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Abstract
Background  Cell free DNA (cfDNA)-based assays hold great potential in detecting early cancer signals yet 
determining the tissue-of-origin (TOO) for cancer signals remains a challenging task. Here, we investigated the 
contribution of a methylation atlas to TOO detection in low depth cfDNA samples.

Methods  We constructed a tumor-specific methylation atlas (TSMA) using whole-genome bisulfite sequencing 
(WGBS) data from five types of tumor tissues (breast, colorectal, gastric, liver and lung cancer) and paired white blood 
cells (WBC). TSMA was used with a non-negative least square matrix factorization (NNLS) deconvolution algorithm to 
identify the abundance of tumor tissue types in a WGBS sample. We showed that TSMA worked well with tumor tissue 
but struggled with cfDNA samples due to the overwhelming amount of WBC-derived DNA. To construct a model for 
TOO, we adopted the multi-modal strategy and used as inputs the combination of deconvolution scores from TSMA 
with other features of cfDNA.

Results  Our final model comprised of a graph convolutional neural network using deconvolution scores and 
genome-wide methylation density features, which achieved an accuracy of 69% in a held-out validation dataset of 
239 low-depth cfDNA samples.
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Background
Liquid biopsies based on cell free DNA (cfDNA) have 
recently emerged as a novel method for early cancer 
detection owing to their non-invasive, sensitive, and 
multi-modal characteristics. Multiple features can be 
derived from cfDNA sequences to reveal various aspects 
of cancer-specific aberration including fragment length 
profile [1–3], copy number aberration [4], motif-end 
[5], genome-wide and targeted methylation profiles [6]. 
To maximize the capacity to distinguish between cancer 
patients and healthy individuals, the integration of multi-
ple features in advanced machine learning or deep learn-
ing has become a common approach and demonstrated 
encouraging performance [7–12]. However, predicting 
tumor of origin (TOO) for multiple cancer types at early 
stage remains challenging due to the low abundance of 
cfDNA originating from tumors (ctDNA), further con-
founded by the presence of various DNA components 
released from non-tumor sources.

Recent advances have highlighted the increasing 
importance of DNA methylation in the early cancer 
detection context [13–15]. DNA methylation is an epi-
genetic marker that plays a crucial role in regulating gene 
expression, maintaining genomic stability, and directing 
cell development. These epigenetic modifications con-
tribute heavily to the dysregulation of multiple pathways, 
allowing cancer cells to proliferate uncontrollably [16–
19]. Most importantly, these DNA methylation patterns 
are tissue-specific and remain stable during neoplastic 
transformation, which could allow tumor of origin iden-
tification [20–22]. Therefore, characterization of DNA 
methylation biomarkers in tumor tissues could poten-
tially guide the detection of both cancer characteristics 
and TOO in cfDNA samples.

Constructing a methylation atlas is an attractive 
approach in analyzing large methylation data. Moss et 
al. [23] developed a comprehensive methylation atlas 
of healthy human cell types using data from 450 K Illu-
mina microarray to decompose of human cell types in 
bulk samples. Loyer et al. [24] created a human methyla-
tion atlas using deep whole-genome bisulfite sequencing 
(WGBS) from 39 normal cell types of 205 healthy tissue 
samples to further enhance the understanding of the 
human normal cell types methylome. The methylation 
atlas was constructed based on differential fractions of 
hypo-methylated and hyper-methylated reads at various 
cell-type specific genome segments. While the authors 
reported a promising deconvolution resolution of 0.1%, 

the study did not demonstrate the application of this 
methylation atlas to determine TOO of cfDNA samples 
from cancer patients.

In this study, we investigated the application of meth-
ylation atlas to cell type deconvolution of cfDNA sam-
ples, with the ultimate goal of creating a model that can 
detect TOO in low-depth cfDNA samples for early can-
cer screening (Fig. 1). In this project, we focused on the 
five most prevalent cancers in Vietnam [25]. We first 
constructed a tumor-specific methylation atlas (TSMA) 
using WGBS data from five types of tumor tissues 
(breast, colorectal, gastric, liver and lung cancer) and 
paired white blood cells (WBC). We then validated the 
use of TSMA in deconvolution of tumor tissue samples 
and cfDNA samples, demonstrated that TSMA worked 
well for tumor tissues but struggled with cfDNA samples 
due to the overwhelming amount of DNA fragments 
derived from WBC. To construct a model for TOO in 
low-depth cfDNA samples, we adopted the multi-modal 
strategy and combined deconvolution scores from our 
TSMA with other features previously explored by our 
group [9]. Our final model comprised of a graph convo-
lutional neural network (GCNN) using deconvolution 
scores and genome-wide methylation density features 
(GWMD) as inputs and achieved an accuracy of 69% in a 
held-out validation dataset of 239 samples.

Methods
Dataset description
Atlas construction dataset  This dataset includes 64 
tumor tissue samples from five distinct cancer classes 
(Liver (11 samples), Breast (24 samples), Lung (11 sam-
ples), CRC (11 samples), Gastric (11 samples)) and 24 
WBC samples. All samples were whole-genome bisulfite 
sequenced at 5-15x depth coverage. Metadata is provided 
in Supplementary Table 2.
Validations were conducted on four different datasets:

 	• Dataset 1: 450 K/850 methylation microarray 
datasets were downloaded from TCGA. The curated 
dataset only includes samples from our five group of 
tissues of interest (4,415 samples), which consists of 
886 CRC samples, 1,814 Lung samples, 398 Gastric 
samples, 888 Breast samples and 429 Liver samples 
from cancer patients.

 	• Dataset 2: We generated an in-silico spike-in dataset 
using three healthy WGBS cfDNA samples as 
background. To simulate the presence of circulating 

Conclusions  In conclusion, we have demonstrated that our TSMA in combination with other cfDNA features can 
improve TOO detection in low-depth cfDNA samples.

Keywords  Tissue of origin, cfDNA, Tumor-specific methylation atlas, Genome-wide methylation density, Graph 
convolutional neural networks
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cell-free tumor-derived DNA (ctDNA) at varying 
abundance levels, spike-in reads were randomly 
extracted from pooled tumor tissue samples in the 
Atlas dataset, representing ratios of 0.01%, 0.05%, 
0.1%, 1%, 10%, and 25%. These simulated reads 
were then merged with the background cfDNA 
samples, generating 3 samples for each cancer type 
at each spike-in ratio (3 samples x 5 cancer types 
x 6 ratios = 90 samples). The process was repeated 
three times, generating in total a dataset of 270 
samples. This simulation dataset allows us to assess 
the sensitivity of our constructed atlas in detecting 
tumor-related signals within the cfDNA background 
at different levels of abundance.

 	• Dataset 3: We refer to section “Wet-lab spike-in 
experiments in Dataset 3” in Materials and methods 
for a detailed description of this dataset.

 	• Dataset 4: A cohort of 737 low-depth WGBS cfDNA 
samples (0.5x). The low-depth dataset was previously 
employed in the construction and validation of 
an integrated multi-modal model for early cancer 
detection [9]. 498 samples are used in the training set 
and 239 samples are served as a held-out validation 
set.

Metadata tables for all datasets are provided in Supple-
mentary Table 3.

Wet-lab spike-in experiments in dataset 3
This section is devoted to the preparation of Dataset 3. 
The spike-in experiment was conducted using healthy 
control and cancerous tissue samples. The healthy con-
trol sample was created by pooling cfDNA of multiple 
healthy, non-cancerous individuals. The extracted cancer 

Fig. 1  Schematic overview of this study. We first constructed a tumor-specific methylation atlas (TSMA) using a WGBS dataset (Atlas construction 
dataset) of 64 tumor tissues comprising five cancer types (breast, colorectal, gastric, liver and lung cancer) and paired white blood cells (WBC). The 
methylation signals from WGBS data (region value) were calculated for approximately 1.1 million pre-defined CpG regions (regions of 100 bp in length 
covering at least 5 CpG sites). This large matrix of region values was then used to construct the TSMA, comprising of 2,945 differential regions between five 
tumor-tissue types and WBC across the entire genome. With the TSMA, deconvolution scores for new input samples were calculated using a non-negative 
least square (NNLS) matrix factorization. We next validated the use of TSMA and deconvolution scores in 3 datasets, including Dataset 1: tumor tissue 
methylation microarray data from TCGA, Dataset 2: in silico spike-in samples with known amount of tissue DNA fragments and Dataset 3: wet lab spike-in 
samples with known amount of tissue DNA fragments. Finally, we implemented a graph convolutional neural network combining deconvolution scores 
and genome-wide methylation density (GWMD). The model was trained and validated on a cohort of 737 low-depth WGBS cfDNA samples (Dataset 4)
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gDNA was subjected to a fragmentation process to cre-
ate fragmented cancer DNA. These cancer DNA frag-
ments were then spiked in the healthy control sample 
with four different amounts to create a set of four sam-
ples containing different tumor abundances (0.1%, 1%, 
10% and 25% of cancer DNA in total amount of DNA). 
This experiment was repeated twice for each cancer type 
with extracted gDNA from two different cancer samples, 
resulting in a total of 40 samples (10 cancer samples in 
total – two samples for each type of cancer including 
breast, colorectal, liver, lung and gastric cancer). These 
spike-in samples then undergone bisulfite conversion and 
purification by EZ DNA Methylation-Gold Kit (Zymo 
Research, D5006, USA). DNA library was prepared from 
bisulfite-converted DNA samples using xGen Methyl-Seq 
DNA Library Prep Kit (Integrated DNA Technologies, 
10,009,824, USA) with Adaptase technology, according to 
the manufacturer’s instructions. All the DNA concentra-
tions were identified by the QuantiFluor dsDNA system 
(Promega, USA). The library products were sequenced 
on the DNBSEQ-T7 DNA system (MGI Tech, Shenzhen, 
China).

Bioinformatics pipeline
FASTQ files were fed to an in-house Bioinformatics 
pipeline. We performed FASTQ file quality control with 
fastqc (version 0.11.2 [26]) and trimming adapters and 
low-quality bases by TrimGalore (version 0.6.7, [27]). 
We only trimmed the first 15  bp --HEADCROP at the 
5’ end of Read 1, since it is not possible to exactly locate 
the 5’ end of read 2 in this assay. Sequence alignment and 
CpG site methylation calling were done by the Bismark 
suite (version 0.23.1, [28]). We used picard MarkDupli-
cate (version 2.18.7 [29]) to mark and remove duplicated 
reads. Reads were then filtered by samtools (version 1.18, 
[30]) to keep only reads whose quality is greater than 
Q30. All tools’ parameters were kept default unless men-
tioned here. Other processing steps and data analysis 
were done by our in-house Python and R scripts.

Data downloaded from TCGA databases were in tab-
separated table format and contained processed meth-
ylation density at each CpG site. We selected CpG sites 
that were available in TSMA’s regions and discarded the 
rest. In summary, we retained around 1088 regions on 
average. Regions’ values were calculated by the average 
methylation density values of their CpG sites. With this 
transformation, our TSMA is technically interchangeable 
between the sequencing platform and the microarray 
platform.

Multi-modal cfDNA feature sets
We adopted a multi-modal set of genome-wide and tar-
geted features from [9] to combine with our deconvolu-
tion scores derived from the TSMA. This set included 

genome-wide methylation density (GWMD), targeted 
region methylation density (TMD), genome-wide frag-
mentation profile (GWFP and Flen), end-motif distribu-
tion (EM) and copy number aberration (CNA). We refer 
to [9] for detailed constructions of these features.

Construction of the methylation reference matrix (atlas)
A CpG region is defined as a region of 100 bp in length 
covering at least 5 CpG sites. Reads covering at least 
one CpG site in a region were collected. Since we were 
interested in the methylation pattern of CpG sites within 
the region only, information on CpG sites outside of the 
region carried by the reads was discarded. For a given 
region j, let us denote by Nj  the total number of times 
a CpG site was covered by a read and Mj  the number of 
times a CpG site was covered by a read and was meth-
ylated. The “region value” methylation level βj  was then 
calculated by the ratio of Mj  to Nj . In regions whose 
depth of coverage were zero, we discarded the calculation 
and considered the region as missing input data without 
applying any imputation technique. For each class of sam-
ple and each region, a Student t-test was performed. False 
discovery rate was controlled by a Bonferroni test correc-
tion. Top-500 negative logFC and significantly different 
regions in each one-versus-rest test were selected. The 
final tumor-specific methylation matrix is constructed by 
aggregating the average methylation density of all sam-
ples having the same label at each region. Missing values 
are removed before aggregating. We finally obtained at a 
methylation reference matrix of shape 6×m .

Non-negative least square matrix factorization
For a given cfDNA sample, to determine the relative 
weights (deconvolution scores) of each class that contrib-
ute to the sample, we implemented a simple non-negative 
least square (NNLS) algorithm. Let us denote by X  the 
methylation reference matrix, X ∈ R6×m, representing 6 
contributing classes and m  selected regions. The given 
input cfDNA sample was represented by a vector α  of 
shape 1×m . NNLS proceeds to find the weights by solv-
ing the following minimization problem.

	 W = argmin ||X −Wα||2

constrained by W ≥ 0, where W ∈ R6×1. W  was then 
normalized to unit sum. To solve this optimization prob-
lem, we implemented an in-house Python script based on 
the Python scipy library.

Graph convolutional neural network (GCNN)
Following the same procedure as our previous work 
[9], we constructed a graph to train the GCNNs model 
from discovery and validation cohorts, comprised of 
low-depth WGBS cfDNA samples of five cancer types 
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(Dataset 4). The overall framework was depicted in 
[9]. The discovery cohort was then split into two sub-
groups, including the train dataset and validation data-
set for 10-fold cross-validation with stratified sampling 
to ensure that each cancer class within the train dataset 
and validation dataset receives the proper representa-
tion. The model achieved the highest accuracy among ten 
folds on the validation dataset chosen and evaluated on 
an unseen test dataset built from the validation cohort. 
The undirected input graph G = (V, E) incorporated a 
node set V = {Xi, Yi|i = 1, . . . , N} (|V | = N) and an 
edge set E = {eij} (|E| = ε) , where Xi  and Yi  denoted 
a node i  and its label, N  and ε  denoted the number of 
node and edge in the graph, respectively. Each node 
Xi  was represented by a feature vector xi ∈ Rd , which 
was a concatenation of groups of features (e.g. GWMD, 
Deconvolution score). We constructed interconnec-
tions between nodes at the first layer by k-nearest neigh-
bor (k -NN) of X = {xi| i = 1, . . . , N} ∈ RN×d , where 
k = 5 in our experiments. We defined an adjacency 
matrix A = {auv} ∈ RN×N  where we initialized auv = 1  
if an edge (u, v) ∈ E , and auv = 0  otherwise. While 
the label Yi ∈ {traindataset, validationdataset}  was 
seen by the model during the training phase, the label 
Yj ∈ {testdataset}  was unseen, denoted as unknown 
nodes, and only used in the evaluation phase. In this way, 
we adopted a transudative learning [31] setting to analyze 
the model’s performance on the TOO prediction.

Regarding the model’s architecture, we based our 
model on Graph Transformer Networks [32], a graph 
convolutional neural network with support for learn-
ing interconnections between nodes in latent spaces. 
At every layer li ∈ {l1, . . . , lL} , feature representations 
of node xu  at layer li  and edges connected node u  and 
node v  were defined by:
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where aluv  was the connection between node u  and 
node v  at the l -th layer, Wl
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parameters at the l -th layer, zlu  was the latent feature 
vector of node u  at the l -th layer. In this work, we chose 
L = 2, each with the hidden feature size of 64. The out-
put prediction layer was a single Multi Linear Perceptron 
(MLP).

We dealt with the TOO prediction as a node clas-
sification problem, where each node was predicted as 

one of the five classes: Breast, CRC, Gastric, Liver, and 
Lung. To avoid the model bias towards major class for 
the imbalance dataset problem, we applied the focal loss 
[33] to guide the model focusing more on hard, misclas-
sified samples. The model was trained using the Adam 
optimizer [34] with a learning rate of 10−3 . A general 
description of our model’s architecture is shown in Sup-
plementary Fig. 3.

Results
Construction of a tumor-specific methylation atlas (TSMA)
The construction of the TSMA relied on an established 
hypothesis that adjacent CpG sites could be co-methyl-
ated and share similar methylation status [18, 35–39]. 
We therefore defined a CpG region as a region of 100 bp 
in length covering at least 5 CpG sites. This definition 
allowed us to capture regions of dense CpG sites and 
multiple CpG sites within a region were expected to be 
covered by a single sequencing read. With this definition, 
we identified approximately 1.1  million CpG regions in 
the human reference genome hg19 (Supplementary Table 
1). We then used WGBS data of 64 tumor tissue samples 
and 24 WBC samples from the Atlas construction dataset 
(Fig.  1, Materials and methods) to calculate the “region 
value”, defined as proportion of total methylated CpGs 
in the reads mapped to a region over the total CpGs that 
covered by these reads (Fig. 1), for each CpG region. To 
construct the TSMA, the regions in which region values 
were significantly different among five cancer tissues and 
WBC were captured. This process allowed the selection 
of the top 500 regions with the highest absolute log2 fold-
change (log2FC) using a one-versus-rest test statistics 
strategy. Only regions with negative log2FC (significantly 
lower in the test tissue versus rest) were chosen, based on 
the observation that most cell-type specific differentially 
methylated CpG regions were unmethylated [24]. These 
selected regions were then organized into their respective 
groups and sorted based on their absolute log2FC values. 
Representative values for each tissue type at each region 
was calculated by averaging the region value across all 
respective samples, as illustrated in Fig.  2A. Overall, a 
TSMA of 2,945 differential CpG regions between 5 tumor 
tissue types and WBC were constructed.

To assert that our methodology could select for cancer 
relevant regions, we mapped these regions to genes and 
conducted a gene set over-representation analysis using 
GO and KEGG databases to identify pathways that were 
enriched by our selected regions. Indeed, cancer-related 
pathways emerged within the top 30 enriched terms 
(Fig. 2B). This result provided the first layer of evidence 
that our TSMA could capture tumor-specific meth-
ylation signals. Encouraged by these outcomes, we next 
hypothesize that our TSMA could be used to deconvo-
lute samples from an independent source with methods 
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of measuring methylation signal not limited to WGBS. 
To test this hypothesis, we obtained the 450  K/850K 
methylation microarray data comprising of 4,415 sam-
ples of cancer tumor tissues from the 5 cancer types of 
interest from TCGA database [40] (Dataset 1, Materials 
and methods). We transformed the CpG-wise microar-
ray data into region-wise data to conform with our con-
figuration (Materials and methods). We then performed 
deconvolution by NNLS and the label of sample was 
assigned by its highest deconvolution score component. 
This resulted in an overall accuracy of 78% (Fig. 2C). Spe-
cifically, we achieved accuracies of 100%, 98% and 93% 
for breast, liver and CRC cancer, respectively; while gas-
tric and lung cancer exhibited lower accuracies of 66%, 
and 55%. These results validated our hypothesis and sug-
gested that our TSMA has successfully captured cancer-
specific signals that could be used to determine the TOO 
of a sample.

Significant correlation between deconvolution scores from 
TSMA and proportion of tumor DNA
Deconvolution scores derived from a DNA methylation 
atlas of normal human cell types provided estimates of 
underlying proportion for each cell type within a sam-
ple [41]. In the case of our TSMA, we expected that the 
TSMA-derived deconvolution scores would estimate 
the proportion of cancer DNA fragments correspond-
ing to the five specific cancer types used to build TSMA. 
To confirm this, we first generated a set of samples with 
known amount of ctDNA by in silico mixing DNA frag-
ments (WGBS reads) from tumor tissue into three dif-
ferent cfDNA WGBS samples from healthy donors at 
various fractions from 0.01 to 25% (Dataset 2, Materi-
als and methods). We then evaluated the correlation 
between deconvolution scores and the known abun-
dances of tissue-derived DNA fragments. In all samples, 
the proportions of WBC were consistently reported as 
the majority and decreased as the amount of tumor tis-
sue DNA increased (Supplementary Fig. 1). We observed 
that at extremely low tumor fraction (≤ 0.1%) deconvo-
lution scores were mostly 0, except for liver and gastric 

Fig. 2  The tumor-specific methylation atlas. (A) Heatmap of average region values in each cancer tissue type or WBC across 2,945 CpG regions in-
cluded in the TSMA. (B) Pathway analysis reveals cancer-related pathways, which were enriched by the set of genes to which TSMA regions were mapped. 
(C) Prediction performance using highest deconvolution score to assign label to samples in Dataset 1 comprising of 888 colorectal samples, 1,814 lung 
samples, 398 gastric samples, 888 breast samples and 429 liver samples
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tumor where the scores were higher but not changing at 
0.01%, 0.05% and 0.1%, suggesting a limit for this method 
at ~ 0.1% (Fig.  3). At tumor fraction higher than 0.1%, 
deconvolution scores showed good correlation with 
known tumor fractions (R > 0.78) (Fig. 3).

The next set of samples that we used to validate the cor-
relation between deconvolution scores and tumor frac-
tions were wet-lab spike-in samples where genomic DNA 
from each tumor tissue type were mixed with cfDNA 
from 2 healthy donors at four ratios (0.1%, 1%, 10%, 
and 25%), the resulting mixed DNA samples were then 
subjected to WGBS before calculating deconvolution 
scores (Dataset 3, Materials and methods). Deconvolu-
tion scores from our wet-lab spike-in experiment showed 
similar results with our in silico experiment. Across the 
dataset, we observed correlations in most cancer tissue 
types with the lowest correlation coefficient (R = 0.58) 
in CRC and highest correlation coefficient (R = 0.87) 
in Lung cancer (Fig.  4). In summary, both in silico and 
wet-lab spike-in experiments demonstrated the ability of 

TSMA to deconvolute tumor tissue fragments with high 
correlation to their abundance, suggesting the potential 
of this approach in predicting TOO.

Since changes in deconvolution scores were signifi-
cantly correlated to tumor abundance in cfDNA sample, 
we further explored the possibility of using deconvolu-
tion scores to determine TOO in a given cfDNA sample 
[41, 42]. Deconvolution scores of all cfDNA samples in 
Dataset 2 and 3 consistently showed WBC fractions at 
~ 90%, leaving only ~ 10% for the other five tissue types 
(Supplementary Fig.  1). Therefore, we removed the 
WBC fraction and used the top tissue type (out of the 5 
remaining types) as the TOO classification label. In Data-
set 2, we correctly identified the TOO in 119/270 sam-
ples (overall accuracy of 44%, Supplementary Table 3). 
However, this performance was strongly affected by the 
spike-in ratio. The accuracy rose to 92% (Supplementary 
Fig. 2A) for samples with spike-in ratios greater than or 
equal to 10% (83/90 samples were correctly identified), 
and dropped to only 20% (Supplementary Fig.  2B) for 

Fig. 3  Correlation between deconvolution scores and the proportion of cancer tissue fragments in in vitro spike-in samples. Significant cor-
relation (Pearson correlation R ≥ 0.78) between spike-in ratios (i.e. percent of tumor DNA), ranging from 0.01–25%, and deconvolution scores (i.e. 
fractions of specific cell type) was observed in (A) CRC, (B) Lung, (C) Gastric, (D) Breast, and (E) Liver cancer. Spike-in samples were generated by randomly 
sampling tumor tissue DNA fragments (WGBS reads) and mixing with 3 healthy cfDNA samples at defined ratios (3 replicates at each ratio). Correlation 
was measured by Pearson coefficient R . Values on x-axis were log-scaled for visualization purpose only. The 95% CI (gray shading region) is not available 
at spike-in tumor fraction of less than 1% because all deconvolution scores are zero
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samples with spike-in ratios less than 10% (36/180 cor-
rectly identified). Similarly, TOO prediction was cor-
rect in 22/40 samples of Dataset 3 (overall accuracy of 
55%, Supplementary Table 3), of which the samples with 
spike-in ratios greater than or equal to 10% exhibited 75% 
accuracy (Supplementary Fig.  2C), compared to accu-
racy of 35% for samples with spike-in ratios less than 10% 
(Supplementary Fig.  2D). Thus, our data indicated that 
the deconvolution approach worked well only in samples 
where the tumor tissue abundance exceeded 10%.

Combining deconvolution scores and genome-wide 
methylation density in a graph convolutional neural 
network enhances prediction performance
In early cancer and TOO detection from cfDNA, the 
multi-modal approach has become increasingly popu-
lar, where different features derived from different 
characteristics of cfDNA are combined as inputs for a 
machine learning or deep learning model to improve 
performance [7–12]. We have previously published 
a GCNN model using methylomics, fragmentomics, 

copy number, and end motifs features for TOO detec-
tion with encouraging accuracy of 70% [9]. Here, we 
used the same dataset (Dataset 5) [9] to explore the pos-
sibility of combining deconvolution scores with other 
cfDNA features to enhance TOO performance. In total, 
we examined 57 combinations of deconvolution scores 
(Supplementary Table 4) with genome-wide methylation 
density (GWMD), targeted methylation density (TMD), 
copy number aberration (CNA), genome-wide fragment 
length profile (GWFP), and end motifs (EM) to search 
for the best performing model. For each combination, we 
trained a GCNN in a set of 438 cancer patient samples 
and validated the model in a held-out 239 samples (Data-
set 5). GWMD, expressed as the average methylation 
density across non-overlapping 1  M bins in the entire 
genome, when combined with deconvolution scores 
achieved the highest accuracy of 69% (Fig.  5A, D). This 
was markerly improved from deconvolution scores alone 
(26% accuracy, Fig.  5B), or GWMD alone (63% accu-
racy, Fig.  5C). This result highlighted the contribution 

Fig. 4  Correlation between deconvolution scores and the proportion of cancer tissue fragments in wet-lab spike-in samples. Strong correlation 
between spike-in ratios and deconvolution scores was observed in (A) CRC, (B) Lung, (C) Gastric, (D) Breast, and (E) Liver cancer. Wet-lab spike-in samples 
were generated by mixing genomic DNA from each tumor tissue type with cfDNA from 2 healthy donors at four ratios (0.1%, 1%, 10%, and 25%), before 
WGBS and calculating deconvolution scores (2 replicates at each ratio). Correlation was measured by Pearson coefficient R . Values on x-axis were log-
scaled for visualization purpose only. The 95% CI (gray shading region) is not available at spike-in tumor fraction of less than 1% because all deconvolution 
scores are zero
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of TSMA deconvolution scores in the GCNN model for 
TOO detection, especially when combined with GWMD.

Benchmarking TSMA against other methylation-reference 
deconvolution-based method
To benchmark our method against other methylation-
reference TOO prediction method, we calculated the 
cell-type fractions (equivalent to our deconvolution 
scores) of the five aforementioned tissue types for 677 
low-depth cfDNA samples using the two well-known 
methylation-reference-based atlases by Moss et al [23, 
24] and Loyfer et al. [24]. We applied the same strat-
egy as for our deconvolution scores (DS): the cell-type 
fractions from Moss et al. atlas and Loyfer et al. atlas 
(labelled DS-Moss and DS-Loyfer, respectively) were 
combined with GWMD, GWFP, TMD, CNA, and EM 

features. The combined features were input to the GCNN 
model with the same set of hyper-parameters. Among 
all combinations with DS-Moss, the combination of 
“DS-Moss + TMD + GWMD + GWFP” obtained highest 
accuracy on the validation cohort (62%, Supplemen-
tary Fig.  4.A). Similarly, the combination of “DS-Loy-
fer + TMD + GWMD + GWFP” achieved highest accuracy 
among all combinations involving DS-Loyfer (64%, Sup-
plementary Fig.  4.C). Overall, the combination of our 
deconvolution scores and GWMD achieved the highest 
accuracy of 69% (DS + GWMD, Fig. 5.A).

Discussion
The multi-modal approach has become increasingly pop-
ular for the construction of a machine learning or deep 
learning model in early cancer and TOO detection from 

Fig. 5  Multi-modal approach combining TSMA deconvolution scores with other cfDNA features in a graph convolutional neural network. (A) 
Top 10 feature combinations achieving the highest accuracies. Results from other combinations are given in the Supplementary Table 4. The combination 
of deconvolution score (DS) and GWMD achieved highest accuracy and is shown in red. (B) Confusion matrix obtained from the deconvolution scores. 
A sample label was assigned by the highest tumor tissue type as indicated by deconvolution scores. (C) Confusion matrix obtained from a GCNN using 
GWMD feature only. (D) Confusion matrix obtained from a GCNN using both deconvolution scores and GWMD feature
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cfDNA [7–12]. This approach relies on bioinformatic 
analysis and feature engineering of WGS or WGBS data 
to reveal different characteristics of cfDNA, including but 
not limited to methylomics, fragmentomics, copy num-
ber, and end motifs [9]. In this study, we aimed to engi-
neer a new feature that can be used either alone or more 
likely in combination with other features to enhance 
the performance of TOO detect from shallow WGBS of 
cfDNA samples. We constructed the TSMA to distin-
guish five tumor tissue types and white blood cells using 
WGBS of tumor tissue and paired WBC samples (Fig. 1). 
This novel approach set our atlas apart from the meth-
ylation atlas previously built using healthy human cell 
types [23, 24]. With this TSMA, methylation data (either 
WGBS or methylation microarray) can be deconvoluted 
by non-negative least square matrix factorization into 
deconvolution scores, which represent the proportion 
of each tissue type in a sample (Fig.  1). Given an input 
sample, deconvolution scores could be directly utilized 
to predict its cell type composition, limited to the five 
tumor tissues and WBC components in our atlas, or used 
in combination of other features in a model for TOO 
detection.

In our in silico and wet-lab spike-in experiments, we 
observed strong correlation between deconvolution 
scores and the known percentage of spike-in tumor-
tissue DNA fragments in cfDNA samples (Figs.  3 and 
4). However, the applications of deconvolution scores 
in real cfDNA samples, especially in low-depth WGBS 
samples, posed a greater challenge. In most samples, we 
found that WBC accounted for nearly 90% of the com-
position, leaving the sum of all potential tumor-specific 
signals to less than 10%. This finding aligned with the 
biological notion that tumor-derived DNA fraction could 
account for at most 1–10% in cfDNA context [43]. Vali-
dations on in silico and wet-lab spike-in datasets (Dataset 
2, 3) indicated that the limit of detection was 10% tumor 
abundance to accurately predict a sample TOO (accuracy 
of 75–92%, Figs.  3 and 4), which made deconvolution 
scores alone unsuitable for TOO detection for low-depth 
cfDNA samples.

Alternatively, deconvolution scores can be used in 
combination with other cfDNA features readily available 
from previous works [7–9]. Using the same dataset that 
was presented previously [9], we calculated the decon-
volution scores using our newly built TSMA and con-
catenated them to 57 different combinations of feature 
vectors (Fig. 5A). This combined feature vector was fed to 
a graph convolutional neural network to achieve the final 
prediction of the tissue of origin. Training was done on 
a cohort of 498 low-depth WGBS cfDNA samples (0.5x) 
and validation on a cohort of 239 low-depth WGBS 
cfDNA samples (0.5x) of cancer patients. We achieved 
a 5-class accuracy of 69% for TOO prediction, which is 

comparable to the results obtained in our previous study 
[9]. Specifically, compared to the GCNN previously pub-
lished [9], this new GCNN model achieved higher accu-
racy for breast and liver (82% vs. 78%, and 78% vs. 76%), 
similar accuracy for CRC (66%) and lower accuracy for 
gastric and lung (52% vs. 55%, and 56% vs. 63%). This 
result highlighted that the GCNN using deconvolution 
scores and GWDM achieved comparable performance to 
a GCNN built with 9 different sets of features, suggesting 
that the contribution of deconvolution scores is equal to 
8 other feature sets.

To benchmark our method, we have compared the use 
of TSMA deconvolution scores against cell-type fractions 
estimated by Moss et al. atlas [23] and Loyfer et al. atlas 
[24] in combination with other features in the GCNN 
model (Supplementary Fig.  4). TSMA deconvolution 
scores when combined with GWMD achieved the high-
est accuracy among all combinations (Fig.  5.A). A pos-
sible reason for this is because both atlases by Moss et al. 
and Loyfer et al. were constructed using healthy primary 
cell types, hence reflecting the cell-type specific signal 
but not the cancerous tumor tissue signal. This further 
supports our approach of using cancer tissue samples 
for the construction of TSMA for the purpose of TOO 
prediction.

There are several limitations in this work. First, due 
to time and budget constraints, we focused only on the 
five most prevalent cancers in the Vietnamese popula-
tion [25]. Expanding the atlas to a broader panel of can-
cers to include other common cancers, such as thyroid, 
pancreatic or kidney cancer, is of interest for our future 
project. A matching set of cfDNA, WBC and tumor tis-
sue samples from the same patient is required and this 
process is challenging in Vietnam due to the rarity of 
samples. Attention should also be paid to the ctDNA 
shedding characteristics of the cancer types [44–47], 
since our approach relies on the presence of tumor-
derived DNA fragments in the bloodstream at certain 
level of abundance Second, the two spike-in experiments 
(Figs. 3 and 4) indicate the influence of tumor abundance 
on our method. At tumor-fraction less than 1%, decon-
volution scores are almost zero for all samples, which 
suggests that the limit of detection for ctDNA is approxi-
mately 1%. However, to achieve adequate TOO predic-
tion performance, the tumor-fraction must exceed 10% 
(Supplementary Fig. 2). Increasing the sequencing depth 
of TSMA regions via targeted sequencing, incorporating 
various type of features with the TSMA deconvolution 
scores, or implementing a multi-omics approach might 
improve the sensitivity of our TSMA method. Third, 
the development and validation of our method were 
conducted on a relatively small dataset. Utilizing public 
dataset could objectively evaluate real-world applicability 
of our method. However, in the construction of TSMA, 
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we wish to focus on reads overlapping regions that have 
five CpG sites in a 100 bp window. This approach, along 
with the calculation of genome-wide and targeted fea-
tures [9], requires the input data to be in read-based for-
mat (FASTQ, BAM). Unfortunately, to the best of our 
knowledge, most public methylation data are deposited 
as tables or matrices of methylation density at CpG sites 
only, and thus do not meet this requirement.

Conclusions
In conclusion, we have developed a TSMA depicting dif-
ferential methylated regions across five cancer tumor 
types and white blood cells. The deconvolution scores 
from our atlas correlated well with the tumor fraction in 
cfDNA samples although this is limited mostly to tumor 
fraction of more than 10%. However, the combination of 
the deconvolution scores and genome-wide methylation 
density features significantly enhanced the TOO detec-
tion performance when applying to low-depth WGBS 
cfDNA samples. In summary, our study has paved the 
way for the application of tumor-specific atlas in TOO 
detection. Future development of such an atlas might 
hold the key to significant improvement in TOO detec-
tion of all cancer types in low-depth cfDNA samples.
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