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Abstract

Transcription initiation is an essential process to ensure proper function of any gene, yet we 

still lack a unified understanding of sequence patterns and rules that explains most transcription 

start sites in human genome. By predicting transcription initiation at base pair resolution from 

sequences with a deep learning-inspired explainable model called Puffin, we showed that a 

small set of simple rules can explain transcription initiation at most human promoters. We 

identified key sequence patterns that contribute to human promoter activity, each activating 

transcription with distinct position-specific effects. Furthermore, we explained the sequence 

basis of bidirectional transcription at promoters, identified the links between promoter sequence 

and gene expression variation across cell types, and explored the conservation of sequence 

determinants of transcription initiation across mammalian species.

One-Sentence Summary:

A small set of rules can explain how genome sequence drives transcription initiation in humans 

and across mammals.

Promoter sequences are responsible for transcription initiation and the central hub in 

integrating transcriptional regulatory information. Over several decades, a handful of 

core promoter elements including the TATA-box, the Initiator (Inr) motif, and several 

downstream motifs (MTE, DPE, DPR) have been identified in various species(1–3), 

but human promoters often possess none of these elements(3). While many sequence-

specific transcription factor (TF) motifs appear near promoters(3–5), whether and how they 
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contribute to promoter function have not been clearly defined. Additionally, for most human 

promoters, we do not have the knowledge of which base pairs contribute to their activity.

Our understanding of how sequence determines transcription start sites for the majority of 

human promoters thus remains incomplete(1–3, 6). This problem is especially challenging, 

because the transcription initiation process involves many factors, and a single base pair 

may have multiple functions (1–3, 7). Hence, a systematic approach that simultaneously 

dissects multiple types of sequence patterns, such as TF binding motifs, and their effects on 

transcription initiation is critical for solving this problem. Deep learning approaches have 

allowed simultaneously learning of complex dependencies between genomic sequence and 

its activities (8–14), but they do not directly allow dissection or validation of the underlying 

sequence patterns and effects that are learned.

Several fundamental questions remained open. What are the bases that contribute to any 

given promoter and determine transcriptional initiation signals at the base pair resolution? 

How do sequence patterns work together to determine transcription start sites? What is the 

impact of promoter sequence pattern composition on its function? What are the key factors 

that determine the strand-specificity of promoters? And finally, how conserved are sequence 

determinants of transcription initiation across species? Developing a strategy to answer these 

questions would allow us to analyze, predict, engineer, and control transcription initiation.

To address these questions and overcome the limitations of current methodologies, 

we developed Puffin, a deep learning-inspired explainable model, and showed that a 

few simple rules and sequence patterns are sufficient to explain base pair resolution 

transcription initiation signals at most promoters. With Puffin, we recapitulated prior 

findings and discovered new roles for known and unknown motifs, creating a unified 

view of transcription initiation at the sequence level. To facilitate interactive analysis of 

any promoter sequence, we have designed and built a user-friendly web server (https://

tss.zhoulab.io) powered by Puffin to facilitate the understanding and manipulation of any 

promoter sequence of interest.

Results

Decoding sequence basis of transcription initiation at base pair resolution

Transcription initiation signals for most human promoters are not restricted to a single base 

pair but spread over a window(4). We hypothesized that the transcription initiation signals at 

base pair resolution reflect underlying sequence-based transcription initiation mechanisms. 

Therefore, we can deconvolve such mechanisms by dissecting how transcription initiation 

signals depend on sequence.

To this end, we first assembled the highest coverage transcription initiation maps at base 

pair resolution. We integrated transcription initiation signal datasets generated by five 

experimental techniques that precisely capture the 5’ end of transcripts and quantify the 

transcription initiation signal by counting the transcripts starting at each position: two 

variants of CAGE(15) and RAMPAGE(16) from the FANTOM and ENCODE projects that 

measure mostly mature transcripts and GRO/PRO-cap(17, 18) that measures only nascent 
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transcripts. For each technique, we aggregated all samples to obtain the most robust estimate 

for the transcription initiation signal at single-base resolution on each strand (Data S1). 

FANTOM CAGE (6.7 billion reads) and PRO-cap (2.3 billion reads) have the highest 

coverage within each group of techniques and were prioritized for the presentation here (all 

analyses are consistent across techniques unless otherwise indicated).

To elucidate the sequence basis of transcription initiation, we developed base pair-resolution 

sequence models of transcription initiation signals (Fig. 1A–C), which include a pair of 

complementary models: the performance-focused Puffin-D, which is a deep learning model 

with an architecture that predicts strand-specific base pair resolution signals across the 

genome from a long sequence context of 100kb (Fig. S1, S2), and the interpretation-focused 

Puffin model, the focus of this manuscript, which extracted simple sequence rules that can 

explain transcription initiation at base pair resolution. The Puffin model was designed based 

on the analysis of sequence dependencies captured by the deep learning model Puffin-D 

(Supplementary Text).

Puffin shows that a simple set of rules can explain the majority of human promoter 

sequences (Fig. 1C–D). When evaluated on test chromosomes, Puffin achieves higher 

base pair-level correlation with experimental measurement than the most correlated pair of 

experimental techniques (Fig. 1C–D, Fig. S3). To focus on promoter sequence dependencies, 

Puffin uses only proximal sequence context for its prediction (+/− 325bp sliding window) 

and focuses on the shape but not the magnitude of the transcription initiation signal, because 

we expect the shape, or the relative intensities across base pairs, to be mostly dependent on 

local sequences while the magnitude can be affected by distal sequence which Puffin does 

not use.

Puffin predicts transcription initiation signal from sequence with two steps of computation. 

First, it computes base pair-resolution activation scores for all sequence patterns it learned 

via the first convolution layer. Activation score is analogous to motif match score with 

non-matches set to zero, and quantifies how well the sequence at a position matches with 

a sequence pattern (Methods). Then, the activating and repressive effects of each sequence 

pattern on transcription initiation were learned and applied via the second convolution layer. 

All sequence patterns’ effects are combined additively per base pair in log scale, which is 

equivalent to multiplicative combination in count scale (Methods, Fig. 1B). The output of 

this layer, which sums all sequence pattern effects per base pair, can be interpreted as log 

scale transcription initiation signal and is rescaled to final prediction (Methods).

The data-driven design of Puffin optimizes for interpretability and aims to capture most of 

the proximal sequence dependencies of transcription initiation with a small set of sequence 

patterns (Supplementary Text, Methods). The model learns three types of sequence patterns 

to capture different types of sequence dependencies (Fig. 2A–C, Fig. S4): 1. Motifs, the 

main sequence drivers of transcription initiation signals; 2. Initiators, which only tune the 

local base pair-level location preference for transcription initiation within these sequence 

patterns themselves; 3. Trinucleotides, which capture the residual sequence dependencies 

that were not captured by motifs and initiators. Thus, with a small number of sequence 

patterns (9 motifs + initiators + trinucleotides) and a simple additive/multiplicative rule 
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(additive in log scale, multiplicative in count scale), we can predict transcription initiation 

signals at base pair resolution from sequence and the predictions are in strong agreement 

with experimental evidence (Fig. 2).

Position- and strand-specific sequence effects on transcription initiation

The core of the transcription initiation sequence model is the position-specific effect curves 

of sequence patterns. The model has learned a distinct curve for each motif that represents 

the activation and repression effects on transcription initiation at different base pair positions 

relative to the motif (Fig. 2D). Training at base pair resolution allows Puffin to characterize 

and distinguish the fine details of motif-specific effect curves. Each position-specific effect 

curve can be considered as a transcriptional signature of the motif and likely reflects its 

mechanism of activating transcription.

All motifs included in the Puffin model are nonredundant motifs that are reproducibly 

discovered with >0.95 correlation across multiple training replicates (Methods, Data S2). 

Moreover, the same group of motifs was learned when training the model with cell type-

specific data (Supplementary Text). While all motifs were learned from scratch using only 

sequence and transcription initiation signals, many of them match known transcription factor 

motifs(19). However, their position-specific effects on transcription initiation have not been 

characterized. Moreover, the position-specific motif effects characterized by Puffin are well 

supported by experimental perturbations and by evolutionary conservation, as described 

later.

We assigned each motif a name and an ID (Table S1). By symmetry of motif effects, the 

motifs can be divided into two groups: 1) a group of strand-specific or directional motifs 

that have strong effects on the forward strand and much weaker or no effect on the reverse 

strand, including TATA, YY1, U1 snRNP, and Long Initiator (Long Inr) (Fig. 2D–F); and 

2) a group of non-strand-specific or bidirectional motifs with almost symmetrical effects on 

both strands, including SP, NFY, ETS, ZNF143, NRF1, and CREB (Fig. 2D–F, Fig. S5). We 

summarize below each group of motifs separately, as well as initiator sequence patterns and 

trinucleotide sequence patterns.

Direction-specific promoter motifs.—Puffin identified the well-established TATA 

motif as expected, and this motif also has the most position-specific and strand-specific 

effects. YY1 motif is also estimated to be highly strand-specific. YY1 motif has one of 

the most distinctive transcription initiation effect curves estimated by Puffin, activating 

transcription at the immediate upstream and ~220bp upstream of the motif (Fig. 2D). Of 

note, YY1 is known to bind promoter sequence and its role in promoter function has 

been suggested (5, 20), but its position-specific effect on transcription initiation has not 

been previously resolved. The U1 snRNP motif (or the 5’ splice site motif) was the only 

motif that was estimated to have a strong positive effect on the transcription initiation 

signals measured by CAGE/RAMPAGE that detect total mRNA, but not on the transcription 

initiation signals measured by PRO/GRO-cap that only detect nascent transcripts. This 

suggests that U1 snRNP motif exerts its impact on transcript abundance after transcription 

initiation, consistent with recent findings that it promotes transcription elongation(17, 21–

Dudnyk et al. Page 4

Science. Author manuscript; available in PMC 2024 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23). The last direction-specific motif, the Long Initiator (Long Inr), resembles the initiator 

sequence patterns, thus we grouped the Long Inr with the initiators rather than motifs in this 

study.

Bidirectional promoter motifs.—The bidirectional motifs are expected to bind the 

trimeric NF-Y TF (NFY), KLF/SP family TFs (SP), ETS family TFs (ETS), the zinc 

finger TF ZNF143 (ZNF143), CREB/ATF family TFs (CREB), and the homodimeric TF 

NRF1 (NRF1), respectively. While each motif in the bidirectional group has a highly 

distinguishable position-specific effect pattern, they also share apparent similarities in 

position-specific effect profiles, suggesting similarities in their transcription activation 

mechanisms (Fig. 2D). The NFY motif showed the most distinctive position-specific effect 

curve with ~10.5bp periodicity. 10.5bp matches the helical periodicity of the DNA double-

strand and may indicate a more rigid physical interaction between the NF-Y TF and the 

Pol II preinitiation complex. Similarly, albeit weaker, 10.5bp periodicity was also observed 

in the position-specific effect curves of other motifs. The CG-rich SP motif was the most 

common motif at promoters (Fig. S6, Table S2). The NRF1 motif was the only palindromic 

motif among all motifs with symmetric effects. As we will discuss later, bidirectional motifs 

are likely the basis of the bidirectional transcription initiation at most human promoters. 

Moreover, all bidirectional motifs activate transcription away from the motif on both strands, 

thus avoiding the formation of double-stranded RNA.

Initiators tune the local location preference for transcription initiation.—We 

named this type of sequence patterns after the initiator (Inr) element(24), one of the first core 

promoter elements identified. We refer to the initiator sequence pattern that matches the Inr 

as the Short Inr (Fig. 2F), because Puffin also identified a related Long Inr sequence pattern, 

which is an extended Short Inr that contains several downstream core promoter elements 

including MTE, DPE, and DPR (Fig. 2F). Similar to these elements, Long Inr may represent 

the nucleotide preferences of TFIID, which binds to the core promoter to position Pol II. 

Initiators are distinct from motifs as they only fine-tune transcription initiation signals at 

base pair resolution within the sequence pattern itself (Fig. 2A–B). Moreover, most base 

pairs affect initiator sequence pattern activation scores while only a small fraction affects 

motif activation scores. In addition to the canonical initiator (Inr) element-like sequence 

patterns including Long and Short Inr, other initiator sequence patterns explain about half 

of the variance of initiator sequence pattern effects. The sum of initiator effects is highly 

reproducible across training replicates (Fig. S7).

Trinucleotides capture residual local sequence dependencies.—Residual local 

sequence dependencies are captured by the trinucleotide sequence patterns which can 

represent all trinucleotide combinations of the four bases (A, C, G, and T) (Methods, 

Fig. S8–10, Supplementary Text). Both individual and total trinucleotide effects are highly 

reproducible across training replicates (Fig. S7,11–12). The trinucleotide patterns with the 

strongest contribution to transcription initiation are CpG-containing patterns (Fig. S8). The 

effects of CpG islands are likely explained by both CG-rich motifs like SP and trinucleotide 

effects in Puffin. We chose trinucleotide rather than shorter or longer sequence patterns to 

balance performance and interpretability of Puffin.

Dudnyk et al. Page 5

Science. Author manuscript; available in PMC 2024 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As shown by the average effect of each sequence pattern type (Fig. 2B), motifs, initiators, 

and trinucleotides sequence patterns define transcription start site (TSS) at different genomic 

distance scales. Motifs are the most important contributor to transcription initiation signals, 

and their effect ranges are the longest, up to 300bp from the motif. Moreover, promoters 

with higher transcriptional initiation signal levels are characterized by stronger contributions 

from motifs (Fig. 2C). Trinucleotides have mostly local effects within 50bp, but a broad 

region of a few kilobases surrounding the TSS is enriched in trinucleotide patterns preferable 

for transcription initiation (Fig 2B, Fig. S8–10). Initiator effects are the most local and 

they only fine-tune base-pair resolution transcription initiation signal. Overall, motifs, 

initiators, and trinucleotides capture different aspects of sequence dependencies, which 

together explain base pair resolution transcription initiation in most human promoters. Next, 

we focus on motifs and their roles in transcription initiation, gene regulation, and evolution.

Experimental perturbations validated position-specific motif effects on transcription 
initiation

To directly validate the motif effects using experimental data, we analyzed the effects of 

TF depletion on base pair-resolution transcription initiation signal and compared them with 

model predictions (Fig. 3A–C). Puffin has the capability of performing in silico knockout 

(KO) to predict the effects of depleting a specific TF by turning off the effects of the 

corresponding motif (Fig. 3A).

Puffin estimated that the depletion of NF-Y not only reduces transcription initiation at 

promoters with strong NFY contribution but also leads to an upstream shift of transcription 

start sites in some promoters (Fig. 3B). Consistent with these predictions, knockdown of 

NFYA(25) (encoding a subunit of NF-Y) showed an upstream shift of TSS at locations 

predicted by Puffin (Fig. 3B). Moreover, only promoters with strong predicted NFY in 

silico KO effects showed strong changes in transcription, whereas promoters without strong 

predicted effects were largely unaffected (Fig. 3D).

Puffin also predicted that depleting YY1 has a unique effect of reducing transcription 

initiation signal at the immediate upstream of the motif, and a weaker effect about 200bp 

upstream of the first peak (Fig. 2D). We validated this effect using experimental data of 

induced YY1 depletion by auxin-inducible degron (AID) (26). The effects of YY1 depletion 

were measured by mammalian native elongating transcript sequencing (mNET-seq) which 

generates nascent transcript profiles at base pair resolution (27). We observed the reduction 

of transcription initiation at the model-predicted positions, including at the weaker upstream 

peak (−220bp) of the YY1 motif effect (Fig. 3C). The decrease in transcription initiation was 

also specific to promoters with strong predicted YY1 in silico KO effects (Fig. 3D). Both 

NF-Y and YY1 depletion experiments were performed in mouse cells and the predictions 

were based on mouse genome sequence.

Next, we tested the model’s ability to predict the effects of editing genomic sequence 

on transcription initiation signals (Fig. 3E). First, we evaluated the predicted effects 

with transcription initiation signals measured by self-transcribing active core promoter 

sequencing (STAP-seq) (28). STAP-seq was applied to measure the effects of TATA and 

NFY motifs deletions from promoters carrying these motifs and insertions of these motifs 
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into neutral sequences with no promoter activity (29). The Puffin prediction not only 

recapitulated effects on expression level caused by sequence alterations (promoter-level 

correlation 0.88, Fig. S13A), but also displayed close to 0.9 base pair-level correlation 

with experimental data for promoters with strong expression (Fig. S13B). For example, 

deletion of either TATA or NFY motifs strongly decreased transcription in an LTR12 

promoter (chr6:80516291–80517004, Fig. 3E). Insertion of NFY motifs into a neutral 

sequence (chr5:164906550–164906800) alone was sufficient to drive transcription. Inserting 

both NFY and TATA motifs created a promoter with transcription initiation signals more 

concentrated at one genomic location, consistent with experimental data (Fig. 3E). Puffin 

prediction also captured the shape of the transcription initiation signal, as well as changes 

of the shape upon motif insertions or deletions (Fig. 3E). Moreover, we performed STAP-

seq experiments to validate the effects of disrupting three additional motifs, including SP, 

NRF1 and ETS in the promoters that carry these motifs, and observed similar decreases of 

transcription initiation signals consistent with Puffin prediction for all cases (Fig. S14).

In addition, to test the effect of motif disruptions in the native genome, we developed a 

CRISPR-Cap assay to delete or shift the positions of motifs downstream of 16 promoters, 

followed by the analysis of the 5’ ends of capped transcripts (Fig. S15). Because CRISPR-

Cap can only target motifs downstream of the TSS we focused on YY1 and Long Inr motifs. 

We obtained sufficient editing efficiency and coverage for 11 promoters and observed altered 

base pair-resolution transcription initiation signal shape consistent with model predictions, 

whereas the negative control motif edits predicted to have no effect did not impact the 

transcription initiation signals (Fig. S16). These results further validated the effects of YY1 

and Long Inr motifs on transcription initiation in vivo. Furthermore, to test the ability of 

Puffin and Puffin-D in predicting transcriptional activities of promoter sequences inserted 

into the genome, we compared our predictions with experimental measurements of >15,000 

promoters via fluorescence-based reporter assay and achieved >0.7 correlation (Fig. S17) 

for both models. Taken together, these experimental perturbations corroborated the Puffin-

estimated position-specific motif effects on transcription initiation.

Human promoters display diverse motif compositions that affect expression patterns

Puffin allows quantifying motif contributions to each promoter based on effects from each 

motif type (Methods). By analyzing the statistics of motif contributions across 40,000 

human promoters (Fig. 4A–B, Fig. S18, Table S3), we noted that promoters display very 

diverse motif combinations, and no motif is necessary for all promoters (Fig. 4A–B). 

We did not observe strongly preferred or underrepresented motif combinations relative to 

expectation based on single motif contribution (Fig. S18B), suggesting that motifs can be 

rather flexibly combined in human promoters. We estimated that the effective number of 

contributing motif types to each promoter is most commonly 2–3 (Fig. S18C).

To evaluate how promoter composition is linked to gene expression properties, we analyzed 

promoter-level expression data across >200 cell types and tissues from the FANTOM 

project. We found that motifs have remarkable effects on expression variation across cell 

types (Fig. 4C–D). Promoters with higher TATA contributions were most likely to be cell 

type-specific or have high dispersion index across cell types and tissues. The dispersion 
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index measures the variance of promoter expression divided by the mean and we used it 

to compare the cell type/tissue-specificities of promoters. The association between higher 

dispersion index and higher TATA contribution is consistent with previous studies (30). 

Moreover, the prevalence of TATA motif within cell type-specific promoters was not due 

to a preference for gene expression in any specific tissue (Fig. S19). Other motifs possess 

varying degrees of preference for ubiquitous expression patterns. For example, promoters 

with high YY1 contributions are most likely to be ubiquitously expressed or have low 

dispersion indices (Fig. 4C–D). High contributions from ETS, ZNF143, NRF1, and CREB 

motifs also favor more ubiquitous expression patterns. NFY and SP motifs are nearly neutral 

with a slight preference for more ubiquitous expression patterns. U1 snRNP, which we 

estimated to mostly affect transcript abundance after transcription initiation does not show 

a preference for ubiquitous or tissue-specific expression patterns. All promoter motifs are 

expected to bind at least one ubiquitously expressed TF. Because the link between promoter 

motif and cell type specificity cannot be explained by individual motif’s preference for 

specific tissues, we hypothesize that promoter motifs influence how promoters respond 

to cell type-specific transcriptional regulatory signals such as those mediated by distal 

enhancers.

To explore the potential mechanism of this link, we analyzed the promoter response to 

context sequences which we define as the flanking sequences to the promoters, and observed 

a similar relationship between motif contribution and promoter selectivity for context 

sequences. Specifically, we estimated promoter selectivity by inserting promoter sequences 

into different genomic locations and predicting the expression using the deep learning 

sequence model Puffin-D which takes 100kb sequence as input. In addition to accurately 

predicting the shape of transcription initiation signals, Puffin-D also excels at predicting the 

level of transcription initiation signals at the inserted promoters, with >0.9 promoter-level 

and gene-level correlation with experimental data (Fig. S1–2). Moreover, we showed that 

Puffin-D also predicts the effects of insertion locations when integrating promoters into the 

genome(31) (Table S4, Fig. S20). Thus, Puffin-D’s capability of utilizing long sequences 

makes it well-suited for studying the response of promoters to context sequences.

To estimate promoter selectivity, we inserted each of 40,000 human promoter sequences 

(600bp) into 3,500 locations that represent a diverse set of genomic contexts, and we 

predicted the levels of transcription initiation signals at the inserted promoters (Fig. 4E). 

More selective promoters are defined as being highly expressed in a smaller subset of 

genomic locations and thus are more selective to genomic context. Analysis of the 40,000 

× 3,500 insertions revealed that motif contribution is strongly linked to promoter selectivity 

(Fig. 4E–H, Fig. S21). Notably, motifs displaying high and low selectivity are the same 

motifs that are linked to high and low expression dispersion indices across cell types/tissues 

(Fig. 4E–F). Moreover, promoter selectivity from the virtual insertion screen is predictive 

of expression dispersion index (Fig. 4G). By training a linear model to predict promoter 

selectivity from motif contribution, we obtained a sequence-based score of promoter 

selectivity, which is also predictive for high dispersion, tissue-specific expression patterns 

(Table S5).
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Taken together, based on these results, we postulate that motif contributions determine the 

response curve of a promoter to external signals of transcriptional activation. For example, 

promoters with high TATA contribution are much more responsive to strong transcriptional 

activation signals than promoters with high YY1 contribution. This mechanism can also 

explain the similarities between promoter selectivity to context sequences and cell type-

specific expression patterns. Hence, promoter sequence composition likely plays a key role 

in determining gene expression patterns in conjunction with distal regulatory sequences.

Sequence basis of bidirectional transcription at promoters

Bidirectional transcription initiation is observed at most human promoters when measuring 

nascent transcripts (17, 22, 32, 33); however, such bidirectional transcription shares a 

common sequence basis has remained an open question(34–36). With Puffin, we provide 

an explanation of the sequence basis of bidirectional transcription initiation (Fig. 2D and 

5A). Specifically, bidirectional motifs with symmetric effects in both directions are the main 

contributors for most promoters (Table S2), leading to substantial transcription initiation 

on the reverse strand, specifically at the level of nascent transcripts. Directional motifs 

including TATA, YY1, and Long Inr contribute to preferential transcription initiation on 

a single strand, although they can have activating effects on the other strand, such as 

YY1, or be partly palindromic such as TATA. On the other hand, most promoters are 

strongly directional when measuring mature transcripts even if they are bidirectional when 

measuring nascent transcripts. As described above, U1 snRNP motif exhibited a unique 

mechanism by contributing to the production of mature transcripts unidirectionally likely via 

post-transcription initiation effects (Fig. 5A), consistent with previous studies(17, 21–23).

Beyond qualitative explanation, our model also allows quantifying the degree of shared 

sequence contribution for any forward-reverse TSS pair (Fig. 5B–D). To determine how 

much sequence contribution is shared between forward and reverse strand TSS pairs, 

we selected 8,216 promoters with high expression levels in both directions based on 

PRO-cap (Methods). Puffin prediction well recapitulated forward and reverse directional 

TSS positions (Fig. 5C), which allowed us to further analyze base pair level sequence 

contribution to transcription initiation on both strands. Comparing base pair contribution 

scores for both strands (Fig. 5D, Fig. S22) revealed high correlations for most promoters 

(87.7% with r > 0.75). Most of the reverse TSS that were within 300bp of the forward 

TSS have high correlations (92.6% with r> 0.75), while less shared sequence contribution 

was more common for reverse TSS that are further than 300bp away (60.7% with r > 

0.75). Thus, most bidirectional TSS pairs in close proximity (<300bp) share a substantial 

proportion of contributing sequence.

Evolutionary conservation of promoter sequence determinant across mammal species

Finally, we examined whether the sequence dependencies captured by Puffin are conserved 

across mammalian species. Since high-coverage transcription initiation datasets are also 

available for mouse, we first assessed the cross-species generalization of transcription 

initiation models between human and mouse using the CAGE data from the FANTOM 

project(4) (Fig. 6A). The models trained on mouse data uncovered identical core motifs as 

the human model (Data S3). Predictions by the human model and mouse model on the same 
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sequences are also highly similar (median correlation of 0.967, Fig. 6B). Moreover, applying 

the human Puffin model to mouse sequences achieved very close performance compared to 

the mouse model (Fig. 6B). Thus, the transcription initiation sequence dependencies learned 

by Puffin between human and mouse data are nearly interchangeable.

We next analyzed the conservation across mammalian species using genomes of 240 species 

from the Zoonomia project(37) (Fig. 6C). We first tested the hypothesis that motifs located 

at positions where the motif effects at the TSS position are stronger are more evolutionarily 

conserved. Specifically, we computed the average evolutionary conservation PhyloP scores 

for each motif across all positions relative to TSS (Fig. 6D). The resulting position-specific 

evolutionary conservation curves indeed showed obvious similarities with position-specific 

motif effect curves. For example, TATA motifs are most conserved at ~30bp upstream of 

TSS, whereas YY1 motifs are most conserved immediately downstream of TSS. U1 snRNP 

motifs are most conserved starting from 50bp downstream of TSS. Moreover, the NFY 

motif’s ~10.5bp periodic effect patterns are reflected in evolutionary conservation scores 

(conservation curves for all motifs are shown in Fig. S23). These results are consistent with 

the motif’s estimated position-specific effects. Thus, evolutionary conservation provides 

another independent line of evidence for the position-specific motif effects.

We found similar conservation patterns from the viewpoint of any of the 241 mammalian 

species (Fig. 6E). To assess the conservation of transcription initiation sequence rules 

across species, we analyzed each of the other 240 mammalian genomes, using the genome 

sequence for each species as input and sequence identities with all other species per base 

as the conservation measure. We also found that the base pair-level contribution score by 

Puffin is a strong predictor of evolutionary conservation in all 241 species (Fig. 6E). Thus, 

we expect that sequence dependencies of transcription initiation captured by Puffin will be 

widely applicable across mammalian species.

Discussion

We have created a simple model that explains the transcription initiation activity of most 

human promoters at base pair resolution. This was achieved through the development of 

a deep learning-inspired explainable modeling approach, which allowed for learning a 

compact model that provides insights into the sequence basis of transcription initiation. 

Puffin both recapitulated known biology and provided new predictions that are well 

supported by experimental results and evolutionary conservation. We discovered that 

sequence determinants of transcription initiation can be effectively described using a small 

set of rules, ultimately making it tractable to systematically and quantitatively analyze 

transcription initiation.

Our model and analyses shed light on many questions related to promoter sequence and 

function that we set out to answer: for most human promoters, we can now identify 

individual base pairs and motifs that contribute to transcription initiation; a simple additive / 

multiplicative model of sequence pattern effects is sufficient to recapitulate most of the 

transcription initiation activity; we uncovered new connections between promoter sequence 

compositions, cell type-specific gene expression, and promoter selectivity; we provide an 
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explanation for the sequence-basis of bidirectional transcription and strand preference at 

human promoters; lastly, we demonstrate that the sequence rules of promoters are conserved 

across mammalian species.

We anticipate that the sequence-level understanding of transcription initiation, especially 

the position-specific effect curves of motifs, and the understanding of molecular-level 

mechanisms will eventually converge, and future research will likely discover the molecular 

and structural underpinnings of each motif’s position-specific effects. The motif position-

specific effect curves may also partially explain the variations of TF effects on different 

promoters. For example, YY1 and bidirectional motifs have both strong activating and 

repressive effects depending on the relative position between the motif and the TSS.

Together, our study provides systematic insights into the sequence determinants of 

transcription initiation in the human genome and beyond, as well as a powerful tool for 

understanding and engineering promoter sequences and gene regulation across species. Our 

findings also underscore the importance of explainable machine learning and computational 

modeling for unraveling sequence-based mechanisms governing transcriptional regulation, 

with the potential of discovering sequence rules for diverse genomic functions.

Materials and Methods

Processing of transcription initiation signal datasets

All transcription initiation datasets (FANTOM CAGE, ENCODE CAGE, ENCODE 

RAMPAGE, GRO-cap, PRO-cap) were downloaded from published datasets listed in Data 

S1. As individual signal profiles do not have enough coverage for providing accurate 

estimates at base pair resolution except for the most highly expressed promoters, we 

aggregated all signal profiles measured by the same technique. Specifically, the base pair-

resolution count profiles were averaged after applying log10 x + 1  transformation where x is 

the read count, with plus and minus strand profiles aggregated separately. The addition of 

the pseudocount can be interpreted as applying a uniform Dirichlet prior and obtaining the 

posterior mean. In this manuscript, we refer to this aggregated signal as the log scale signal 

and its inverse transformed value by 10x − 1 as the count scale signal.

We next addressed the known bias for poly-T sequence in the FANTOM CAGE aggregated 

signal profile, which is specific to the HelioScope CAGE protocol used for FANTOM 

CAGE datasets(38), but does not affect ENCODE CAGE datasets. After analyzing 

FANTOM CAGE signal dependency on the number of consecutive ‘T’s across the genome 

(Fig. S24), we applied a filter with a threshold of >=8 consecutive ‘T’s, and masked 

the signals in [−6, +10) interval relative to the end of the poly-T sequence. The filtered 

FANTOM CAGE signal profile is replaced with ENCODE CAGE signal rescaled to the 

average signal level of FANTOM CAGE. The masked regions represent a minor fraction of 

the genome (0.5%).

We obtained human promoter annotation from the FANTOM-CAT catalog at the “robust” 

level(39) and removed promoters with inconsistent expression levels across datasets. We 

then rank all promoters by expression level in the aggregated FANTOM CAGE profile, 
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quantified by the sum over +/− 20bp window surrounding annotated TSS in count scale (we 

refer to this ranking when we used top-N promoters in this manuscript). Specifically, for 

removing promoters with inconsistent expression levels, non-protein-coding gene promoters 

that are >40-fold lower in normalized expression value than FANTOM CAGE in both 

ENCODE CAGE and ENCODE RAMPAGE datasets, after scaling by total expression 

values across all promoters for each dataset, were removed. In addition, for performance 

evaluation, we selected high-confidence promoters that have consistent base pair-resolution 

transcription initiation profiles across experimental techniques. Specifically, for the 1000bp 

interval centered at the TSS position, only promoters with high correlations between the 

FANTOM CAGE profile and at least one other dataset (>0.5 for ENCODE CAGE, >0.4 for 

ENCODE RAMPAGE, GRO-cap, or PRO-cap datasets) were preserved. The filtered list of 

promoters with high-confidence promoter labels is provided in Table S6.

Interpretation-focused Puffin model for transcription initiation

The Puffin model consists of two learnable layers, a sequence pattern activation layer, and a 

transcription initiation effect layer (Fig. S4). Both layers were trained from scratch based on 

only sequence and transcription initiation signal data, without using any known motifs. Both 

layers’ computations can be represented by convolution layers. The convolution kernels of 

the first layer represent sequence patterns’ position-specific weights and the convolution 

kernels of the second layer represent sequence pattern activations’ position-specific effects 

on transcription initiation.

Since Puffin uses three sequence pattern types with different sizes (kernel size in the 

sequence pattern activation layer) and effect ranges (kernel size in the sequence pattern 

effect layer), each layer of the model contains several parallel convolution layers each 

corresponding to a sequence pattern type. Specifically, the sequence pattern sizes of motifs, 

initiators, and trinucleotides are 51bp, 15bp, and 3bp respectively, and the effect ranges are 

+/−300bp, +/−7bp, and +/−300bp respectively. The sequence pattern sizes and effect ranges 

specified in the model are the maximum that the model can learn and the effective sequence 

pattern size and effect ranges learned are usually lower. We note that the initial design of 

Puffin uses only the motif sequence patterns, and more parsimonious sequence patterns with 

smaller sizes or effect ranges including initiators and trinucleotides were introduced in a 

data-driven process to obtain a more compact and interpretable design while maintaining the 

performance (Supplementary Text).

The first layer, or sequence pattern activation layer, uses the softplus activation function 

to compute the sequence pattern activations. Moreover, the activations of each reverse-

complement sequence pattern were also computed, which doubles the number of channels 

from the sequence pattern activation layer output. For the second layer, or sequence pattern 

effect layer, we used FFT-based convolution(40) for computing motif and trinucleotide 

effects because the large kernel size makes FFT-based convolution more efficient than 

regular convolution implementation. Finally, the sequence pattern effect layer computes 

sequence pattern effects for 10 targets, which corresponds to 5 different techniques on both 

forward and reverse strands, thus the sequence pattern effect layer learns a separate set of 

sequence pattern effects for each target.
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The sum of sequence pattern effects per position were transformed by the softplus function 

to the final prediction. The softplus function is deliberately chosen here to make the input 

and output interpretable. In this formulation, the pre-activation sum of sequence pattern 

effects x is comparable to ln s  where s is the transcription initiation signal in count scale, 

because we train the model by fitting the scaled softplus function output log10 exp x + 1
to the log scale transcription initiation signal log10 s + 1 . Thus, the additive combination 

of sequence pattern effects in x space can be considered as a multiplicative combination 

in s space. Similarly, the final Puffin model prediction is comparable to natural log scale 

transcription initiation signal ln s + 1  and can be converted to count scale using exponential 

minus 1 transform.

The main training loss function is the Kullback-Leibler(KL) divergence loss

∑
i

targeti
* ln targeti

* + ϵ − ln predi
* + ϵ

where targeti
* = targeti

∑i targeti
, predi

* = predi
∑i predi

, i is the position index, and ϵ is set to 1e-10. The 

target is processed as introduced in the previous section. The KL divergence loss is sensitive 

to the shape but not the magnitude of the transcription initiation signal. This is intended 

as the overall abundance is dependent on not only the promoter. The prediction and target 

are both divided by the sum over the 4kb region before computing KL divergence loss. 

Since the KL-divergence loss does not constrain the scale of the prediction, we added an 

auxiliary loss that matches the exact transcription signal values. This auxiliary loss also 

increased the interpretability of the prediction by allowing it to be considered as a prediction 

of transcription initiation signals, even though the training emphasizes learning the shape 

rather than the magnitude of the transcription initiation signal. Specifically, the auxiliary loss 

is

∑
i

predi/ ln 10 − targeti ln predi / ln 10 + ϵ

where i indicates the position and ϵ is 1e-10. We refer to this loss as the pseudo-Poisson 

loss as it has the same form as the Poisson loss function, which is derived from the Poisson 

negative log-likelihood after dropping constant terms, but the target values are not counts. 

The pseudo-Poisson loss is more robust to over-dispersion of the data than the Poisson loss. 

The ln 10  factor is due to conversion from natural log scale to log10 scale, and ϵ is included 

for numerical stability. The auxiliary loss is weighted by a factor of 1e-3. The losses 

for all ten targets were averaged. Additional regularization terms were added to the loss 

function including L1 regularization to kernel weights in both layers, and L2 smoothness 

regularization between spatially adjacent kernel weights in the sequence pattern effect layer, 

for motifs and trinucleotides.

The models were trained to predict from one-hot encoded sequence to transcription initiation 

signals on both strands for 5 experimental techniques. Specifically, the model was trained 

with the task of predicting transcription initiation signal in the 4kb region surrounding 
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each annotated TSS with a random strand selected for each training sample. Top 40,000 

high-confidence promoters ranked by expression level as described in the previous section 

were used. We divide the genome into the training set: all chromosomes except for chr8, 9, 

and 10, the validation set: chr10, and the test set: chr8 and 9. The training data was retrieved 

on-the-fly during training and the strand is selected randomly for each training sample.

We trained the Puffin model in three stages to make sure that all motifs included were 

reproducibly discovered across multiple training replicates. In the first stage, we trained 

12 replicates with different random seeds. The first stage model differs from the final 

Puffin architecture in that it learns 40 motif sequence patterns and 10 initiator sequence 

patterns, and the SiLU activation function was used for the first layer because it facilitates 

motif discovery. A nonredundant set of 10 motifs that were reproducible (> 0.95 maximum 

cross-correlation across >7 replicates) were chosen as the consensus motifs. In the second 

stage, we use the final Puffin model architecture as described, and sequence patterns and 

effects were initialized by the consensus sequence patterns from the first stage. Since not all 

sequence patterns learned were located at the center of the 51bp motif kernel, in the third 

stage, we centered the motif sequence patterns and continued training.

The model can process variable-length input, and the raw model output size equals the 

input sequence length. But since predictions near the edge can be affected by padding, to 

completely remove the effect of padding, we recommend trimming predictions from each 

end by 325bp. Therefore, for example, to obtain N-bp prediction we use N + 650bp long 

sequence as an input.

For evaluation of the prediction performance, we computed Pearson correlation between 

experiment and prediction per promoter for 1kb windows centered at each annotated. High 

confidence promoters on test chromosomes among the top 100,000 promoters were used for 

evaluation. For downstream analysis, FANTOM CAGE prediction and contribution scores 

were used unless otherwise indicated.

Visualization of Puffin motifs and position-specific effect curves

For visualization of sequence patterns such as motifs, the position-specific weight matrices 

were directly obtained from the kernel weights of the first layer. We note that adding or 

subtracting a value to all four bases at the same position does not change the layer output (up 

to a constant which can be canceled out by bias term), thus for standardization we processed 

the motif position-specific weight matrices per position by first subtracting the mean and 

then subtracting 0.7x average absolute value per position (the later subtraction highlights the 

most positive base in visualization, otherwise typically more than one base were highlighted 

due to subtraction by mean). The processed position-specific weight matrices are visualized 

with the logomaker(41) package with each letter height indicating the absolute value of that 

nucleotide and positive and negative values shown above and below the axis respectively.

We visualize the position-specific effect curve of each motif in motif-centered coordinates, 

which were obtained by reversing the spatial dimension of the kernel weights of the 

sequence pattern effect layer.
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Prediction-focused Puffin-D model for transcription initiation

Puffin-D is the prediction-focused architecture that captures sequence dependencies up 

to 100kb. Puffin-D is trained by randomly sampling 100kb intervals from the training 

chromosomes(42). Different from Puffin which is trained with KL divergence loss to predict 

the shape of the transcription initiation signal, Puffin-D is trained to predict the exact value 

of the transcription initiation signal. The training loss function is the pseudo-Poisson loss, 

which is the same as the auxiliary loss function for training Puffin without the 1/ln 10
factors. Thus Puffin-D prediction is interpreted as log10 scale transcription initiation signal 

log10 s + 1  where s is the transcription initiation signal in count scale.

To utilize long-range sequence information efficiently, the Puffin-D architecture uses an 

architecture that iteratively propagates information across sequence locations via two 

upward-downward passes. The upward passes integrate long-range sequence information 

hierarchically and the downward passes distribute integrated information to local sequence 

representations (Fig. S25). Residual connections between the same levels of the upward 

and downward passes similar to U-Net(43) allow information at all spatial resolutions to be 

preserved. A new design different from U-Net is that we used two upward and downward 

passes to allow better mixing of global and local information. Individual convolution blocks 

were modified over previous sequence model architecture design(44) by adding size 1 

convolution layers, replacing ReLU with SiLU activation function, and replacing max 

pooling with strided convolution.

To evaluate Puffin-D performance, we generated predictions for entire test chromosomes 

chr8 and chr9, with a sliding window step size of 50kb, and the center 50kb of each 

100kb prediction was used. Regions within 1kb to unknown bases or 25kb to chromosome 

ends were excluded. In addition to base pair level correlation, we computed correlations 

at the transcript level and gene level. At the transcript level, we aggregated prediction and 

experimental signal at count scale within 400bp window to each annotated transcription start 

site; at gene level, we further summed all transcript-level prediction and experimental signal 

per gene.

Sequence contribution scores

An important advantage of the interpretation-focused Puffin architecture allows 

quantitatively analyzing sequence contribution to transcription initiation at motif and base 

pair levels. While base pair-level contribution scores can also be obtained via general-

purpose deep learning model interpretation methods (45), the simple architecture allows 

a more tailored definition with simple interpretation. Here we describe the definition and 

interpretation for each motif and base pair-level contribution score:

Motif contribution score—Motif contribution score represents the amount of 

contribution from a motif type to any position or window in the sequence. The motif 

contribution to any position can be directly represented by motif effects in the Puffin model, 

because sequence pattern effects are additively combined, and the baseline for motif effects 

is zero due to regularization that drives the motif effect to zero at long distance. Thus, motif 

contribution is almost synonymous with motif effects in Puffin model, but motif contribution 
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scores can also be computed by aggregating over a window in a weighted or unweighted 

fashion.

In this manuscript, the motif contribution scores for each promoter were computed by the 

weighted average motif effects within the 20bp window centered at the annotated TSS, and 

the weights are the predicted transcription initiation signals. We provide the full contribution 

scores in Table S2. For downstream analysis, we summed the motif contribution scores for 

forward and reverse directional motifs for bidirectional motifs, and for directional motifs, 

only the + direction motif contribution scores were retained. U1 snRNP (post-transcription 

initiation effect) and Long Inr (initiator sequence pattern) were usually excluded from motif 

contribution analysis, because U1 snRNP has mostly post-transcriptional initiation effects, 

and Long Inr effects are initiator-like and do not have zero baselines like other motifs.

Base pair contribution score to transcription initiation—We also refer to this 

score as the base pair contribution score, which represents the amount of contribution to 

transcription initiation from each base pair. Moreover, base pair contribution score can 

also be decomposed to per motif type scores, allowing dissecting base pair level sequence 

contribution by motifs. The base pair contribution score equals the sum of base pair 

contribution scores for all motifs.

basecontrim, i = d ∑k ∈ K epredk

d actm
actm

d actm

d seqi
a − 1

3 ∑
b ≠ a

d actm

d seqi
b

basecontrii = ∑
m

basecontrim, i

Where basecontrim, i indicates the base pair contribution score for motif m and the base at 

position i, predk indicates the model prediction at the position k, and K indicates the window 

of transcription initiation prediction that base pair contribution scores are computed for. For 

notational simplicity we use actm to denote the vector of motif activation across all positions 

for the motif m . d actm

d seqi
a  indicates the gradient with respect to the true base a at sequence 

position i, while d actm

d seqi
b  indicates the gradient with respect to any other base b at sequence 

position i. The base pair contribution score can be computed for any of the 10 targets that 

Puffin predicts by choosing the corresponding predictions.

The base pair contribution score can be computed with respect to transcription initiation 

signals in any position or window. In this manuscript we computed it for 1kb windows 

surrounding each annotated TSS, using 1650bp sequences. Moreover, in all analyses, we 

further scale the base pair contribution score as defined above by dividing the sum of 

positive base pair contribution scores within the 1kb window per promoter. This score 

was used to compare sequence contributions underlying bidirectional TSS pairs on both 

strands and to analyze the relationship between base pair contribution score and sequence 

conservation across species.
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Base pair contribution score to motif activation

basecontrim, i
Motif = actm

d actm

d seqi
a − 1

3 ∑
b ≠ a

d actm

d seqi
b

The base pair contribution score to motif activation represents the amount of contribution to 

motif activation from each base pair, which is computed using only the first layer of Puffin. 

This score was used in the analysis of position-specific evolutionary conservation patterns of 

each motif and notably it does not involve the sequence pattern effect layer or any learned 

motif effects to compute.

Puffin in silico knockout for TF perturbation effect prediction

As the Puffin model dissects sequence dependencies into effects from individual sequence 

patterns, which are mapped to TFs, we can simulate the effects of TF depletion by removing 

the effects from that motif using the Puffin model. We refer to this technique as “in silico 

KO”, which mimics the effect of acutely removing the TFs that bind to any motif. To 

perform in silico KO, we set the motif activation scores for the corresponding motif to 0 and 

continue the subsequent computations, which also set the effects of that motif effect to 0.

We evaluated in silico KO predictions by comparisons with experimental data from NF-

Y and YY1-depletion datasets(25, 26). We first selected for promoters with a strong 

contribution from NFY and YY1 respectively, quantified by the sum of absolute predicted 

difference over the 1kb window centered at each TSS. A threshold of 20 and 55 were used 

for YY1 and NFY respectively. We demonstrated that the expression level of promoters 

above this threshold was significantly decreased compared to promoters without YY1 or 

NFY contribution with a threshold of 1, using a two-sided Wilcoxon rank sum test. The 

expression levels of promoters were quantified by −50 to +50bp for NFY Start-seq and −50 

to +100bp for YY1 mNET-seq data (mNET-seq signals tend to be shifted downstream from 

the TSS). We then compared the predicted base pair resolution effect of TF depletion with 

experimental data for the selected promoters with heatmap visualization.

Puffin prediction of motif insertion and deletion effects

We compared Puffin prediction with the motif perturbation dataset published by(29), which 

measured the effects of TATA and NFY motif mutations in human promoters and insertions 

of these motifs into neutral sequences. The transcriptional activities of wildtype and mutants 

were measured using STAP-seq in 500 oligomers with 5 replicates for every sample. The 

oligomer sequence was obtained from the data and the surrounding sequence was retrieved 

from the human STAP-seq screening vector sequence (Addgene ID: 125150). Both base 

pair level and promoter-level prediction and experimental measurements were compared. 

Promoter-level quantification was computed by summing count scale predictions or signals 

over the 250bp oligonucleotide.
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Puffin-D prediction of human TRIP promoter insertion

TRIP (Thousands of Reporters Intergrated in Parallel) insertion sequences were recreated 

according to Hong et al.(31) paper using the pCPL4 vector, promoter sequence coordinates, 

the locations of TRIP integrations and barcodes as provided by the authors. Predicted 

values were obtained by taking the log10 of the predicted ENCODE CAGE signal at count 

scale summed over a 2Kbp region surrounding the insertion site. The observed values are 

log-transformed ratios of RNA to DNA.

Puffin and Puffin-D predictions of K562 genome-integrated reporter assay

Sequences were reconstructed as described in Weingarten-Gabbay et al.(6) using a plasmid 

kindly provided by the authors. The prediction values for Puffin and Puffin-D are log10-

transformed prediction for GRO-cap summed over the region surrounding the inserted 

oligomer at count scale. Puffin-D prediction of the inserted oligomers is normalized by the 

mCherry expression predicted by Puffin-D, similar to the experiment.

Promoter motif contribution and expression selectivity

Motif contribution scores for promoters were computed as described in the “Sequence 

contribution scores” section. Promoter-level expression values across >200 cell types and 

tissues were obtained from FANTOM CAGE profiles quantified by the sum over +/− 20bp 

at annotated TSS in count scale. CAGE profiles for samples for the same cell type or tissue 

were summed at count scales. The raw promoter-level counts for each cell type / tissue were 

then normalized by dividing the size factors estimated by the DESeq2 package(46). The 

mean and dispersion of promoter-level expression across cell types and tissues were then 

computed from normalized counts and compared with motif contribution scores.

For comparison of promoter expression patterns across promoter types by motif 

contribution, we selected the top 5% TSS by motif contribution score for each motif 

type among the top 40,000 TSS. The expression matrix of all 40,000 promoters were 

hierarchically clustered, and the row and column orders were preserved in the visualization 

of individual promoter types.

To estimate promoter selectivity to genome contexts, we performed an in silico insertion 

screen with Puffin-D model. For insertion sequences, we used 600bp centered at each of 

the top 40,000 promoters, and for target locations, we selected 3500 locations uniformly 

spaced in the genomic interval chr8:22964801–29963540 with the step size 2000bp. The 

target locations are on a chromosome that was held out from the model training. For each of 

the 40,000 × 3,500 in silico insertion experiments, we replaced 600bp of the target genome 

sequence with the 600bp insertion sequence. The prediction for the transcription initiation 

signal was made using the Puffin-D model. The predicted transcription initiation signal, or 

expression level, was measured by the mean FANTOM CAGE prediction in count scale 

within +/−20bp from the center position.

The selectivity score for each promoter was defined as the proportion of insertion targets 

with predicted expression levels below the threshold. The threshold for selectivity score 

computation for each TSS was defined as 1/3 of the mean of the top-3 predicted expression 
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levels across target locations. Motif selectivity score is estimated by training an L2 

regularized linear regression model to predict log-odds of selectivity score from motif 

contribution scores, and the regularization parameter was selected by leave-one-out cross-

validation in closed form.

Base pair contribution scores for bidirectional promoters

TSS with high expression levels in both strands were selected based on the aggregated 

PRO-cap transcription initiation signal in count scale on both strands. Specifically, both 

the sum of the forward strand PRO-cap signal within −250 to +250bp window, and the 

sum of reverse strand signal within −500 to 0bp window are >50. Moreover, we selected 

promoters for which the maximum signal position on the reverse strand is upstream of the 

maximal signal position on the forward strand, the maximal signal position on the forward 

strand is within 50bp to the annotated TSS position, and the maximal signal position on 

the reverse strand is upstream of the annotated TSS position. Base pair contribution scores 

to transcription initiation for PRO-cap on both strands were computed and compared by 

correlation (within +/−500bp window to the annotated TSS).

Comparison of promoter sequence dependencies in human and mouse

To compare human and mouse sequence dependencies captured by Puffin, we trained Puffin 

models on mouse FANTOM CAGE data(4), aggregated with the same procedure as human 

FANTOM CAGE data. The consensus motifs from mouse training replicates were analyzed 

in the same process as for human and showed nearly identical motifs. We next compared 

predictions between human and mouse models applied to the mouse genome. To ensure 

that the comparison is appropriately done, we liftover the mouse TSS annotation from the 

FANTOM project from mm10 to hg38. The top 40,000 mouse promoters ranked in the 

same process as described for the human TSS were used for this analysis. The mouse 

models were trained on promoters for which the liftover coordinates were in human training 

chromosomes. Similarly, the evaluations were performed on mouse promoters for which 

the liftover coordinates in hg38 locate in the human holdout chromosomes. We compared 

human and mouse Puffin models after stage 1 training, and the average prediction across 

12 training replicates was used for both human and mouse. Human and mouse model 

predictions for 1kb regions centered at annotated TSS that belong to the test set were also 

computed and compared with mouse FANTOM CAGE signals.

Evolutionary conservation across 241 mammalian genomes

We obtained 241-way mammalian genome alignment from the Zoonomia project and 

downloaded the PhyloP scores from the UCSC genome browser. To analyze position-

specific evolutionary conservation for each motif from the human genome viewpoint, for 

every base pair position relative to the annotated TSS from −200bp to +200bp, we computed 

the weighted average PhyloP score across top 4000 promoters for each motif. The weight 

used is the base pair level motif activation score for that motif.

To analyze evolutionary conservation from the viewpoint of each of the other 240 genomes, 

human genome annotated TSS positions were liftover to each genome, and the 1650bp 

sequences centered at the TSS in each genome assembly were retrieved. Base pair 
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contribution scores to motif activation and transcription initiation were computed separately 

for sequences from each genome. We used percentage identity with the rest of the 240 

genomes as the raw sequence conservation score. Percentage identity scores per base pair 

were computed based on multi-sequence alignment generated by MAFFT(47). Since each 

species has a different distribution of evolutionary distance from other species, the raw 

percentage identity scores are not directly comparable in scale with each other. To make 

percentage identity scores comparable across species we applied quantile normalization 

by linearly scaling. The linear scaling matches each species’ 0.1 and 0.9 quantiles to the 

human quantiles. For each species, in addition to computing position-specific evolutionary 

conservation scores with normalized percentage identity scores, we also fitted species-

specific curves representing the relationship between scaled base pair contribution scores 

(transformed to the power of 0.25) and normalized percentage identity scores by generalized 

additive model.

CRISPR-Cap assay for measuring effects of motif perturbation on transcription initiation 
sites

We designed single guide RNAs (sgRNAs) targeting TSS motifs containing the NGG PAM 

sequences (Table S7). Synthesized sgRNA oligos were mixed with purified CRISPR-Cas9 

protein at 2:1 ratio to form RNP complexes in OptiMEM for 10 min. The RNP complexes 

were transfected into HEK293T cells by lipofectamine 3000. HEK293T was cultured in 

DMEM supplemented with 10% FBS at 37°C with 5% CO2. To maximize the efficiency 

of Cas9 editing, the second transfection was performed after 2 days. After two rounds of 

RNP transfection, total RNA was isolated by TRIzol. Then each 1ug of total RNA was 

treated with 2U DNase I for 15min at 37°C. DNase I was removed by TRIzol extraction 

and the RNA was diluted by nuclease-free water. Then 1ug of RNA was dephosphorylated 

by 0.5ul of calf intestinal alkaline phosphatase (CIP; NEB cat. no. M0525S). The reaction 

was cleaned up by TRIzol. Then the 5’ cap of RNA was removed using Cap-Clip Acid 

Pyrophosphatase (cat. no. C-CC15011H from CELLSCRIPT, CCAP), for each 1ug RNA 

with 0.05ul CCAP. The reaction was cleaned up by TRIzol. Then we ligated CCAP-treated 

RNA with 5’end RNA oligo (GUUCAGAGUUCUACAGUCCGACGAUCNNNNNNNN) 

with 1 ug RNA for 100uM oligo at 16°C for 16 h using 0.2 μl T4 RNA Ligase 1 

(ssRNA Ligase, NEB, cat. no. M0204L), followed by TRIzol cleanup. 8nt of random 

nucleotides in the 3’ end of RNA oligo were used as unique molecular identifiers 

(UMI). First strand cDNA synthesis was performed using 1μl of Superscript IV (50°C 

for 60 min, 70°C for 15 min; Invitrogen, cat. no. 18080085) using a 20bp gene-

specific RT primer (Table S7) for 2.5–5 μg of RNA in 20 μl. Then 1 μl of 10 

mg/ml RNaseA was added to remove the RNA at 37°C for 15 min. Finally, cDNA 

was amplified for pair-end sequencing using Illumina NextSeq 2000 by the sequencing 

primer AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA 

and gene-specific PCR primers (Table S7) with the Illumina adapter 

sequence (TTCAGACGTGTGCTCTTCCGATCTN20). All samples were pooled 

and amplified by Illumine sequencing adapters. The read 1 primer was 

replaced by Illumina small RNA TrueSeq primer for 5’ end RNA ligator 

(TCTACACGTTCAGAGTTCTACAGTCCGACGATC). The sequencing was performed 

using NextSeq 2000 by 80 (read1), 0 (index1), 8 (index2), and 150 (read2) with 200-cycle 
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P3 kit. The reads were aligned to the hg38 reference genome by STAR(48). Only reads that 

covered the targeted sites of CRISPR sgRNA and allowed for genotyping were retained for 

downstream analysis. The distributions of 5’ end positions of transcripts with UMIs between 

WT reads and MUT promoter sequences were compared.

Experimental validation of the effects of motif disruption by STAP-seq

We designed three wildtype (WT) and three mutated (MUT) 240-bp promoter sequences to 

measure the effects of SP, ETS and NRF1 motifs deletions, respectively (Table S8). These 

sequences were cloned into pSTAP-seq_human-4xUAS vector (Addgene ID: 125150). Equal 

quantity of vectors were pooled for transfection into HEK293T cells using Lipofectamine 

3000. After overnight incubation, we collected total RNA using TRIzol and constructed the 

library as previously described(28). Pair-end reads were aligned to the custom reference 

consisting of six plasmids containing the WT and MUT promoter sequences using Bowtie 

2(49). The total read counts per position reflect the number of 5’ end positions of the aligned 

fragments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Dissect the sequence basis of transcription initiation with sequence models.
(A) Schematic overview of sequence-based models of transcription initiation. The 

prediction-focused Puffin-D and interpretation-focused Puffin models were trained to predict 

base pair-resolution transcription initiation signals from sequence. These sequence models 

enabled analyses of promoter motif composition, directionality, regulatory properties, and 

sequence rule conservation. (B) Step-by-step illustration of the Puffin promoter sequence 

model. The input sequence is first converted to activation scores of learned sequence 

patterns. Sequence pattern effects are computed next based on the activations. The motif 
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effects are then summed together with initiator and trinucleotide sequence pattern effects, 

and transformed into the prediction. The computation of motif contribution scores and 

base pair contribution scores are illustrated on the left. The motif name legend is shown 

at the bottom. Motifs effects and the prediction shown were for FANTOM CAGE on the 

forward strand. (C) Example prediction of base pair resolution strand-specific transcription 

initiation signal from promoter sequences on chromosomes heldout from training. The 

x-axis indicates the position relative to the annotated transcription start site and the y-axis 

is shown in log10 scale. (D) Base pair-level correlation (x-axis) between Puffin (top panel) 

and experimental measurement (FANTOM CAGE) within 1kb window of each annotated 

TSS. Promoters were grouped by coverage level with the y-axis indicating the lower bound 

of each group (the upper bound of the group is the lower bound of the next group). The 

bottom panel shows the correlations between ENCODE CAGE and FANTOM CAGE, the 

most correlated pair of techniques, which also provides a reference for the expected decrease 

in correlation due to lower coverage.
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Fig. 2. Sequence patterns with position-specific effects on transcription initiation.
(A) Overview of the three sequence pattern types that the Puffin model learns. (B). The 

average position-specific effect of each sequence pattern type over the top 40,000 promoters 

by FANTOM CAGE signal (top panel). (C) The average sequence pattern effect at annotated 

TSS (y-axis) varies with promoter transcription initiation signal levels (x-axis). Generalized 

additive model fitted curves and 95% confidence intervals are shown. (D) Position-specific 

effects of all motifs. X-axis indicates position relative to motif center with positive values 

representing downstream of the motif and vice versa. The effect scores are obtained from 

the motif effect convolution layer weights. The bidirectional motifs are indicated with blue 
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background and all other motifs are direction-specific. The dotted lines show the motif effect 

on reverse strand transcription initiation. U1 snRNP effects are post-transcription initiation 

effects. (E-F). All transcription initiation motifs learned by the Puffin model with assigned 

names. Known promoter motifs overlapping with the Long Inr motif are indicated in (F). 

The height of each base represents the motif score (convolution kernel weight) for that 

nucleotide.
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Fig. 3. Experimental TF and motif perturbation effects are recapitulated by Puffin prediction.
(A) Schematic illustration of predicting TF depletion effect by in silico knockout (KO) with 

Puffin. To predict the effects of TF depletion, we set the activation and consequently the 

effects of the corresponding motif to 0 in the Puffin model, and predict the transcription 

initiation signals. (B) In silico KO prediction for NFY (mid panel) compared with 

experimental measurement of NFYA knockdown with Start-seq (right panel). NFY motif 

activations are shown in the left panel. Promoters with strong NFY in silico KO effects 

were selected and sorted by the predicted shifted TSS positions. (C) In silico KO prediction 
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for YY1 (mid panel) compared with the experimental measurement with mNET-seq after 

induced depletion of YY1 (right panel). NFY motif activations are shown in the left panel. 

Promoters with strong YY1 in silico KO effects were selected and sorted by the position 

with the strongest predicted decrease in transcription. The matrices shown in (B) and (C) 

heatmaps were smoothed with a small rectangular filter of size 3×3 for motif activation, 5×1 

for prediction and 5×3 for experimental data. (D) Promoters with high NFY (top panel) or 

YY1 (bottom panel) contributions are significantly more influenced by corresponding TF 

depletion than those with low contributions (p-values derived from two-sided Wilcoxon rank 

sum test). (E) Example prediction and experimental measurements for TATA and NFY motif 

insertion and deletion experiments. All prediction and experimental values were shown in 

count scale and scaled to maximum 1. Only predictions and experimental data in the forward 

strand (expected transcription direction) are shown. Positions of inserted or deleted motifs 

were indicated by colored bars and deleted motifs were indicated by ‘x’ signs.
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Fig. 4. Motif compositions of promoters are linked to gene expression selectivity.
(A) Schematic illustration of motif contribution score. The motif contribution score is 

computed by the weighted average of motif effects within +/−20bp to the annotated 

TSS, the weighting function is the prediction. Example motif contribution scores of 100 

promoters with the highest expression are shown. (B) Motif contribution scores across 

40,000 promoters with the highest expression based on FANTOM CAGE, sorted first by 

the maximum contribution motif type and then by the contribution score of that motif. 

(C-D) Motif contribution has a strong impact on expression dispersion across cell types and 
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tissues. Scatterplots (C) show log expression dispersion (y-axis) and log mean (x-axis) with 

each dot indicating a promoter. The dots are colored by the contribution score of a motif 

type in each subpanel. Expression matrices (cell type / tissue x promoter) for representative 

promoters per motif type (classified by maximum contributing motif type and filtered to 

promoters with top 2000 contribution scores from the classified motif type). (D) Promoter 

types defined by motif contribution displayed varied expression pattern distributions across 

cell type / tissues. Heatmap shows promoter by cell type/tissue expression matrix from 

FANTOM CAGE, represented by log size-factor normalized expression. (E) Schematic 

overview of the promoter insertion virtual screen with Puffin-D. 40,000 promoter sequences 

with 600bp length (+/−300bp to the annotated TSS) were inserted into 3500 target locations 

uniformly spaced over a 7Mb region (chr8:22964801–29964801). (F-G) Motif contribution 

affects selectivity to insertion targets in the virtual screen. (F) For each motif type (color), 

the top 1000 promoters by motif contribution scores were selected and the average predicted 

expression scores at each target location were computed, the proportions of target locations 

(y-axis) with predicted expression higher than the thresholds shown in the x-axis (scaled to 

proportion relative to the average of top-3 predicted expression levels across targets) were 

shown. (G) Generalized additive model-fitted curves of inserted promoter expression (scaled 

to fold over median expression across targets, y-axis) versus log rank of target activity 

(average target expression across 40,000 promoters) were shown. (H) The selectivity scores 

of promoters in the virtual screen (top panel) and motif selectivity scores (bottom panel) of 

promoters are linked to expression dispersion across cell types.
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Fig. 5. Sequence-basis of bidirectional transcription initiation at human promoters.
(A) Schematic illustration of a sequence-based model of bidirectional transcription 

initiation. Directional motifs preferentially contribute to transcription initiation on the 

forward strand, and bidirectional motifs contribute to transcription initiation on both strands. 

Promoters with a high proportion of contribution from bidirectional motifs are bidirectional 

at the nascent transcript level. Most promoters are strongly directional at the mature 

transcript level, and the U1 snRNP motif contributes to a directional mature transcript 

outcome. (B). Base pair contribution analysis to an example promoter with bidirectional 
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transcription initiation. The forward (+) and reverse strand (–) prediction and experimental 

measurements in log scale were shown in the top two panels. Reverse strand values were 

taken a negative sign. The bottom two panels showed per-motif base pair contribution 

scores to forward- and reverse- strand transcription respectively. All rows were scaled to 

maximum 1. (C) Base pair contribution scores for forward (top panel) and reverse (bottom 

panel) strand transcription of 8,216 promoters, sorted by reverse TSS position, scaled 

by the sum of positive base pair contribution scores per promoter and strand. The three 

columns are experimentally measured transcription initiation signals, predicted transcription 

initiation signals (PRO-cap), and base pair contribution scores (PRO-cap) respectively. (D) 

High correlations between forward and reverse strand base pair contribution scores (x-axis) 

for reverse TSS with distance to forward TSS (y-axis) within 300bp. The proportions of 

forward-reverse TSS pairs with less and greater than 0.75 correlation were indicated, for 

both pairs with less and greater than 300bp distance.
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Fig. 6. Cross-species generalization and conservation of promoter sequence rules across 
mammals.
(A) Schematic illustration of cross-species prediction comparison of human and mouse 

Puffin transcription initiation models. Models trained on human and model data respectively 

are evaluated on predicting holdout promoters. Example predictions and experimental 

signals were shown. (B) Human and mouse models have highly similar predictions 

(top panel) and almost equal performances (bottom panel) on the mouse genome. The 

distribution of correlations between human and model predictions on a mouse is shown 

in the top panel and the base pair level correlation for the human model (red) and mouse 

model (purple) are shown in the bottom panel. All comparisons are made on mouse holdout 

sequences (Methods). (C) Schematic illustration of sequence rule conservation analysis 

across 241 mammalian species. For each species, motif-specific base pair contribution 

scores are computed and compared with sequence conservation scores. (D) Position-specific 

sequence conservation scores for motifs share a similar pattern as our estimated position-

specific motif effects, from a human genome viewpoint. X-axis shows the position (bp) 

relative to annotated TSS (human genome viewpoint) and the y-axis shows average PhyloP 

Dudnyk et al. Page 36

Science. Author manuscript; available in PMC 2024 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scores for each motif, computed with the average weighting by motif activation scores. This 

TSS-centered pattern is mirrored versus the motif-centered view. The bold line and shades 

indicate posterior mean and 95% credible intervals of Gaussian process regression (Radial 

basis function kernel + White kernel + Periodic kernel for NFY, Radial basis function kernel 

+ White kernel for other curves). (E) Position dependencies of sequence conservation scores 

are also observed from the viewpoint of each of the 240 non-human mammalian species 

(left panel), with normalized percentage identity score (y-axis, Methods) with other species 

as the conservation metric. Base pair contribution scores computed by Puffin (right panel, 

x-axis, scores were transformed to the power of 0.25) are strong predictors of sequence 

conservations measured by percentage identity scores (y-axis) in all 241 mammalian species.
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