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Abstract 
Background: Diabetic nephropathy (DN) represents a major chronic kidney disorder and a leading cause of end-stage renal disease (ESRD). Small 
RNAs have been showing great promise as diagnostic markers as well as drug targets. Identifying dysregulated micro RNAs (miRNAs) could help in 
identifying disease biomarkers and investigation of downstream interactions, shedding light on the molecular pathophysiology of DN. In this study, 
we analyzed small RNAs within human urinary extracellular vesicles (ECVs) from DN patients using small RNA next-generation sequencing.
Method: In this cross-sectional study, urine samples were collected from 88 participants who were divided into 3 groups: type 2 diabetes (T2D) 
with DN (T2D + DN, n = 20), T2D without DN (T2D − DN, n = 40), and healthy individuals (n = 28). The study focused on isolating urinary ECVs to 
extract and sequence small RNAs. Differentially expressed small RNAs were identified, and a functional enrichment analysis was conducted.
Results: The study revealed a distinct subset of 13 miRNAs and 10 Piwi-interacting RNAs that were significantly dysregulated in urinary ECVs of the 
DN group when compared to other groups. Notably, miR-151a-3p and miR-182-5p exhibited a unique expression pattern, being downregulated in 
the T2D − DN group, and upregulated in the T2D + DN group, thus demonstrating their effectiveness in distinguishing patients between the 2 
groups. Eight driver genes were identified PTEN, SMAD2, SMAD4, VEGFA, CCND2, CDK6, LIN28B, and CHD1.
Conclusion: Our findings contribute valuable insights into the pathogenesis of DN, uncovering novel biomarkers and identifying potential 
therapeutic targets that may aid in managing and potentially decelerating the progression of the disease.
Key Words: diabetic nephropathy, PTEN, miR-151a-3p, miR-182-5p, T2D, urinary extracellular vesicles, SMAD4, VEGFA, miRNA, exosome
Abbreviations: ACR, urine albumin to creatinine ratio; DN, diabetic nephropathy; ECV, extracellular vesicle; eGFR, estimated glomerular filtration rate; ESRD, 
end-stage renal disease; miRNA, micro RNA; piRNA, Piwi-interacting RNA; T1D, type 1 diabetes; T2D, type 2 diabetes; TGF-β, transforming growth factor-beta. 
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Diabetic nephropathy (DN) is a progressive chronic kidney 
complication that affects approximately 30% of patients 
with type 1 diabetes (T1D) and 40% of individuals with type 
2 diabetes (T2D). It is regarded as the leading cause of end- 
stage renal disease (ESRD) worldwide [1, 2]. The prevalence 
of DN has increased in recent years in proportion to the rising 
prevalence of diabetes, with DN emerging as a major contribu-
tor to morbidity and mortality in this patient population [3]. 
The clinical diagnosis of DN relies on persistent urine protein-
uria and progressive reduction in the estimated glomerular fil-
tration rate (eGFR) [4]. However, diagnostic limitations persist 
as challenges for DN management. Kidney damage can occur 

even before urinary albumin is detected [5]. In addition, reduc-
tion in kidney function is not always correlated with increased 
albuminuria [6]. Current diagnostic and therapeutic ap-
proaches for DN are not highly effective in reducing ESRD 
rates. Therefore, there is an urgent need for earlier and more 
sensitive diagnostic markers as well as novel drug targets that 
can be utilized for new therapeutic approaches for DN [7].

In recent years, interest in exosomes has been on the rise with 
potential clinical benefits. Exosomes, extracellular vesicles 
(ECVs) with a diameter ranging from 40 to 160 nm, have 
been shown to contain a variety of components, including sev-
eral types of nucleic acids (such as miRNAs and Piwi-interacting 
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RNAs [piRNAs]), proteins, lipids, amino acids, and other me-
tabolites [8]. Initially considered as byproducts of cell damage 
or homeostasis, recent advancements have highlighted the 
crucial role of exosomes in facilitating intercellular communi-
cation [9]. They actively govern essential cellular processes, 
such as signal transduction and immune response [8]. 
Exosomes participate in cell-cell communication within the 
nephron, influencing both renal and pathophysiological proc-
esses [10]. Their involvement has been demonstrated in vari-
ous renal diseases and disorders, including DN [11]. Several 
reports have suggested that the exosomal contents, specifical-
ly small noncoding RNAs such as miRNAs, play a role in DN 
pathogenesis by influencing multiple signaling pathways and 
cellular processes, including inflammation and autophagy 
[11]. In addition, it has been shown that the molecular signa-
tures of urinary ECVs contents, including proteins and small 
noncoding RNAs, undergo alternation in response to DN 
pathogenesis [12-15]. These altered profiles of urinary exo-
somes in DN may serve as promising biomarkers for the diag-
nosis, prognosis, and monitoring of diseases along with other 
biomarkers recently identified [16-19]. In addition, they can 
offer valuable insights into the potential development of 
therapies.

In this study, we performed a global analysis of the small 
RNA content of urinary ECVs from patients with type 2 dia-
betes and nephropathy (T2D + DN) and compared them 
with those from individuals with type 2 diabetes without 
nephropathy (T2D − DN) and healthy subjects. We identi-
fied miRNAs significantly dysregulated in DN patients and 
further analyzed the network of common target mRNAs af-
fected by these miRNAs. Our findings point to potential 
novel biomarkers for DN, reveal possible therapeutic targets 
for the disease, and enhance our understanding of DN 
pathophysiology.

Materials and Methods
Patient Recruitment
A total of 88 subjects were recruited into the study and were 
allocated to 3 groups: T2D + DN (n = 20), T2D − DN (n =  
40), and healthy individuals (n = 28). Patients were recruited 
from the Dasman Diabetes Institute. This study was reviewed 
and approved by the Ethical Review Committee at Dasman 
Diabetes Institute (reference: RA/121/2019). Individuals eli-
gible for participation were required to be adults aged 18 years 
or older and capable of providing informed consent. The inclu-
sion criteria necessitated a verified clinical diagnosis of DN and 
T2D. The clinical diagnosis of T2D relied on the presence of 
persistent hyperglycemia (fasting glucose level > 7 mmol/L 
and 2-hour fasting blood glucose > 11 mmol/L) and normal 
kidney function. Individuals with DN received clinical diagno-
sis from a nephrologist based on the American Diabetes 
Association criteria [20]. These patients exhibited marked 
T2D, along with a sustained increase in albumin to creatinine 
ratio (ACR) > 30 mg/g and/or a persistent decline in eGFR 
(< 60 mL/min per 1.73 m2). Healthy individuals without any 
reported diagnosis of T2D or kidney complications, and 
with clinical parameters within normal ranges, were 
recruited from the Kuwait Adult Diabetes Epidemiological 
Multidisciplinary (KADEM) study. Patients with nondiabetic 
kidney disease, heart failure, active infection, acute/chronic in-
flammatory disease, allergic conditions, autoimmune diseases, 
malignancies, and T1D were excluded.

Urine Collection and ECVs Purification
Urine samples were collected in urine collection and preserva-
tion tubes (Norgen Biotech Corp.18111) as previously de-
scribed [21]. Briefly, the sample underwent a series of 
centrifugation and concentration steps. The resulting pellet 
was resuspended in 500 µL of PBS and stored at 40 °C.

Total RNA Extraction From Urinary ECVs
ECVs total RNA was extracted using Urine Exosome 
Purification and RNA Isolation Maxi Kit, Norgen, Canada 
(Cat. 58800) according to the manufacturer’s protocol.

Small RNA Library Preparation and Sequencing
We followed the methods described in detail in [21]. Library prep-
aration was performed using QIAseq miRNA Library Kit 
(331502, Qiagen, Hilden, Germany) following the manufacturers 
recommendations. Each run used 10 ng of purified small RNA as 
startup material. The procedure involves consecutively ligating 3′ 
and 5′ end adapters, followed by universal cDNA synthesis with 
unique molecular index assignment. The synthesized cDNA li-
braries underwent further amplification through PCR cycles 
and purification using Qiagen QMN beads. The final libraries 
were prepared, validated, and quantified using the bioanalyzer 
(Agilent, California, USA) and qubit fluorometer (Thermofisher 
Scientific, Massachusetts, USA), respectively. Sequencing was 
conducted on the MiSeq system using the Miseq 150 cycle version 
3 kit (MS-102-3001, Illumina Inc., USA). The resulting Fastq files 
were analyzed using Gene Globe data analysis webtools. 
Normalization was performed using the Trimmed Mean of M 
(edgeR) method, calculating a linear scaling factor for each sample 
based on a weighted mean after reducing the dataset by log fold- 
changes relative to control samples and absolute intensity [22]. 
Candidate piRNA and miRNAs were selected based on the cri-
teria of log2 fold change > 2 and a P value < .05.

Identification of Differentially Expressed Small RNA 
and Functional Enrichment Analysis of Key miRNAs
The confirmed interactions between miRNAs and their target 
mRNAs were obtained using miRNet (https://www.mirnet.ca/), 
an interactive web tool. This tool retrieves data on 
miRNA-target interactions, combining both computationally 
predicted, and experimentally validated information from 
miRTarBase [23], miRDB [24], and TargetScan [25] databases. 
We identified the miRNAs from the study in these databases, 
considering them as candidate miRNAs in conjunction with the 
mRNAs [26]. The significantly correlated pairs of these miRNA- 
mRNA interactions were employed to construct a co-expression 
network using Cytoscape 3.6.1. The cytoHubba v.0.1 plug-in of 
Cytoscape was used to select potential hub genes from the identi-
fied differentially expressed miRNAs (DE-miRNAs) [27, 28]. The 
edge percolated component (EPC) centrality analysis of the 
miRNA-mRNA regulatory network was used to determine the 
driver genes targeted by the key miRNA [29, 30]. The significant 
biological pathways associated with the identified candidate 
miRNAs were determined using the DIANA-microT web server 
[31]. The most statistically enriched GO terms were generated us-
ing the ggplot2 visualization package [32].

Statistical Analysis
The shortlisted markers were observed to be significant after 
Bonferroni correction for multiple comparisons (P < .01). We 
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generated receiver operating characteristic (ROC) curves, 
which assess the trade-off between sensitivity and specificity 
in predicting a dichotomous outcome across various values. 
The area under the ROC curve (AUC) serves as an additional 
indicator of test performance. AUC, CIs, and P values for all 
ROC curves, as well as individual ROC curves for each 
piRNA and miRNA, were computed. These results were pre-
sented alongside their respective sensitivity and specificity val-
ues. The heatmap was generated using SRPLOT (available at 
https://www.bioinformatics.com.cn).

Results
The study included 88 patients: 35 male (40%) and 53 female 
(60%). Table 1 shows the basic clinical and pathological char-
acteristics of each group.

Expression Profiles of Urinary ECV miRNAs Isolated 
From T2D − DN and T2D + DN Patients
Characterization of the purified urinary ECV based on size us-
ing scanning electron microscope showed a diameter in the 
range of 40 to 150 nm (Supplementary Fig. S1 [33]). The ex-
pression profiles of urinary ECVs miRNAs and piRNAs from 
T2D − DN patients were compared with the expression pro-
files from the nondiabetic individuals. Similarly, the expres-
sion profiles of urinary ECVs miRNAs and piRNAs from 
the 20 T2D + DN patients were compared with nondiabetic 
individuals. Principal component analysis of the miRNA ex-
pression data demonstrated clustering of T2D − DN, 
T2D + DN patients, and of controls with a separation between 
the 2 clusters (Fig. 1A). The results of heatmap clustering 
based on the expression pattern of all 178 detectable 

Table 1. Basic clinical and pathological characteristics

Characteristic Healthy controls 
(n = 28)

Type 2 diabetes patients without 
nephropathy (n = 40)

Type 2 diabetes patients with 
nephropathy (n = 20)

P value  
(all 3 groups)

P value  
(DN vs non-DN)

Age at visit, y 49.9 (8.5) 62.4 (9.1) 63.4 (9.3) <.001 .702
BMI, kg/m2 31.9 (7.4) 34.1 (8.1) 33.4 (5.4) .524 .765
Glucose, mmol/L 5.1 (0.6) 9.4 (3.3) 9.3 (3.9) <.001 .951
HbA1c, % 5.5 (0.7) 7.2 (1.5) 7.5 (1.3) <.001 .417
ACR 8.7 (11.6) 14 (7.7) 706.3 (7.7)$ <.001 <.001
eGFR, mL/min/ 

1.73 m2
102 (14.3) 81.06 (21.2) 71 (31.5) <.001 .115

BUN, mmol/L 4.6 (1.2) 5.7 (2.34) 11.8 (20.2) .040 .068
Creatinine, µmol/L 70.5 (16.3) 68.2 (27.1) 100.7 (40.3) .120 .002
Albumin, g/L 38.5 (3.2) 35.4 (6.8) 37.4 (3.1) .071 .234
HDL, mmol/L 1.4 (0.3) 1.3 (0.4) 1.04 (0.3) .009 .010
LDL, mmol/L 3.4 (0.9) 1.8 (1.1) 1.6 (0.7) <.001 .470

Data are presented as mean and SD and $median. 
Abbreviations: ACR, urine albumin to creatinine ratio; BMI, body mass index; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate, HbA1c, glycated 
hemoglobin; HDL, high-density lipoprotein, LDL, low-density lipoprotein.
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miRNAs and 141 piRNAs of T2D − DN, T2D + DN, and con-
trol groups are shown in Fig. 1B. Transcript cluster heatmaps 
indicated that the optimal number of clusters was 8; the larger 
cluster (n = 71 miRNAs & piRNA) was designated C6 and the 
smaller cluster (n = 24 miRNAs & piRNA) was designated C3 
(Supplementary Table S1 [34]). Clusters C3 and C5 revealed 
the same changes in expression of miRNA/piRNAs in healthy 
and T2D + DN but higher expression in T2D − DN. Clusters 
C2 and C8 revealed higher expression of miRNA/piRNAs in 
T2D + DN patients than T2D − DN patients, whereas clusters 
C1, C6, and C4 revealed lower expression of miRNA/piRNAs 
in T2D − DN and T2D + DN patients (Supplementary 
Table S1 [34]). Cluster C7 revealed the same changes in the 
higher expression of miRNA/piRNAs in healthy and 
T2D + DN but lower expression in T2D − DN.

Differential expression analysis revealed that 46 miRNAs (27 
downregulated and 19 upregulated) were significantly differen-
tially expressed between the controls and T2D − DN patients 
with P < .05 (Fig. 2A and 2B). We also observed that 38 
miRNAs (19 downregulated and 19 upregulated) were signifi-
cantly differentially expressed between controls and T2D + DN 
patients. The 21 significant DE-miRNAs were expressed in 
T2D − DN (Fig. 2A, Table 2) and 13 DE-miRNAs expressed 
in T2D + DN (Fig. 2A, Table 3). Out of 319 small miRNAs, 

we found 25 miRNAs (Fig. 2A and 2C) and 16 piRNAs 
(Supplementary Table S2 [34]) were significantly differentially 
expressed in T2D − DN as well as T2D + DN patients. We also 
observed 10 DE-piRNAs were expressed in T2D − DN 
(Supplementary Table S3 [34]) and 10 DE-piRNAs expressed 
in T2D + DN (Supplementary Table S4 [34]). Of these 25 shared 
miRNAs, we found 11 miRNAs in T2D − DN patients and 9 
miRNAs in T2D + DN were downregulated (Fig. 2C, Table 4). 
Similarly, we also found 14 miRNAs in T2D − DN patients 
and 16 miRNAs in T2D + DN were upregulated (Fig. 2C, 
Table 4).

Dysregulated miRNAs in T2D − DN and T2D + DN 
Urinary Exosomes
The heatmap clustering of 25 common dysregulated DE-miRNAs 
in T2D − DN as well as T2D + DN, indicating the regulation 
profile of miRNA expressions, is presented in Supplementary 
Figs. S2A and S2B [33]. The clustering indicated that the 
difference in expression levels of urinary ECVs miRNA and 
piRNAs between control individuals and T2D − DN as well 
as T2D + DN patients was the primary discriminator, overrid-
ing differences due to gender, age, and body mass index 
(Supplementary Fig. S3 [33]). These 25 ECVs miRNAs, which 
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Figure 2. Expression pattern of dysregulated miRNAs in type 2 diabetes without nephropathy (T2D − DN) and type 2 diabetes with nephropathy 
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were shown to be differentially expressed between the control 
and T2D − DN as well as T2D + DN patients, were further an-
alyzed using Wilcoxon rank sum tests. The results of Wilcoxon 
tests indicated miRNA expression in patients with T2D − DN, 
T2D + DN, and no T2D (healthy) (Supplementary Fig. S2B 
[33]). Significant change in miRNA expression was observed 
with 25 dysregulated in T2D − DN and T2D + DN patients 

compared with healthy individuals (Supplementary Fig. S2B 
[33]). We observed 5 miRNAs that were significantly changed 
in T2D − DN vs T2D + DN. A significant change in expression 
was observed with miR-151a-3p (0.0051), miR-182-5p 
(P = .02) in T2D + DN patients compared with T2D − DN pa-
tients (Fig. 2D and 2E). Next, by considering the urine albumin 
to creatinine ratio (ACR), we divided the healthy, T2D − DN, 
and T2D + DN cohort into 3 groups: one with healthy (ACR <  
30 mg/g), microalbuminuria (30 < ACR < 300 mg/g), or macro-
albuminuria/late renal disease (ACR > 300 mg/g). We observed 
that T2D − DN and T2D + DN patients with macroalbuminuria/ 
renal impairment had significantly higher expression of 
miR-151a-3p and miR-182-5p (Fig. 2F and 2G).

The Potential Diagnostic Value of ECVs miRNAs for 
T2D − DN and T2D + DN
miR-151a-5p and miR-182-5p showed an interesting expres-
sion pattern as they were downregulated in T2D − DN and up-
regulated in T2D + DN. To study the diagnostic accuracy of 
urinary extracellular vesicles miR-151a-5p and miR-182-5p as 
surrogate biomarkers for T2D − DN or T2D + DN, a ROC 
curve was drawn. The results demonstrated the diagnostic 

Table 2. Significant differentially expressed miRNAs in type 2 
diabetes without nephropathy (T2D − DN) vs healthy

S. No. miRNA ID Fold regulation  
(T2D − DN vs healthy)

P value

1. hsa-miR-9-5p −2.27 .024832
2. hsa-miR-92a-3p −2.13 .009792
3. hsa-miR-891a-5p −3.93 .020414
4. hsa-miR-744-5p −3.33 .011081
5. hsa-miR-532-5p −1.84 .036956
6. hsa-miR-363-3p −4.54 .00031
7. hsa-miR-338-3p −2.58 .044152
8. hsa-miR-30e-3p −2.05 .017425
9. hsa-miR-26b-5p −1.7 .04021
10. hsa-miR-204-5p −1.86 .014252
11. hsa-miR-16-5p −1.67 .047319
12. hsa-miR-146b-5p −3.06 .026059
13. hsa-miR-141-3p −1.74 .0322
14. hsa-miR-125b-5p −1.69 .044593
15. hsa-miR-125a-5p −2.11 .00428
16. hsa-miR-10a-3p −3.24 .014664
17. hsa-miR-8485 4.95 .009048
18. hsa-miR-7704 4.29 .002462
19. hsa-miR-6087 5.67 .00017
20. hsa-miR-4516 6.75 8.21E−09
21. hsa-miR-3656 7.91 4.33E−13

Table 3. Significant differentially expressed urinary extracellular 
vesicular miRNAs in type 2 diabetes with nephropathy (T2D + DN) 
vs healthy

S. No. Differentially expressed 
miRNA

Fold change 
(T2D + DN vs 
healthy)

P value

1. hsa-miR-3960 −7.2 .0043286
2. hsa-miR-30b-5p −3.7 .0286945
3. hsa-miR-29c-3p −2.18 .0146151
4. hsa-miR-29a-3p −2.91 .0013709
5. hsa-miR-27a-3p −4.36 .0026631
6. hsa-miR-23b-3p −4.16 2.528E−05
7. hsa-miR-23a-3p −5.02 4.822E−05
8. hsa-miR-223-3p −5.48 .0063404
9. hsa-miR-142-5p −8.39 .0001108
10. hsa-miR-128-3p −4.11 .0065145
11. hsa-miR-874-3p 2.87 .0466693
12. hsa-miR-199b-3p 7.65 .0001769
13. hsa-miR-375 3.15 .0079878

Table 4. Significant shared differentially expressed urinary 
extracellular vesicular miRNAs in type 2 diabetes without 
nephropathy (T2D − DN) vs healthy and type 2 diabetes with 
nephropathy (T2D + DN) vs healthy

(T2D − DN vs 
healthy)

(T2D + DN vs 
healthy)

S. No. DE-miRNA Fold 
change

P value Fold 
change

P value

1. hsa-miR-107 −5.02 .000007 −3.31 .006926
2. hsa-miR-148b-3p −3.01 .001775 −2.91 .015193
3. hsa-miR-203a-3p −2.3 .004299 −2.37 .021347
4. hsa-miR-205-5p −2.9 .000167 −6.32 .00000009
5. hsa-miR-26a-5p −1.95 .013386 −1.92 .042271
6. hsa-miR-30c-5p −3.39 .001962 −2.26 .000437
7. hsa-miR-361-3p −3.92 .001452 −3.37 .021368
8. hsa-miR-361-5p −3.56 .005946 −2.95 .01126
9. hsa-miR-660-5p −2.75 .045127 −1.83 .009273
10. hsa-miR-1246 11.6 .0000004 5.69 .000218
11. hsa-miR-1307-3p 2.71 .000979 6.15 .0000001
12. hsa-miR-151a-3p −1.8 .0026164 2.17 .0011401
13. hsa-miR-182-5p −2.96 .000663 3.53 .000516
14. hsa-miR-196a-5p 3.2 .000931 3.79 .011608
15. hsa-miR-204-3p 8.63 .010186 9.51 .011607
16. hsa-miR-320a 2.84 .000116 5.34 .0000005
17. hsa-miR-320b 4.94 .00002 6.14 .000538
18. hsa-miR-320c 6.19 .0000067 10.14 .00002
19. hsa-miR-378a-3p 3.97 .0000029 2.61 .002763
20. hsa-miR-378c 3.44 .0000035 7.46 .007745
21. hsa-miR-423-3p 3.29 .003931 3.93 .00347
22. hsa-miR-423-5p 2.15 .003986 4.44 .000001
23. hsa-miR-4532 6.39 .000175 3.28 .02217
24. hsa-miR-664a-5p 2.78 .032326 5.61 .001117
25. hsa-miR-671-5p 9.64 .0000008 11.24 .00000017

Journal of the Endocrine Society, 2024, Vol. 8, No. 8                                                                                                                                       5



accuracy of miR-151a-5p and miR-182-5p and are shown in 
Fig. 2H and 2I. The AUC values indicate that individuals with 
differing ACR can be distinguished by expression analysis of 
the markers. These data indicate that miR-151a-5p and 
miR-182-5p miRNAs are valuable potential urinary-based 
miRNA biomarkers not only for T2D + DN but also for detect-
ing future renal impairment in T2D − DN patients.

A significant change in expression was also observed with 
miR-1307 (P = .00043), miR-320a (P = .002), and miR-423-5p 
(P = .0093) in T2D + DN patients compared to T2D − DN 
patients (Fig. 3A-3C). Significant miRNAs expression differ-
ences were seen in T2D + DN patients compared to healthy in-
dividuals and are shown in Supplementary Fig. S4 [33]. We 
also observed that T2D − DN and T2D + DN patients with 
macroalbuminuria/renal impairment had significantly higher 
expression of miR-1307-3p, miR-320a, and miR-423-5p 
(Fig. 3D-3F).

To study the diagnostic accuracy of urinary ECV miRNAs 
(miR-1307-3p, miR-320a, and miR-423-5p) as a surrogate 
biomarker for T2D − DN or T2D + DN, a ROC curve was 
shown in Fig. 3G-3I. The results demonstrate the diagnostic 

accuracy of miR-1307-3p (Fig. 3G). Similarly, miR-320a-5 
and miR-423-5p performance is shown in Fig. 3H, and 3I. 
Importantly, significant AUC of miR-423 exhibited higher 
values in progression T2D − DN from T2D + DN. Compared 
with T2D + DN vs T2D − DN, miR-423-5p with AUC values 
of 0.72 had the largest area under the ROC curve with the 
highest sensitivity and specificity compared with miR-1307-3p 
(AUC = 0.7) and also miR-320a (AUC = 0.7) (Fig. 3H and 
3I). The AUC values indicate that individuals with differing 
ACR can be distinguished by expression analysis of the markers. 
These data indicate that these miRNAs are valuable potential 
urinary-based miRNA biomarkers not only for T2D − DN 
and T2D + DN but also for detecting future renal impairment 
in T2D − DN patients.

Prediction of Target Genes of ECV miRNAs, 
Functions, and Pathways of Differentially Expressed 
miRNAs in T2D − DN and T2D + DN
miRNAs exert a pivotal influence on cellular mRNA expression 
by selectively binding to target mRNAs. This interaction results 
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Figure 3. Expression profile of differentially expressed miRNAs among T2D − DN and T2D + DN. (A-C) Expression of differentially expressed miRNAs 
miR-1307, miR-320a, and miR-423-5p by signal values between healthy, type 2 diabetes without nephropathy (T2D − DN) and type 2 diabetes with 
nephropathy (T2D + DN) patients. (D-F) Box plot shows the expression of differentially expressed miRNAs (miR-1307, miR-320a, and miR-423-5p) by 
signal values between T2D + DN and T2D − DN patients with normal individual (ACR < 30 mg/g), microalbuminuria (30 < ACR < 300), and 
macroalbuminuria (ACR > 300 mg/g). (G-I) ROC curves for miR-1307, miR-320a, and miR-423-5p of T2D − DN vs heathy, T2D + DN vs healthy, and 
T2D + DN vs T2D − DN. The area under the ROC curve (AUC) represents the accuracy of the miR-1307, miR-320a, and miR-423-5p biomarkers in 
T2D − DN and T2D + DN. *indicates P < .05, **indicates P < .01, ***indicates P < .001 and “ns” indicates not significant.
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in translational repression and subsequent gene silencing. The 
detected 178 DE-miRNAs (including the identified 25 shared 
dysregulated miRNAs in urinary ECV from T2D − DN and 
T2D + DN patients) were found to map to 387 target genes in 
the miRNet database (https://www.mirnet.ca/) (Supplementary 
Table S5 [34]). The protein-protein interaction network built 
using differentially expressed miRNA-mRNA pairs revealed 
that the interaction network comprises 527 interacting nodes 
and 659 edges (Fig. 4A). We performed functional enrichment 
analysis of the predicted target genes from key DE-miRNA ana-
lysis. Biological pathways and KEGG pathway enrichment ana-
lysis were successively identified by DAVID (https://david. 
ncifcrf.gov/tools.jsp) to validate that these miRNAs are involved 
in T2D − DN and T2D + DN. The functional enrichment ana-
lysis indicated that the miRNA targeted genes were enriched 
in biological processes related to angiogenesis, response to oxi-
dative stress (ROS), and cell division etc. (Fig. 4B). Enrichment 
pathways analysis revealed that the targeted genes extracellular 
vesicles miRNAs were enriched in Foxo, Wnt, PI3K-Akt signal-
ing, apoptosis, MAPK signaling, p53 signaling, AGE-RAGE, 
JAK-STAT, insulin signaling pathways (Fig. 4C). Of interest, 
the top diabetes nephropathy-associated pathways of most of 

the extracellular vesicles key miRNAs families were related to 
Wnt signaling, mTOR, ErbB signaling, PI3K-Akt, and calcium 
signaling (Fig. 4B). In addition, more specific participation in 
diabetes nephropathy-related biological process analysis 
showed that the enriched processes were involved in cell prolif-
eration, hypoxia, nephrogenesis, cell migration, cell differenti-
ation, fibrosis, and DNA damage (Fig. 4C).

A protein-protein interaction network of mRNA-miRNA 
was constructed based on the miRNet (https://www.mirnet. 
ca/) database (Fig. 4A). Then, edge percolated component 
(EPC) algorithms in Cytoscape-cytoHubba plug-in were 
used to screen multicentric mRNA-miRNA based on the 
protein-protein interaction network. The EPC score of driver 
genes is given in Supplementary Table S6 [34]. Eight driver 
genes were identified: PTEN, CDK6, SMAD4, CCND2, 
LIN28B, CHD1, VEGFA, and SMAD2. The genes are listed 
according to EPC score in descending order (Fig. 4D).

Discussion
To our knowledge, this study represents the first global analysis 
of urinary extracellular vesicle miRNAs and piRNAs—in 
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Figure 4. Prediction of target genes of ECV miRNAs, functions, and pathways of differentially expressed miRNAs. (A) mRNA-miRNA target interaction 
network obtained from a list of shared DE-miRNAs among type 2 diabetes with nephropathy (T2D + DN) and type 2 diabetes without nephropathy 
(T2D − DN). The network contains the significant T2D + DN and T2D − DN related miRNA-mRNA target interactions network retrieved from 
MIENTURNET. The miRNA is represented by red triangular shape nodes and mRNA by cyan color circular shape nodes; the green color nodes are genes 
targeted by prognostic miR (miR-151a and miR-182-5p) (B) Significant enriched biological process of shared DE-miRNA in T2D + DN and T2D − DN. Dot 
size indicates count. Count represents the number of genes associated with each pathway. Dot color denotes the P values of pathways and x-axis 
represent fold enrichment. (C) Bar plot of significant biological pathways of predicted genes of shared DE-miRNA in T2D + DN and T2D − DN patients. 
X-axes represent count of genes with significance (P < .05) indicated by order and color trend. (D) mRNA-miRNA core network module of driver genes and 
key DE-miRNAs.
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patients with T2D and DN. By adopting a thorough approach, 
we were able to extensively catalog small RNAs in patient urin-
ary ECVs using next-generation sequencing technology. We in-
vestigated the altered miRNAs and piRNAs to assess their 
viability as markers for DN progression. In our quest to pin-
point interaction networks and the primary target genes of sig-
nificantly altered miRNAs, we relied on both theoretically 
derived and experimentally confirmed databases. This research 
offers profound insights into the mechanisms underpinning 
T2D and DN and identifies potential avenues for therapeutic 
intervention. In summary, our findings illuminate the influential 
role of miRNAs in the context of T2D and DN, emphasizing 
their importance as promising disease biomarkers and thera-
peutic targets.

Diabetic nephropathy is a complication that develops in ap-
proximately 40% of people with diabetes and is regarded as 
the leading cause of ESRD [35, 36]. However, the progression 
from DN to ESRD among diabetic patients varies significant-
ly. Consequently, there is a critical need for biomarkers that 
can facilitate early diagnosis of the disease and identify those 
patients at a higher risk of rapid progression, as it would en-
able timely intervention leading to better outcomes.

In our study, we identified a total of 41 small RNAs, including 
25 miRNAs, that are significantly dysregulated in T2D ± DN 
patients when compared to nondiabetic individuals. When the 
dysregulated miRNAs were compared across the T2D groups 
both with DN or without DN, 5 miRNAs were differentially ex-
pressed, including miR-1307 and miR-320a, which were previ-
ously implicated in DN [37], with the latter showing a driving 
role in renal dysfunction in DN patients [38]. Another 
microRNA was miR-423-5p, which was significantly elevated 
in DN patients compared to other groups. Downregulation of 
miR-423-5p was implicated in DN disease severity and progres-
sion using an in vitro DN animal model [39]. The other 2 
miRNAs (miR-151a-3p and miR-182-5p) showed a distinctive 
expression pattern that might provide potential prognostic in-
sight for patients with T2D developing kidney complications. 
Both markers were downregulated in the T2D − DN group 
and upregulated in the T2D + DN group when compared to 
the control group (Fig. 2). The marker miR-151a-3p has been 
shown previously to be downregulated in the serum of patients 
with lupus nephritis, which correlated with reduced renal tissue 
activity [40]. On the other hand, miR-182-5p was shown to be 
elevated following renal injury [41]. This role was further vali-
dated as in vivo inhibition of miR-182-5p improved kidney 
function following acute kidney injury [42].

A summarized depiction of the aberrant activation of path-
ways (including growth factors/receptor tyrosine kinases 
[RTKs], Notch, Wnt/β-catenin, transforming growth factor- 
beta [TGF-β] signaling pathways, as well as glucose and lipid 
metabolism) in T2D with or without nephropathy is anticipated 
to be influenced by dysregulated key miRNAs (miR-1307, 
miR-320a, miR-151a, miR-182-5p, and miR-423) (Fig. 5). 
Regulatory analysis of significantly key dysregulated miRNA 
highlighted driver genes, PTEN, SMAD2, SMAD4, VEGFA, 
CCND2, CDK6, LIN28B, and CHD1, as well as pathways 
that could provide potential targets for therapeutic approaches. 
Among these, PTEN emerged as a hub affected by 8 key dysre-
gulated miRNAs. This tumor suppressor gene has been exten-
sively demonstrated to be involved in DN by numerous 
studies [43, 44], exerting its effects via the PI3K/Akt signaling 
pathway [45], which we identified as the pathway with the high-
est enrichment. PTEN plays an important role in regulating 

insulin signaling which is affected under conditions of insulin re-
sistance [46]. PTEN has also been shown to be dysregulated in 
people with DN. Our findings further corroborate these findings 
and highlight the role of miRNAs in its regulation, allowing for 
possible ways for regulating PTEN as a promising therapeutic 
target for T2D and DN. Other genes regulated by the identified 
miRNAs are SMAD2 and SMAD4 that have been shown to 
play a critical role in DN progression via the TGF-β/SMAD sig-
naling pathway [47].

Other genes that have been linked to the miRNAs identified 
in this analysis are VEGFA which have been shown to play an 
important role in DN through its role in renal angiogenesis 
[48]. The key hallmarks of T2D and DN are conditions of 
high glucose, high blood pressure, and oxidative stress that 
leads to disruption of angiogenesis. The kidney is a highly vas-
cularized organ with high blood flow that requires an exten-
sive network of blood vessels that is maintained through 
angiogenesis where VEGFA is a key regulator of this process 
[49]. A major problem in early stages of DN is the microangi-
opathy that leads to excessive abnormal angiogenesis which 
produces structurally undeveloped vessels which are highly 
pervious leading to proteinuria and increased filtration rate 
in the initial stages of DN due to the increased glomerular fil-
tration surface [50]. VEGFA expression in podocytes is upre-
gulated by high glucose after which the proteins pass through 
the glomerular filtration barrier and binds to VEGFR2 acti-
vating the downstream signal which leads to activation of an-
giogenic pathways and the dysfunction of glomerular 
endothelial cells in DN patients [51, 52]. Identifying urinary 
ECVs that regulate VEGFA further validates our approach’s 
utility and ability to identify DN biomarkers and potential 
drug therapeutic targets. The involvement of CDK6 in DN 
has been suggested by experimental disease models, where 
modulation of CDK6 expression has been shown to mitigate 
various detrimental aspects of DN [53]. LIN28B was also 
shown to be involved in renal fibrosis in DN [54]. Our findings 
further support the crucial roles that specific pathways, and 
most driver genes, play in DN, suggesting that these pathways 
and genes may serve as potential therapeutic targets for DN in 
the future. In addition to these key driver genes, our analysis 
has also identified CCND2 and CHD1, which are known to 
be involved in various types of cancer but have not previously 
been linked to DN or T2D. This leads us to propose them as 
novel targets for further study in DN. Identifying key 
miRNAs previously identified in people with DN and their 
link to key genes involved in DN pathogenesis, such as 
PTEN and VEGFA, highlights the strength of this current 
analysis and approach.

Determining whether the changes in small RNA profiles 
seen in DN are due to the disease or simply reduced eGFR is 
critical. Including a control group with low eGFR but no dia-
betes could provide clear insights. In a recent study, we dem-
onstrated that miRNA profiles in patients with autosomal 
dominant polycystic kidney disease with similar eGFR reduc-
tions exhibit distinct patterns compared to our previous find-
ings in DN [21]. These differences suggest that DN effects 
likely stem from its unique pathophysiology, not merely kid-
ney function decline.

Given the scope and setup of our study, it is prudent to ac-
knowledge the limitations in definitively answering whether 
the identified miRNAs are superior to ACR alone in diagnos-
ing DN. We think, at this stage, that miRNAs should not be 
viewed as a replacement for ACR but rather as a complementary 
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diagnostic tool. The potential advantage of miRNAs lies in 
their ability to provide additional molecular and pathophysio-
logical insights, which could be crucial for improving the 
prognosis of DN and identifying new therapeutic targets. 
This could significantly enhance the overall management of 
the condition by adding a layer of molecular understanding 
that ACR alone may not provide.

The results presented in this study should be treated with 
caution due to several limitations. First, our analysis is based 
on a cross-sectional design, which is a significant limitation 
that could affect the interpretation of causality between ob-
served biomarkers and disease progression. To further validate 
these findings and elucidate the potential of these miRNAs in 
DN and their therapeutic implications, expanding this analysis 
to participants enrolled in a longitudinal cohort would be bene-
ficial. Additionally, analyzing a larger cohort would enable a 
more detailed examination at various stages of the disease, po-
tentially offering deeper insights into the progression and man-
agement of DN. It is also important to note that the healthy 
controls were younger than the diabetic groups, which introdu-
ces an age-related variable that cannot be completely ruled out. 
Finally, the absence of complete medication lists for some 

patients restricted our ability to comprehensively assess the po-
tential confounding effects of various drugs.

Conclusion
Overall, miRNAs represent a promising class of biomarkers 
for DN that can be integrated into a multi-biomarker panel 
or even serve as standalone disease biomarkers. However, fur-
ther research is required to ensure optimal performance. Our 
research findings contribute valuable insights into the under-
standing of DN development, revealing critical new bio-
markers and pinpointing promising targets for therapeutic 
intervention. These discoveries might aid opening new path-
ways for more effective management strategies, offering 
hope for not only slowing the progression of DN but also 
for developing personalized treatment plans tailored to the 
specific molecular profiles of each individual’s condition.
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