YY1 and cohesin complex proteins SMC3 and SMC1A
binding sites throughout the genome, previously published ChIP-seq
3078 LU et al
data sets on mouse embryonic stem cells from GEO under the
accession GSE62380, GSE68195, and GSE22562 were
analyzed.36-38 In total, 20 154 SMC3 ChIP-seq peaks were identi-
fied and stratified by their genomic locations. CTCF, SMC1, and
YY1 binding peaks had overall strong overlapping with SMC3 peaks
at all genomic locations (Figure 1A; supplemental Figure 1). Among
the 20 154 SMC3 peaks, >90% of SMC3 binding peaks were
cooccupied with CTCF, SMC1, and/or YY1, with only 1528 SMC3
peaks were not. At most of the genomic locations, SMC3 colo-
calized more frequently with CTCF and SMC1 than YY1 (Figure 1A-
B). YY1 cooccupancy with cohesin and CTCF is more prevalent in
the proximal promoter compared with other genome locations.
Overall, 32% of SMC3 binding peaks at the proximal promoter were
cooccupied with YY1, CTCF, and SMC1 compared with 19.1% at
the enhancer, 16.1% at the exon, 13% at the distal promoter, 10.1%
at the intron, and 6% at the intergenic region (Figure 1B). Interest-
ingly, GO term overrepresentation analysis on genes cooccupied by
cohesin, CTCF, and/or YY1 at proximal promoters indicated a
functional significance of YY1 dependent vs independent regulation
at proximal promoters. For promoters with YY1-independent
cohesion-CTCF occupancy, genes were enriched in cellular differ-
entiation and developmental process (Figure 1C). In contrast, for
promoters with YY1-dependent occupancy, genes were mainly
enriched in the metabolic process (Figure 1D).

To further evaluate YY1 and SMC3 cooccupancy in HSPCs, we
conducted CUT&Tag experiments in the HSPC line HPC-740,41

with antibodies against YY1 and SMC3. Consistent with
compiled ChIP-seq data (Figure 1), YY1 had strong overlapping
with SMC3 peaks at all genomic locations (Figure 2; supplemental
Figure 2). Among 1824 SMC3 binding peaks, 83% were cooc-
cupied by YY1. Among 3602 YY1 binding peaks, 42% were
cooccupied by SMC3 (Figure 2B). YY1 cooccupancy with SMC3
is more prevalent in the proximal promoter than other genome
locations. Of cobinding peaks, 56% were at the proximal promoter
compared with 25% at intron, 9% at exon, 8% at intergenic region,
and 1.6% at the distal promoter (Figure 2C). YY1 activates c-Kit
expression in HSPCs by binding at the Kit locus.17 The CUT&Tag
analysis revealed a YY1-SMC3 cobinding peak at the Kit locus.
Upon YY1 knockdown, YY1 enrichment at the Kit locus was
reduced, whereas SMC3 binding was intact (supplemental
Figure 2D). Consistent with compiled ChIP-seq data (Figure 1D),
GO term overrepresentation analysis on genes cooccupied by YY1
and SMC3 at the proximal promoter region show that top 10
enriched pathways are involved in cell metabolism (Figure 2D). To
determine what overlapping cobinding sites of YY1 and SMC3
depend on the presence of YY1, we knocked down YY1 in HPC-7
cells by shRNA. Over 70% of Yy1 transcript was reduced in HPC-7
cells infected with sh-YY1 vs sh-Luc (supplemental Figure 8). Peak
analysis in YY1 knockdown HPC-7 cells show that ~27% of SMC3
binding peaks were lost upon YY1 knockdown (Figure 2E), most of
which were associated with genes that are critical for cell meta-
bolic process (Figure 2F). The ChIP-seq and CUT&Tag assays
support that YY1 and SMC3 cooccupy at proximal promoter
regions that are critical for regulating cellular metabolism.

YY1 physically interacts with SMC3 via its zinc finger

domain

Because YY1 and cohesin complex proteins cooccupied a large
cohort of promoters throughout the genome, we assessed whether
25 JUNE 2024 • VOLUME 8, NUMBER 12
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Figure 1. ChIP-seq analysis of YY1 and cohesin complex protein binding sites. (A) Heat map of SMC3, CTCF, SMC1, and YY1 ChIP-seq signals around SMC3 peak

summits. Each row represents a SMC3 peak region that is defined as a 500-bp genomic region flanking a SMC3 ChIP-seq peak summit. (B) Venn diagrams to compare the

overlapping of CTCF, SMC1, and YY1 peaks with that of SMC3 peaks. (C-D) Top 10 overrepresented GO terms on genes that have proximal promoters overlapping with SMC3

peaks. Genes were stratified by the 471 SMC3 peaks overlapping with SMC1 and CTCF but not YY1 (C), and the 409 SMC3 peaks overlapping with SMC1, CTCF, and YY1 (D).
YY1 physically interacted with cohesin complex proteins. Human
embryonic kidney-293 (HEK-293) cells (Figure 3A-B) and HPC-7
cells (Figure 3C-D) were transfected and infected respectively with
plasmids expressing Flag-tagged YY1, and the nuclear extracts were
coimmunoprecipitated with anti-Flag antibody or immunoglobulin G
(IgG) control. Compared with IgG control, cohesin complex proteins
SMC1A, SMC3, and RAD21 coimmunoprecipitated when using the
25 JUNE 2024 • VOLUME 8, NUMBER 12
anti-Flag antibody in HEK-293 (Figure 3A) and HPC-7 cells
(Figure 3C). The reciprocal intraperitoneal co-(IP) was conducted by
immunoprecipitation with an anti-SMC3 antibody. Compared with
IgG control, YY1 coimmunoprecipitated with anti-SMC3 antibody in
HEK-293 (Figure 3B) and HPC-7 cells (Figure 3D). To access
endogenous YY1 interaction with SMC3, total BMCs were har-
vested from C57BL/6 mice at 4 days after 5-fluorouracil injections
YY1 CONTROLS SMC3 EXPRESSION AND INTERACTION 3079
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interacts with SMC3 in 5-fluorouracil enriched BMCs. Nuclear extracts of 5-fluorouracil–enriched BMCs from C57BL/6 mice were immunoprecipitated with anti-YY1 or anti-

SMC3 antibody and were western blotted for SMC3 or YY1. (F) Diagram of YY1 functional domain and YY1 mutants. (G) YY1 amino acid sequence 298 through 414 is required

for its physical interaction with SMC3. Nuclear extracts from transfected cells were immunoprecipitated with anti-Flag antibody and western blotted for SMC3, CTCF, or Flag.
(5 mg/mouse). Endogenous co-IPs were conducted in nuclear
extract of 5-fluorouracil–enriched BMCs with IgG control, or anti-
YY1 or anti-SMC3 antibody. SMC3 and YY1 proteins coimmuno-
precipitated with each other with anti-YY1 (Figure 3E upper panel)
or anti-SMC3 antibody (Figure 3E lower panel) in BMCs.

To access which YY1 functional domain is required for its inter-
action/association with cohesin complex protein SMC3, we
transfected HEK-293 cells with wild-type YY1 or YY1 functional
domain mutants: YY1 Δ170-200, YY1 ΔREPO, or YY1 Δ298-414.
YY1 Δ170-200 deletes a transcriptional repression domain that
interacts with numerous proteins5,42,43; YY1 ΔREPO deletes the
PcG recruiting domain5; YY1 Δ298-414 deletes the 4 zinc fingers
DNA binding domain44 (Figure 3F). Although wild-type YY1, YY1
Δ170-200, and YY1 ΔREPO physically interacted with SMC3,
YY1 Δ298-414 did not (Figure 3G). Thus, YY1 zinc finger domain
is required for YY1 interaction/association with cohesin complex
protein SMC3 (Figure 3F-G). We conclude that YY1 and SMC3
occupied a large cohort of the genome by physically interacting
with each other.
25 JUNE 2024 • VOLUME 8, NUMBER 12
YY1 occupies the Smc3 promoter and represses

SMC3 expression

Interestingly, compiled ChIP-seq data sets from mouse embryonic
stem cells38 and CUT&Tag data in HPC-7 cells show that YY1
binds strongly at the Smc3 promoter region (from −389 bp
to +416 bp) from transcription start site (Figure 4A; supplemental
Figure 3A-B). In contrast, no binding and a weak YY1 binding was
detected at the Smc1 and Rad 21 promoters respectively
(supplemental Figure 3A-B). To assess how YY1 regulates SMC3
expression, we assessed Smc3 messenger RNA (mRNA) expres-
sion by ectopically expressing YY1 in hematopoietic cells. We
retrovirally transduced HPC-740,41 and total BMCs from B6 mice
with MigR1-YY1 vs MigR1 empty vector control. Green fluorescent
protein–positive HPC-7 cells and BMCs were sorted by
fluorescence-activated cell sorting, and the YY1 expression levels
were correlated with the median fluorescence intensity of green
fluorescent protein expression (supplemental Figure 3C). Ectopic
expression of YY1 in HPC-7 cells and total BMCs led to down-
regulation of Smc3 mRNA expression (Figure 4B) but did not
YY1 CONTROLS SMC3 EXPRESSION AND INTERACTION 3081
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Figure 4. YY1 inhibits SMC3 expression directly. (A) ChIP-seq binding profile for YY1 at the Smc3 locus in mESCs and YY1 ChIP-qPCR primer design strategy at the Smc3

promoter (supplemental Figure 10). (B) Yy1 and Smc3 transcript levels in HPC7 and total BMCs with and without ectopic YY1 expression. (C) ChIP-qPCR analysis of YY1

bindings at the Smc3 promoter in HPC7 cells infected with MigR1-YY1 or MigR1 vector only. (D) quantitative reverse transcription PCR to detect transcript levels in Lin− BMCs of

Yy1−/−and Yy1+/+ mice. Primers are listed in supplemental Figure 10. (E) Western blot and quantification to detect the YY1, SMC3, and RAD21 protein expressions in total BMCs

of Yy1−/−and Yy1+/+ mice. (F) ChIP-qPCR analysis of the binding of YY1 at the Smc3 promoter region in Yy1+/+ and Yy1−/−total BMCs. Data are presented as means ± standard

deviation (SD); *P < .05, **P < .01, and ***P < .001.
impact Smc1 or Rad 21 mRNA expression (supplemental
Figure 3C). To further validate the ChIP-seq and CUT&Tag data,
ChIP quantitative polymerase chain reaction (qPCR) was con-
ducted in HPC-7 cells infected with MigR1-YY1 vs MigR1 vector
control. We detected the YY1 binding at the Smc3 promoter, and
ectopic expression of YY1 further increased YY1 binding at the
promoter region (Figure 4C). These experiments support that YY1
binds at the Smc3 promoter, and that high YY1 expression sup-
presses Smc3 expression at the transcript level in HSPCs. To test
how loss of function of YY1 affects SMC3 expression and occu-
pancy, we used a conditional Yy1-knockout allele Yy1f/f with loxP
sites flanking the Yy1 promoter region and exon18 and crossed
Yy1f/f mice with inducible Mx1-Cre. In Yy1f/f Mx1-Cre mice, YY1
deletion was achieved after treatment with the interferon alfa
3082 LU et al
(IFN-α)-stimulating pI-pC. Yy1f/f Mx1-Cre (Yy1−/−) and Mx1-cre
(Yy1+/+) mice received 4 doses of pI-pC injections and at 7 days
after injections there was a >90% reduction of YY1 mRNA
expression in Yy1−/− lineage negative (Lin−) BMCs (Figure 4D)
compared with Yy1+/+ Lin− BMCs. Next, we evaluated Smc1a,
Smc3, and Rad21 mRNA expressions in Yy1−/− vs Yy1+/+ Lin−

BMCs. Consistent with our previous publication,17 Yy1−/−Lin− cells
had decreased Yy1 and Kit mRNA expression compared with
Yy1+/+Lin− cells, and Ctcf and Ghr mRNA expression levels were
similar. In contrast, Smc1a, Smc3, and Rad21 mRNA expressions
were significantly increased in Yy1−/−compared to Yy1+/+Lin−

BMCs (Figure 4D). In Yy1−/− total BMCs, SMC3 protein expres-
sion was significantly increased compared with Yy1+/+ cells, and
RAD21 protein expression did not differ significantly (Figure 4E).
25 JUNE 2024 • VOLUME 8, NUMBER 12
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Thus, SMC3 is upregulated in YY1-deficient BMCs. Consistently,
ChIP-qPCR analysis show that YY1 occupied the Smc3 promoter
area in Yy1+/+ total BMCs but not in Yy1−/−cells (Figure 4F). Our
data support that YY1 deficiency leads to loss of YY1 binding/
occupancy at the Smc3 promoter and upregulation of SMC3.

SMC3 expression is normalized in Yy1−/−Smc3+/−

mice

Because SMC3 is upregulated in YY1-deficient HSPCs
(Figure 4D-E),17 we evaluate the functional significance of YY1
regulation of SMC3 by deleting 1 copy of Smc3 in YY1 knockout
mice. To generate Yy1−/−Smc3+/− mice, Yy1f/f Smc3f/f mice were
first generated by crossing Yy1f/f with Smc3f/f and then crossing
Yy1f/+Smc3f/+ heterozygotes. Yy1f/f Smc3f/f mice were subse-
quently crossed with Yy1f/+Mx1-Cre mice to generate Yy1f/f

Smc3f/+Mx1-Cre mice (Yy1−/−Smc3+/−; supplemental Figure 4A).
After pI-pC injections, homozygous Yy1 and heterozygous Smc3
were selectively deleted in Yy1f/f Smc3f/+ BMCs, and loxP-flanked
Yy1f and Smc3f were not detected by PCR. Using DNA from tail
samples as a control, we show that rearrangement/deletion events
at Yy1 and Smc3 were specific to the hematopoietic cells
(supplemental Figure 4B). Mx1-Cre (Yy1+/+), Yy1f/f Mx1-Cre
(Yy1−/−), Smc3f/+Mx1-Cre (Smc3+/−), and Yy1f/f Smc3f/+ Mx1-
Cre (Yy1−/−Smc3+/−) mice were evaluated after 4 doses of pI-
pC injections. Interestingly, although SMC3 was upregulated in
Yy1−/−BMCs, SMC3 protein expression was normalized to the
wild-type level in Yy1−/−Smc3+/− BMCs (Figure 5A). Thus, we
concluded that SMC3 is overexpressed in YY1-deficient BMCs,
and SMC3 expression level is normalized to the wild-type level in
Yy1−/−Smc3+/− mice.

Deletion of 1 Smc3 allele partially rescues LT-HSC

percentage in YY1-deficient mice

Consistent with our previously published result,17 YY1-deficient
mice died ~10 days after pI-pC injections.17 Although Yy1−/−

Smc3+/− mice demonstrated increased survival compared with
YY1-deficient mice, they still had significant survival defects
compared to wild-type or Smc3+/− mice (Figure 5B). Similar to
YY1-deficient mice, Yy1−/−Smc3+/− mice were severely pan-
cytopenic with reduction of red blood cells, platelets, and leuko-
cytes (Figure 5C). Although Yy1−/−mice had decreased numbers
of LT-HSCs (Lin−Sca1+c-Kit+CD48−CD150+), short-term HSCs
(ST-HSC; Lin−Sca1+c-Kit+CD48−CD150−), MPPs (Lin−Sca1+c-
Kit+CD48+CD150−), GMP (Lin−Sca1−c-Kit+CD34+CD16/32hi),
and MEP (Lin−Sca1−c-Kit+CD34−CD16/32low) compared with
wild-type mice, Yy1−/−Smc3+/− mice had increased percentages of
LT-HSCs, MPPs, MPs, and GMPs compared with Yy1−/−mice.
Strikingly, Yy1−/−Smc3+/− mice had similar cell numbers of MPs
and GMPs compared with wild-type mice. Thus, deletion of 1 allele
of Smc3 leads to a partial rescue of HSC and progenitor cell
percentages and numbers in YY1-deficient mice (Figure 5D-E;
supplemental Figure 5).
Figure 5 (continued) of Yy1+/+, Yy1−/−, Smc3+/−, and Yy1−/−Smc3+/− mice. (C) Comple

HSC, ST-HSC, MPP, MP, common myeloid progenitors (CMP), granulocyte monocyte pro

Quantification of percentages and absolute numbers of LSK, LT-HSC, ST-HSC, MPP, MP

presented as means ± SD; *P < .05, **P < .01, and ***P < .001.

3084 LU et al
Deletion of 1 Smc3 allele in YY1-deficient HSCs

partially restores HSC quiescence

Because our previous data showed that YY1 deficiency caused
decreased HSC quiescence and self-renewal,17 we assessed the
impact of deleting 1 copy of Smc3 on HSC functions in YY1-
deficient mice. In Yy1−/−Smc3+/− mice, there was an increase in
the percentage of cells in the G0 phase in LT-HSC and ST-HSC
compartments when compared with Yy1−/−HSCs (Figure 6A-C)
but not in the MPP population (Figure 6D). The percentages of
cells in active proliferative stages (G1 and/or S-G2-M phases)
were decreased in Yy1−/−Smc3+/− LT-HSCs and ST-HSCs
compared with Yy1−/− HSCs. Our result showed that HSC
quiescence was partially restored in Yy1−/−Smc3+/− mice by
deleting 1 copy of Smc3 in YY1-deficient HSCs.

Next, we assessed blood chimerism in mice transplanted with Mx1-
Cre, Yy1f/f Mx1-Cre, Smc3f/+Mx1-Cre, and Yy1f/f Smc3f/+Mx1-Cre
BMCs. CD45.1 recipient mice were treated with pI-pC injections at
4 weeks after BM transplantation and donor-derived percentages
(% CD45.2+) were evaluated at 4, 8, 12, 16, and 20 weeks after
BM transplant (Figure 6E). At week 4, before pI-pC injections, all 4
cohorts had similar donor-derived percentages. Beginning at week
8 (4 weeks after pI-pC injections), mice transplanted with Yy1f/f

Mx1-Cre and Yy1f/f Smc3f/+Mx1-Cre BMCs had significantly
decreased donor-derived percentages in peripheral monocyte,
neutrophil, and B- and T-cell compartments, compared with mice
transplanted with Mx1-Cre or Smc3f/+Mx1-Cre BMCs. Mice
transplanted with Smc3f/+Mx1-Cre BMCs had a higher donor-
derived percentage in the myeloid compartments, as previously
described26 (Figure 6F). Our data support that both Yy1−/−and
Yy1−/−Smc3+/− HSCs fail to reconstitute blood. Thus, restoring
SMC3 expression level in YY1-deficient mice was able to partially
reestablish the HSC quiescence but not the capacity to reconsti-
tute blood.

YY1 regulates HSC metabolism via an

SMC3-independent pathway

To further elucidate the underlying mechanisms of YY1 regulation
of HSC functions, RNA-seq analysis was conducted in LSK cells
sorted from Yy1−/−, Yy1−/−Smc3+/−, and Yy1+/+ mice. There were
836 upregulated and 1502 downregulated genes detected in
Yy1−/−LSK compared with Yy1+/+ LSK cells, and there were 621
upregulated and 1370 downregulated genes detected in Yy1−/−

Smc3+/− LSK compared with Yy1+/+ LSK cells (supplemental
Figure 6). Genes involved in HSC long-term self-renewal and
metabolism were enriched in pathway analysis in Yy1−/−and Yy1−/−

Smc3+/− LSKs compared with Yy1+/+ cells (Figure 7A). Genes
involved in the immune system were enriched in pathway analysis
comparing Yy1−/−Smc3+/− with Yy1−/−LSKs. Gene set enrichment
analysis showed that pathways involved in metabolism were
deregulated in both Yy1−/−and Yy1−/−Smc3+/− LSK cells
compared with wild-type LSKs (Figure 7B). Many genes that are
critical for HSC metabolism and hypoxia were dysregulated; Hif1α,
te blood count (CBC) analysis. (D) Representative flow gating strategy for LSK, LT-

genitors (GMP), and megakaryocyte erythroid progenitors (MEP) populations. (E)

, CMP, GMP and MEP populations. N represents the number of mice; data are
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Hif3α, Plekha5, Klhl3, Pfkl, Vnn1, Mdga1, Gata2, Ptgds, Sox4, and
Hoxa3 were downregulated, and Ttll9 and Slc4a8 were upregu-
lated in Yy1−/−and Yy1−/−Smc3+/− LSK cells compared with
Yy1+/+ cells (Figure 7C-D). Based on compiled ChIP-seq analysis
(Figure 1), YY1 occupied the promoter areas of Hif1α, Hif3α,
Hoxa3, and Pfkl without cohesin. In contrast, YY1 colocalized with
cohesin and/or CTCF at the promoters of Sox4, Hoxa3, and
Slc4a8 (Figure 7E). Quantitative reverse transcription PCR confirm
that Hif1α and Hif3α were downregulated in Yy1−/−LSK cells and
deletion of 1 copy of Smc3 did not restore Hif1α and Hif3α
expressions in Yy1−/−Smc3+/− LSK cells (supplemental Figure 7).
Thus, YY1 controls HSC metabolic genes regardless of Smc3
expression level. To assess gene expression changes upon acute
protein deletion, we knocked down YY1 in HPC-7 cells by shRNA.
Compared with sh-Luc control, Hif3α, Plekha5, and Klhl3 were
downregulated (supplemental Figure 8). Because Hif1α and Hif3α
are critical for maintaining the proper intracellular ROS level in
HSCs, we analyzed intracellular ROS levels in Yy1−/−, Yy1−/−

Smc3+/−, and Yy1+/+ LT-HSCs (Lin−Sca1+c-Kit+CD48−CD150+)
and ST-HSCs (Lin−Sca1+c-Kit+CD48−CD150−) by flow analysis.
YY1 deficiency leads to an increase of intracellular ROS in LT-
HSCs and ST-HSCs, and the increase of ROS was also detec-
ted in Yy1−/−Smc3+/− HSCs (Figure 7F). Our results show that YY1
controls HSC metabolic genes and regulates intracellular ROS level
in HSCs, and YY1 regulation of HSC ROS and metabolism is
independent of the YY1–SMC3 axis.

Discussion

YY1, cohesion, and CTCF have been implicated in the formation of
DNA loops needed for variable diversity joining rearrangement at
the immunoglobulin locus during B-cell development.13,45-47

Moreover, YY1 has been identified as a new critical chromatin
structural factor in addition to CTCF and cohesin to mediate DNA
looping and alteration of chromatin and chromosome tertiary
structure.3,48 YY1 mediates transcriptional repression through its
C-terminal region that contains 4 C2H2-type zinc finger motifs
(amino acids 298-414),42,43 whereas the N-terminal region of YY1
(amino acids 1-200) mediates transcriptional activation.2,42,43,49,50

YY1 recruits PcG proteins and causes consequent histone modi-
fication through a sequence motif that maps to amino acid residues
201 to 226 (the YY1REPO domain).5 The C-terminal portion of
YY1, including amino acids 201 through 414 (YY1 201-414), is
critical for chromatin looping needed for immunoglobulin class
switching recombination,51 as well as for X-chromosome inactiva-
tion52 (Figure 3F). Young et al demonstrated that YY1 binds to
active enhancers and promoter-proximal elements and forms
dimers that facilitate the long-distance interaction of these DNA
elements.3 Our studies here show that YY1 physically interacts
with cohesin complex proteins via the C-terminal zinc finger domain
(Figure 3G), and YY1 and cohesin complex proteins cooccupy a
large cohort of promoters genome wide (Figures 1 and 2). Inter-
estingly, YY1 binds at the Smc3 promoter directly (Figure 4A,C,F;
Figure 6. Smc3 haploinsufficiency partially restores HSC quiescence in Yy1−/−mic

(Lin−Sca1+c-Kit+CD48−CD150+). Cells in the G0 phase were defined as Ki67−DAPI−. Cel

as Ki67+DAPI+. (B-D) Quantification of percentages of LT-HSC, ST-HSC, and MPP cells in

(F) Quantification of donor-derived contribution in B-cell (Thy1.2−CD19+), T-cell (Thy1.2+C

16, and 20 weeks after BMT. N represents the number of mice; data are presented as m
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supplemental Figure 3A-B) and represses SMC3 expression
(Figure 4B,D-E). Genes that were occupied by YY1 play distinct
biological functions in metabolism compared with genes that were
only occupied by CTCF and cohesin (Figures 1C-D and 2D).
Consistent with YY1 genome-wide occupancy (Figures 1D and
2D), YY1 deficiency leads to a deregulated genetic network gov-
erning cell metabolisms (Figure 7A-D) and failure to maintain
proper ROS levels in HSCs (Figure 7F). Interestingly, although
SMC3 expression was normalized to the wild-type level in Yy1−/−

Smc3+/− mice, Yy1−/−Smc3+/− HSCs fail to reconstitute blood,
likely because of deregulated HSC metabolic genes and elevated
ROS levels. Thus, YY1 controls HSC functions via both SMC3-
dependent and -independent pathways.

One possible hypothetical model is that YY1 binds to active
enhancers and promoter-proximal elements and forms heterodimers
with SMC3 and/or CTCF (Figure 3),53 or forms homodimers with
itself that facilitate the formation of long-distance DNA loops.3

Without YY1, SMC3 is upregulated (Figure 4D-E), and remains
bound at most proximal promoter regions (Figure 2E). The promoter-
enhancer looping is mainly maintained by cohesin interacting with
other chromatin structural factors such as CTCF. Because larger
chromosomal loop structures are usually made by the interaction of
CTCF proteins with cohesin complex proteins,54-57 the chromatin/
DNA looping structures are altered in YY1-deficient HSCs. Because
of the chromatin conformation change, genes involved in cell
metabolism, which are mainly occupied by YY1 during normal con-
ditions, remained deregulated regardless of the presence of other
chromatin structural factors. Thus, YY1-deficient HSCs have
decreased Hif1α and Hif3α, elevated intracellular ROS, and fail to
reconstitute blood (Figure 7G). It will be interesting to further analyze
high-order chromatin structures of gene loci that are critical for HSC
metabolism in Yy1+/+, Yy1−/−, and Yy1−/−Smc3+/− HSPCs in the
future.

In adult humans, ~90% of HSCs exist in a quiescent nondividing
state (G0), and up to a third of the remaining 10% of HSCs actively
proliferate and are found in other stages of the cell cycle.58-60

Quiescence is a fundamental characteristic of HSCs in adult BM,
and adult HSCs can remain in a quiescent state for a prolonged
time.60 Generally, HSC cycle quiescence parallels its capacity for
self-renewal and long-term repopulating activity. Thus, the cell
cycle must be precisely regulated in HSCs to ensure adequate
hematopoiesis without stem cell exhaustion.61,62 Many extrinsic
factors regulate and balance the processes of quiescence, self-
renewal, and differentiation of HSCs63-67: these include proin-
flammatory cytokines (eg, transforming growth factor β, IFN-γ, and
IFN-α)68-70 and osteoblastic and sinusoidal vascular niches.63-67

Moreover, the impact of extrinsic regulators is modified and
modulated by intrinsic regulators of cell cycle progression in HSCs,
including some transcription factors.71-74 Our study shows that
YY1 regulatory function in maintaining HSC quiescence is at least
partially through its regulation of cohesin complex protein SMC3.
Although YY1-deficient HSPCs are highly proliferative and have a
e. (A) Representative gating strategy for Ki67/DAPI cell proliferation assay of LT-HSCs

ls in the G1 phase were defined as Ki67+DAPI−. Cells in S/G2/M phase were defined

G0, G1, and S/G2/M phase. (E) Experimental strategy of BM transplantation (BMT).

D19−), monocyte (Mac1+Gr1−), and neutrophil (Mac1+Gr1+) populations at 4, 8, 12,

eans ± SD; *P < .05, **P < .01, and ***P < .001.
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high SMC3 expression level, normalizing SMC3 expression level in
YY1-deficient mice is able to partially restore HSC quiescence
(Figure 6A-D). Although HSC quiescence was partially restored in
Yy1−/−Smc3+/− mice, Yy1−/−Smc3+/− HSCs fail to reconstitute
25 JUNE 2024 • VOLUME 8, NUMBER 12
blood upon BM transplant (Figure 6E-F). Therefore, YY1 regulation
of cohesin is a critical driver for HSC quiescence but not for all
HSC functions. Although genes/pathways that are critical for cell
metabolism are deregulated in both Yy1−/−and Yy1−/−Smc3+/−
YY1 CONTROLS SMC3 EXPRESSION AND INTERACTION 3087
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samples, pathway analysis show that genes involved in immune
system are differently regulated in Yy1−/−and Yy1−/−Smc3+/− cells
(Figure 7A). SMC3 occupancy at the promoter regions, which are
critical for cell metabolism, heavily rely on presence of YY1
(Figure 2F), and this may explain why normalization of SMC3
expression is not sufficient to rescue HSC metabolic defects. It will
be interesting to further dissect how the YY1–SMC3 axis controls
the cross talk between HSCs and the immune system, such as
immune cells in the BM microenvironment, in the future.
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