The crystal structure of the molecular complex between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene, which exhibits an N⋯I halogen bond, has been determined at 100 K.
Keywords: crystal structure, halogen bond, Hirshfeld surface analysis
Abstract
The crystal structure of the title 2:1 molecular complex between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene, C6F4I2·2C8H9NS, at 100 K has been determined in the monoclinic space group P21/c. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short N⋯I contact [2.8628 (12) Å]. The Hirshfeld surface analysis shows that the hydrogen⋯hydrogen contacts dominate the crystal packing with a contribution of 32.1%.
1. Chemical context
Earlier research investigated the deprotonation of allylic silicon compounds with organolithium reagents (Strohmann et al., 2006 ▸). In this work, 2-(allylthio)pyridine was synthesized to compare the chemical behavior to similar systems. The chosen synthetic route was adapted from the literature (Baudin et al., 1993 ▸) and could lead to two similar products (Fig. 1 ▸) that would be hard to distinguish based on 1H- and 13C-NMR alone. Since the 2-(allylthio)pyridine did not crystallize and was quite impure, 1,2,4,5,-tetrafluoro-3,6-diiodobenzene was added, which led to a two-component co-crystal referred to as complex 5. Halogen bonds between an aromatic iodine compound and a nitrogen compound can vary in their bond strength, length and angle (Otte et al., 2023 ▸). Since only the desired compound formed a halogen bond, the product could be separated from the impurities by simply isolating the co-crystals. Afterwards the 2-(allylthio)pyridine was reobtained by column chromatography.
Figure 1.
Synthesis of 2-(allylthio)pyridine 3 or 1-allylpyridine-2(1H)-thione 4.
2. Structural commentary
Complex 5 crystallized from heptane at 193.15 K as colorless plates in the monoclinic space group P21/c. The asymmetric unit consists of one molecule of 3 and half a molecule of 1,2,4,5,-tetrafluoro-3,6-diiodobenzene. The second half is generated by inversion symmetry (Fig. 2 ▸; symmetry operation −x, −y, 1 − z). The formula unit of the title compound consists of two molecules 2-(allylthio)pyridine and one molecule 1,2,4,5,-tetrafluoro-3,6-diiodobenzene, which lies on an inversion center.
Figure 2.
The molecular structure of the title compound 5, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.
The complex consists of multiple functional groups: an allyl group, a thioether, a pyridine and a perfluorinated diiodobenzene. The C1—C2 bond length [1.492 (2) Å] is longer than the C2—C3 bond length [1.316 (3) Å], which is explained by the double bond between C2 and C3. These lengths coincide with the C—C single bond length of 1.54 Å in ethane and the C=C double bond length of 1.33 Å in ethene (Lide, 2005 ▸). The C4—S1—C1 bond angle [102.91 (7)°] is a little bit larger than the C—S—C angle in dimethylsulfide [99.2 (1)°; Mitzel & Losehand, 2004 ▸]. The difference in bond angles might be explained by the larger pyridine substituent, of which C4 is a part. The bond lengths in the pyridine ring [C4—C5: 1.3976 (18) Å, C5—C6: 1.391 (2) Å, C6—C7: 1.387 (2) Å, C7—C8: 1.384 (2) Å, C8—N1: 1.3454 (18) Å and N1—C4: 1.3422 (17) Å] are not significantly longer compared to the bond lengths in pyridine (Lide, 2005 ▸). The bond angles of the pyridine moiety vary around 118°, which is typical for pyridine. The largest deviations from planarity of the pyridine (r.m.s. deviation 0.010 Å) are observed for C7 [–0.0124 (12) Å] and C4 [–0.0140 (9) Å]. The angle between the normal of the pyridine plane (N1,C4–C8) and the double bond between C2 and C3 is 115.35 (13)°.
The bond lengths and angles of 1,2,4,5,-tetrafluoro-3,6-diiodobenzene are consistent with those present in the Cambridge Structural Database. The benzene ring makes a dihedral angle of 12.88 (5)° with the pyridine ring.
3. Supramolecular features
Fig. 3 ▸ shows the packing of the complex. The most important supramolecular feature is the close contact between N1 and I1 with a coordination distance of 2.8628 (12) Å, which is shorter than the sum of the van der Waals radii of 3.73 Å (Nyburg & Faerman, 1985 ▸). The strength of a halogen bond is determined by the bond length and the bond angle. Strong halogen bonds are expected to have a bond length in the region of 2.781 (2) Å (Otte et al., 2023 ▸), which is shorter than the distance observed for 5. The N1—I1—C9 bond angle is 173.90 (4)°, which is slightly less than a theoretical ideal angle of 180°. In conclusion, the here presented structure shows a medium-strength halogen bond between N1 and I1. Further evidence for this is the small difference in 1H-NMR chemical shifts between compounds 3 and 5 (Fig. 4 ▸). Theoretically, the sulfur present here could also form a halogen bond with the iodine, but this behavior is not observed.
Figure 3.
A view of the packing of 5.
Figure 4.
1H-NMR spectra (400 MHz) of compounds 3 and 5 in CDCl3.
To better understand the van der Waals interactions, a Hirshfeld surface analysis was performed. In Fig. 5 ▸, the Hirshfeld surface generated by CrystalExplorer21 (Spackman et al., 2021 ▸) is mapped over dnorm (Spackman & Jayatilaka, 2009 ▸) and red dots are used to represent close contacts.
Figure 5.
Three-dimensional Hirshfeld surface of 5 mapped over dnorm.
For further exploration of the intermolecular interactions, two-dimensional fingerprint plots (McKinnon et al., 2007 ▸) were generated as shown in Fig. 6 ▸. The H⋯H interaction with a contribution of 32.1% has the biggest impact on the packing in the solid state. The C⋯H/H⋯C bonds with 20.0%, F⋯H with 16.8%, S⋯H/H⋯S with 14.1%, N⋯H/H⋯N with 3.3%, N⋯I/I⋯N with 3.2% C⋯I/I⋯C with 2.2% or N⋯C/C⋯N with 1.5% are less impactful in comparison.
Figure 6.
Two-dimensional fingerprint plots for 5 showing (a) all interactions, and (b)–(h) delineated into contributions from other contacts (blue areas) [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, last update June 2024; Groom et al., 2016 ▸) for 1,2,4,5-tetrafluoro-3,6-diiodobenzene yielded 802 hits. In 261 structures, the iodo atom interacts with a pyridine nitrogen atom with N⋯I distances ranging from 2.662 to 3.511 Å and averaging 2.911 Å. The mean C—I⋯N angle is 171.9°.
A search for the keywords halogen bond, thioether and pyridine leads to a structure of 1,2,4,5-tetrafluoro-3,6-diiodobenzene–4-(pyridin-4-ylsulfanyl)pyridine (1/1) (Arman et al., 2010 ▸). The variety of publications containing halogen bonds is quite large and includes the previously discussed strong halogen bond with quinuclidine (Otte et al., 2023 ▸) or halogen bonds with carbonyl hypoiodites as bond donors (Yu et al., 2021 ▸). The structural motif of thioethers is also well known, especially in the context of ligand chemistry with silicon-based thioethers for palladium (Schneider et al., 2023 ▸; Bastero et al., 2002 ▸) or silver (Nomiya et al., 1996 ▸; Gaudillat et al., 2023 ▸). Sulfonium-based ionic liquids (Zhao et al., 2007 ▸) and other systems like (Z)-3-allyl-5-(4-nitrobenzylidene)-2-sulfanylidene-1,3-thiazolidin-4-one (Moreno et al., 2024 ▸) are good examples of compounds with allyl groups.
5. Synthesis and crystallization
Complex 5 was synthesized by adding 1,2,4,5-tetrafluoro-3,6-diiodobenzene (293.96 g mol−1, 0.33 mmol, 0.5 eq., 97.19 mg) to a solution of 2-(allylthio)pyridine (151.23 g mol−1, 0.66 mmol, 1.0 eq., 100,00 mg) and pentane at room temperature. The solution was stirred for one h and crystallized at 193.15 K.
1H NMR (400 MHz, benzene-d6, ppm): 8.24 (dt, J = 4.9, 1.4, 2H, C5H4N), 6.80 (ddt, J = 27.0, 6.3, 1.6, 4H, C5H4N), 6.41–6.34 (m, 2H, C5H4N), 5.95 (ddd, J = 16.9, 10.1, 1.5, 2H, CH—CH2), 5.15 (dq, J = 16.9, 1.5, 2H, CH—CH2), 4.93 (dt, J = 10.0, 1.3, 2H, CH—CH2), 3.85 (dq, J = 6.9, 1.3, 4H, S—CH2).
13C NMR (101 MHz, benzene-d6, ppm): 159.10 (C5H4N), 149.60 (C5H4N), 135.66 (C6F4I2), 134.68 (C6F4I2), 122.28 (C5H4N), 119.23 (CH-CH2), 117.15(C5H4N), 65.93 (C5H4N), 32.88 (CH-CH2), 15.60 (C6F4I2), 1.42 (S-CH2).
19F NMR (377 MHz, benzene-d6, ppm): −118.86 (C6F4I2).
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1 ▸. Hydrogen atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms.
Table 1. Experimental details.
| Crystal data | |
| Chemical formula | 2C8H9NS·C6F4I2 |
| M r | 704.30 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 100 |
| a, b, c (Å) | 11.184 (2), 5.2951 (6), 20.544 (3) |
| β (°) | 96.137 (6) |
| V (Å3) | 1209.7 (3) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 2.82 |
| Crystal size (mm) | 0.25 × 0.23 × 0.07 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| Tmin, Tmax | 0.468, 0.567 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 91740, 5719, 5342 |
| R int | 0.036 |
| (sin θ/λ)max (Å−1) | 0.827 |
| Refinement | |
| R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.047, 1.12 |
| No. of reflections | 5719 |
| No. of parameters | 181 |
| H-atom treatment | All H-atom parameters refined |
| Δρmax, Δρmin (e Å−3) | 0.91, −0.73 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024005693/vm2304sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024005693/vm2304Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024005693/vm2304Isup3.cml
CCDC reference: 2362511
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene. Crystal data
| 2C8H9NS·C6F4I2 | F(000) = 676 |
| Mr = 704.30 | Dx = 1.934 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 11.184 (2) Å | Cell parameters from 9219 reflections |
| b = 5.2951 (6) Å | θ = 4.0–28.0° |
| c = 20.544 (3) Å | µ = 2.82 mm−1 |
| β = 96.137 (6)° | T = 100 K |
| V = 1209.7 (3) Å3 | Plate, colourless |
| Z = 2 | 0.25 × 0.23 × 0.07 mm |
Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene. Data collection
| Bruker APEXII CCD diffractometer | 5719 independent reflections |
| Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 5342 reflections with I > 2σ(I) |
| Mirror optics monochromator | Rint = 0.036 |
| Detector resolution: 7.9 pixels mm-1 | θmax = 36.0°, θmin = 1.8° |
| ω and φ scans | h = −17→18 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→8 |
| Tmin = 0.468, Tmax = 0.567 | l = −33→33 |
| 91740 measured reflections |
Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene. Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.019 | All H-atom parameters refined |
| wR(F2) = 0.047 | w = 1/[σ2(Fo2) + (0.0187P)2 + 0.9301P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.12 | (Δ/σ)max = 0.001 |
| 5719 reflections | Δρmax = 0.91 e Å−3 |
| 181 parameters | Δρmin = −0.73 e Å−3 |
| 0 restraints |
Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene. Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| I1 | 0.13965 (2) | 0.45457 (2) | 0.60714 (2) | 0.01556 (2) | |
| S1 | 0.40259 (3) | 0.94040 (6) | 0.63185 (2) | 0.02017 (6) | |
| F1 | −0.07102 (9) | 0.05135 (19) | 0.62168 (4) | 0.02486 (17) | |
| F2 | 0.17962 (9) | 0.28759 (19) | 0.45993 (5) | 0.02646 (18) | |
| N1 | 0.22969 (11) | 0.8241 (2) | 0.70166 (6) | 0.01990 (19) | |
| C10 | −0.03525 (12) | 0.0315 (2) | 0.56133 (6) | 0.01663 (19) | |
| C5 | 0.34960 (12) | 1.1694 (3) | 0.74802 (7) | 0.0211 (2) | |
| C7 | 0.17783 (15) | 1.0299 (3) | 0.79911 (7) | 0.0245 (3) | |
| C11 | 0.09192 (11) | 0.1455 (2) | 0.48116 (6) | 0.01691 (19) | |
| C9 | 0.05773 (11) | 0.1819 (2) | 0.54352 (6) | 0.01517 (18) | |
| C6 | 0.27543 (14) | 1.1910 (3) | 0.79795 (7) | 0.0248 (3) | |
| C4 | 0.32194 (11) | 0.9853 (2) | 0.70003 (6) | 0.01659 (19) | |
| C8 | 0.15980 (14) | 0.8479 (3) | 0.75070 (7) | 0.0236 (2) | |
| C1 | 0.49191 (14) | 1.2265 (3) | 0.63106 (8) | 0.0259 (3) | |
| C2 | 0.53357 (17) | 1.2510 (4) | 0.56476 (9) | 0.0324 (3) | |
| C3 | 0.64683 (17) | 1.2469 (5) | 0.55287 (9) | 0.0376 (4) | |
| H3A | 0.666 (3) | 1.271 (6) | 0.5084 (14) | 0.057 (8)* | |
| H8 | 0.091 (2) | 0.735 (5) | 0.7506 (12) | 0.037 (6)* | |
| H5 | 0.418 (2) | 1.273 (5) | 0.7475 (11) | 0.035 (6)* | |
| H7 | 0.126 (2) | 1.040 (5) | 0.8317 (14) | 0.042 (7)* | |
| H1A | 0.441 (2) | 1.372 (6) | 0.6366 (13) | 0.042 (7)* | |
| H2 | 0.463 (2) | 1.259 (6) | 0.5245 (13) | 0.050 (8)* | |
| H6 | 0.291 (2) | 1.313 (5) | 0.8299 (11) | 0.033 (6)* | |
| H1B | 0.564 (2) | 1.215 (5) | 0.6661 (11) | 0.032 (6)* | |
| H3B | 0.714 (2) | 1.232 (5) | 0.5891 (12) | 0.039 (7)* |
Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene. Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| I1 | 0.01687 (4) | 0.01338 (3) | 0.01582 (3) | 0.00101 (2) | −0.00106 (2) | −0.00098 (2) |
| S1 | 0.02284 (14) | 0.01741 (13) | 0.02085 (13) | 0.00025 (11) | 0.00504 (11) | −0.00131 (11) |
| F1 | 0.0313 (4) | 0.0287 (5) | 0.0160 (3) | −0.0073 (4) | 0.0087 (3) | −0.0051 (3) |
| F2 | 0.0292 (4) | 0.0281 (4) | 0.0235 (4) | −0.0131 (4) | 0.0095 (3) | −0.0036 (3) |
| N1 | 0.0244 (5) | 0.0172 (5) | 0.0182 (4) | −0.0040 (4) | 0.0027 (4) | −0.0015 (4) |
| C10 | 0.0192 (5) | 0.0171 (5) | 0.0139 (4) | −0.0002 (4) | 0.0031 (4) | −0.0016 (4) |
| C5 | 0.0220 (5) | 0.0191 (5) | 0.0217 (5) | −0.0024 (4) | −0.0004 (4) | −0.0039 (4) |
| C7 | 0.0285 (6) | 0.0265 (6) | 0.0192 (5) | −0.0014 (5) | 0.0056 (5) | −0.0027 (5) |
| C11 | 0.0185 (5) | 0.0162 (5) | 0.0163 (5) | −0.0021 (4) | 0.0028 (4) | −0.0003 (4) |
| C9 | 0.0166 (4) | 0.0137 (4) | 0.0148 (4) | 0.0009 (4) | −0.0001 (3) | −0.0005 (4) |
| C6 | 0.0298 (6) | 0.0234 (6) | 0.0210 (6) | −0.0018 (5) | 0.0019 (5) | −0.0066 (5) |
| C4 | 0.0180 (5) | 0.0148 (5) | 0.0165 (5) | 0.0008 (4) | −0.0001 (4) | 0.0002 (4) |
| C8 | 0.0269 (6) | 0.0240 (6) | 0.0202 (5) | −0.0068 (5) | 0.0047 (4) | −0.0017 (5) |
| C1 | 0.0276 (6) | 0.0232 (6) | 0.0281 (7) | −0.0057 (5) | 0.0082 (5) | −0.0014 (5) |
| C2 | 0.0346 (8) | 0.0356 (9) | 0.0274 (7) | −0.0067 (7) | 0.0047 (6) | 0.0066 (6) |
| C3 | 0.0336 (8) | 0.0541 (12) | 0.0263 (7) | −0.0108 (8) | 0.0090 (6) | −0.0044 (8) |
Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene. Geometric parameters (Å, º)
| I1—N1 | 2.8628 (12) | C7—C6 | 1.387 (2) |
| I1—C9 | 2.0921 (12) | C7—C8 | 1.384 (2) |
| S1—C4 | 1.7613 (14) | C7—H7 | 0.94 (3) |
| S1—C1 | 1.8158 (16) | C11—C9 | 1.3891 (17) |
| F1—C10 | 1.3471 (15) | C6—H6 | 0.92 (2) |
| F2—C11 | 1.3452 (15) | C8—H8 | 0.97 (3) |
| N1—C4 | 1.3422 (17) | C1—C2 | 1.492 (2) |
| N1—C8 | 1.3454 (18) | C1—H1A | 0.97 (3) |
| C10—C11i | 1.3867 (18) | C1—H1B | 1.03 (2) |
| C10—C9 | 1.3895 (18) | C2—C3 | 1.316 (3) |
| C5—C6 | 1.391 (2) | C2—H2 | 1.09 (3) |
| C5—C4 | 1.3976 (18) | C3—H3A | 0.97 (3) |
| C5—H5 | 0.94 (3) | C3—H3B | 1.01 (2) |
| C9—I1—N1 | 173.90 (4) | C7—C6—C5 | 119.64 (13) |
| C4—S1—C1 | 102.91 (7) | C7—C6—H6 | 120.4 (15) |
| C4—N1—I1 | 129.30 (9) | N1—C4—S1 | 113.22 (10) |
| C4—N1—C8 | 117.96 (12) | N1—C4—C5 | 122.60 (12) |
| C8—N1—I1 | 112.43 (9) | C5—C4—S1 | 124.17 (10) |
| F1—C10—C11i | 118.13 (11) | N1—C8—C7 | 123.47 (14) |
| F1—C10—C9 | 120.12 (11) | N1—C8—H8 | 117.6 (15) |
| C11i—C10—C9 | 121.74 (11) | C7—C8—H8 | 118.9 (15) |
| C6—C5—C4 | 118.22 (13) | S1—C1—H1A | 109.2 (16) |
| C6—C5—H5 | 120.7 (15) | S1—C1—H1B | 109.7 (14) |
| C4—C5—H5 | 121.0 (15) | C2—C1—S1 | 107.84 (12) |
| C6—C7—H7 | 122.0 (17) | C2—C1—H1A | 106.4 (16) |
| C8—C7—C6 | 118.05 (14) | C2—C1—H1B | 110.3 (13) |
| C8—C7—H7 | 119.9 (17) | H1A—C1—H1B | 113 (2) |
| F2—C11—C10i | 118.29 (11) | C1—C2—H2 | 115.2 (15) |
| F2—C11—C9 | 120.24 (11) | C3—C2—C1 | 124.68 (17) |
| C10i—C11—C9 | 121.45 (11) | C3—C2—H2 | 120.0 (15) |
| C10—C9—I1 | 121.41 (9) | C2—C3—H3A | 119.0 (17) |
| C11—C9—I1 | 121.77 (9) | C2—C3—H3B | 121.7 (14) |
| C11—C9—C10 | 116.81 (11) | H3A—C3—H3B | 119 (2) |
| C5—C6—H6 | 120.0 (15) | ||
| I1—N1—C4—S1 | −4.91 (15) | C6—C5—C4—S1 | 177.45 (11) |
| I1—N1—C4—C5 | 174.94 (10) | C6—C5—C4—N1 | −2.4 (2) |
| I1—N1—C8—C7 | −173.81 (13) | C6—C7—C8—N1 | −2.1 (2) |
| S1—C1—C2—C3 | −117.0 (2) | C4—S1—C1—C2 | −162.02 (12) |
| F1—C10—C9—I1 | −2.97 (17) | C4—N1—C8—C7 | 0.3 (2) |
| F1—C10—C9—C11 | 178.18 (12) | C4—C5—C6—C7 | 0.5 (2) |
| F2—C11—C9—I1 | −0.19 (17) | C8—N1—C4—S1 | −177.88 (11) |
| F2—C11—C9—C10 | 178.65 (12) | C8—N1—C4—C5 | 2.0 (2) |
| C10i—C11—C9—I1 | −178.42 (10) | C8—C7—C6—C5 | 1.6 (2) |
| C10i—C11—C9—C10 | 0.4 (2) | C1—S1—C4—N1 | 165.66 (10) |
| C11i—C10—C9—I1 | 178.43 (10) | C1—S1—C4—C5 | −14.19 (14) |
| C11i—C10—C9—C11 | −0.4 (2) |
Symmetry code: (i) −x, −y, −z+1.
References
- Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683. [DOI] [PMC free article] [PubMed]
- Bastero, A., Claver, C. & Ruiz, A. (2002). Catal. Lett.82, 85–88.
- Baudin, J. B., Hareau, G., Julia, S. A. & Ruel, O. (1993). Bull. Soc. Chim. Fr.130, 78–856.
- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
- Gaudillat, Q., Krupp, A., Zwingelstein, T., Humblot, V., Strohmann, C., Jourdain, I., Knorr, M. & Viau, L. (2023). Dalton Trans.52, 5859–5864. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
- Lide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mitzel, N. W. & Losehand, U. (2004). Z. Naturforsch. B, 59, 635.
- Moreno, B., Jourdain, I., Knorr, M., Boudriga, S., Strohmann, C. & Schrimpf, T. (2024). Molbank, M1783.
- Nomiya, K., Onoue, K. I., Kondoh, Y., Kasuga, N. C., Nagano, H., Oda, M. & Sakuma, S. (1996). Polyhedron, 15, 2303.
- Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.
- Otte, F., Kleinheider, J., Grabe, B., Hiller, W., Busse, F., Wang, R., Kreienborg, N. M., Merten, C., Englert, U. & Strohmann, C. (2023). ACS Omega, 8, 21531–21539. [DOI] [PMC free article] [PubMed]
- Schneider, P. E., Wattenberg, J., Wappelhorst, J. F., Knorr, M. & Strohmann, C. (2023). Z. Anorg. Allge Chem.649, e202300185.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Strohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc.128, 8102–8103. [DOI] [PubMed]
- Yu, S., Ward, J. S., Truong, K. N. & Rissanen, K. (2021). Angew. Chem. Int. Ed.60, 20739–20743. [DOI] [PMC free article] [PubMed]
- Zhao, D., Fei, Z., Ang, W. H. & Dyson, P. J. (2007). Int. J. Mol. Sci.8, 304–315.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024005693/vm2304sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024005693/vm2304Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024005693/vm2304Isup3.cml
CCDC reference: 2362511
Additional supporting information: crystallographic information; 3D view; checkCIF report






