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Abstract
Summary: Protein Interaction Explorer (PIE) is a new web-based tool integrated to our database iPPI-DB, specifically crafted to support structure-based 
drug discovery initiatives focused on protein–protein interactions (PPIs). Drawing upon extensive structural data encompassing thousands of heterodimer 
complexes, including those with successful ligands, PIE provides a comprehensive suite of tools dedicated to aid decision-making in PPI drug discovery. 
PIE enables researchers/bioinformaticians to identify and characterize crucial factors such as the presence of binding pockets or functional binding sites 
at the interface, predicting hot spots, and foreseeing similar protein-embedded pockets for potential repurposing efforts.
Availability and implementation: PIE is user-friendly and readily accessible at https://ippidb.pasteur.fr/targetcentric/. It relies on the 
NGL visualizer.

1 Introduction
Protein–protein interactions (PPIs) are integral to various bio-
logical functions (Stumpf et al. 2008), constituting a diverse 
and crucial element of cellular processes. The multifaceted 
roles of PPIs have positioned them as a credible and alterna-
tive reservoir of potential drug targets (Sperandio et al. 
2010). Going beyond their significance in biological path-
ways, the 3D) structure of PPIs plays a paramount role, 
influencing both their biological function and the potential 
binding of small molecules. This concept, known as 
“ligandability,” underscores the essential need for a ligand-
able binding site within the target—a foundational principle 
in drug discovery (P�erot et al. 2010) that gains particular im-
portance in the context of PPIs.

Extensive documentation affirms the substantial variability 
in numbers and sizes of PPI binding sites. The determination 
of their ligandability necessitates a thorough, case-by-case ex-
amination (Fuller et al. 2009, Kuenemann et al. 2016). 
Despite challenges arising from the lack of readily available 
ligands for PPIs, there exists an opportunity to explore alter-
native approaches for evaluating the feasibility of targeting 
these interactions with small-molecule inhibitors.

Over the years, numerous web-based tools have emerged to 
address various queries concerning PPI. One category of tools 

focuses on analyzing PPI networks for visualization, such as 
PIMA (Mathew and Sowdhamini 2016), OpenPIP (Helmy et al. 
2022), Cytoscape (Majeed and Mukhtar 2023), Proteinarium 
(Armanious et al. 2020), and Cellmap (Dallago et al. 2017). 
These tools utilize graph-based algorithms to construct and in-
terpret large networks of interacting molecules, aiding in the 
identification of functional modules, gene-based clustering, 
pathway detection, and understanding disease mechanisms.

Another category includes tools like SiteMap (Halgren 
2009), DoGSite3 (Graef et al. 2023a), PLIC database (Anand 
et al. 2014), P2Rank (Kriv�ak and Hoksza 2018), Coach, and 
Cofactor (Roy et al. 2012). They use geometric analysis to de-
tect protein surface cavities, along with features like pocket 
descriptors and druggability predictions. Pockdrug (Borrel 
et al. 2015) and DoGSite3 (Graef et al. 2023a), for instance, 
offer algorithms for pocket estimation and druggability pre-
diction, while PLIC database focuses on binding site clusters 
and COACH (Yang et al. 2013) provides ligand-binding 
site prediction.

Recently developed tools like PiMine (Graef et al. 2023b) 
and ProteinsPlus (Sch€oning-Stierand et al. 2022) offer unique 
functionalities such as alignment and similarity assessment of 
protein–protein interfaces and interactive analysis of protein- 
ligand binding interfaces.
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The Protein Interaction Explorer (PIE) described in this pa-
per introduces a novel web-based approach for analyzing 
protein structures, with a focus on heterodimer complexes. 
PIE facilitates the identification of functional binding sites, 
prediction of hot spots, and visualization of protein-ligand 
interactions. It offers 3D visualization of druggability and 
interactibility predictions, along with graphical representa-
tion of the “pocketome” derived from the IPPIDB database, 
distinguishing itself from existing PPI analysis tools.

Protein Interaction Explorer (PIE) introduced as a novel 
feature on our website and database iPPI-DB, innovates the 
exploration of PPIs. Drawing upon extensive structural data 
encompassing thousands of heterodimer complexes, includ-
ing those with successful ligands, PIE uses a holistic approach 
by integrating various visualization tools into a unified plat-
form facilitated by the NGL JavaScript package (Rose and 
Hildebrand 2015). This integration empowers users to effort-
lessly delve into each set of structural data, providing a com-
prehensive understanding of PPIs and their modulators.

Going beyond conventional structural data analysis, PIE 
introduces unique features such as the integration of detected 
pockets through VolSite (Desaphy et al. 2012), functional 
binding site predictions from InDeep (Mallet et al. 2022), cal-
culated hot spots using FoldX (Guerois et al. 2002), the abil-
ity to overlay liganded protein chains onto their 
corresponding heterodimer complex, and the introduction of 
a novel metric for pocket similarity (Moine-Franel et al. 
2024). Noteworthy is PIE's distinctive application of pocket 
similarity metrics, enabling researchers to navigate the PPI 
pocketome. This functionality allows for the discovery of po-
tential protein partners through structural similarities, 
thereby facilitating assisted repurposing efforts.

As we delve into the intricate world of PPIs, these advanced 
functionalities offered by PIE open new avenues for research-
ers and bioinformaticians. The integration of diverse tools 
within PIE not only enriches the dataset but also provides a 
holistic view of the molecular landscape of PPIs and how 
some have been successfully targeted with small molecules. 
This innovative platform not only accelerates computer-aided 
drug design but also enhances our comprehension of molecu-
lar interactions, adding valuable insights to the evolving field 
of PPI research (https://ippidb.pasteur.fr/tutorials).

2 Materials and methods
Protein selection
The chosen protein subset encompasses both heterodimer 
protein–protein complexes (HD—heterodimer) and mono-
mers paired with ligands associated with these heterodimers 
(PL—protein/ligand). The criteria for inclusion involve pre-
cise Uniprot annotation (Bateman et al. 2023), with hetero-
dimer complexes comprising exactly two molecules 
displaying distinct Uniprot annotations. Each molecule must 
consist of more than three residues. Ligands associated with 
PL complexes must meet specific criteria, including a mini-
mum number of heavy atoms and exclusive inclusion of 
drug-like atoms. These ligands are positioned at or near the 
interface associated with the heterodimer. The interaction 
patch determination relies on Euclidean distance calculations 
between all atoms of the protein target and its partner, with 
the distance threshold set at 6 Angstroms (Å).

Structure quality filters
A set of 3D structure quality filters was applied to the subset. 
Only structures determined through nuclear magnetic 
resonance, X-ray crystallography, or cryogenic electron mi-
croscopy (cryo-EM) were considered. For X-ray crystal and 
cryo-EM structures, selected structures exhibited a resolution 
equal to or <3.5 or 3 Å, respectively. Additionally, the differ-
ence between R-free and R-factor (for X-ray structures) and 
Fourier shell correlation (for cryo-EM structures) was equal 
to or <0.07 and 0.143, respectively. The 3D structures ex-
cluded any atoms with alternative locations at the protein– 
protein or protein–ligand interfaces.

Preparation steps
Before pocket detection, any incomplete amino acids in the 
structures were repaired using FoldX (Guerois et al. 2002) 
(version 5) software. Heteroatoms (specifically for HD com-
plexes) and water molecules were removed. Subsequently, 
both HD and PL complexes underwent protonation using 
GROMACS (version 2020) software (Van Der Spoel et al. 
2005, GROMACS 2020 Source code).

Pockets detection, filtration, and characterization
VolSite was utilized for the detection and characterization of 
pockets. Pockets were identified in both the protein target 
and its corresponding partner for HD complexes, treating the 
partner as the ligand in a sequential manner. For PL 
complexes, pockets were detected in the monomer. Post- 
detection, only pockets meeting specific criteria, such as hav-
ing at least four probes of their negative image located at 1 Å 
or less from a partner atom (protein or ligand), were retained. 
This filtering excluded non-orthosteric (HD) or non-liganded 
(PL) pockets. Pockets within monomers containing ligands 
were further classified as allosteric if the ligand was posi-
tioned >1 Å away from at least four probes of the negative 
image of the associated-heterodimer pocket. Orthosteric 
pockets were categorized as either competitive or non- 
competitive based on the proximity of the ligand to its pro-
tein partner.

We categorized PL pockets into three primary types: 
orthosteric competitive (PLOC), orthosteric non-competitive 
(PLONC), and allosteric (PLA) pockets. PLOC pockets in-
volve a direct competition between the ligand and the epitope 
of the protein partner within the heterodimer. In contrast, 
PLONC pockets contain ligands within orthosteric pockets 
that do not directly compete with the protein's epitope but 
may influence its function or conformation. Lastly, PLA 
pockets, positioned near the orthosteric binding pockets of a 
heterodimer, do not directly overlap with the orthosteric site 
but may induce allosteric effects.

A total of 89 pocket descriptors were computed with the 
VolSite software. Then, a set of 10 supplementary descriptors 
amalgamating attributes from those initially derived by 
VolSite was computed, to furnish a more nuanced depiction 
of pocket characteristics. These 10 amalgamated descriptors 
were determined in accordance with the methodology out-
lined in Kuenemann et al. (2016). Finally, 10 more geometric 
descriptors were computed using the RDKit3D module, to 
encompass key pocket properties such as asphericity, spheric-
ity index, molecular eccentricity, inertial shape factor, radius 
of gyration, principal moments of inertia, and normalized 
principal moments ratio. To keep consistency, these latter 
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descriptors were specifically calculated using the MOL2 files 
of the VolSite pockets.

Pocket similarity evaluation
The similarity between two pockets was assessed based on 
their Euclidean distance in the high-dimensional space of 
pocket properties (descriptors) calculated with VolSite. For 
each pocket, a set of 109 descriptors was initially computed 
and further reduced to 82 by keeping only those with non- 
zero values for >95% of the sample. Finally, all descriptors 
were re-scaled to zero mean and unit variance to reduce co-
variance effect in the distance calculation. Pairwise Euclidean 
distances between each pocket were computed, and a 
Gaussian kernel was applied to transform the distances into 
probabilities between 0 and 1, following Equation 1: 

PSIij ¼ exp
� d2

ij

2σ2

 !

(1) 

where dij is the Euclidean distance between pockets i and j 
(i⧣j) and σ is the standard deviation of d across all pairs.

Pocketome visualization
The pocketome is visually represented as a minimum span-
ning tree using the TMAP (Probst and Reymond 2020) tool. 
This method selectively chooses pairs from the complete PSI 
matrix to span the entire dataset optimally, minimizing the 
total distance. The resulting “tree” provides a simplified yet 
powerful visual representation reflecting local proximity 
(pocket similarity) in the high-dimensional pocketome space.

Hot spot prediction
FoldX (version 5) software was used to assess the impact of 
mutations at the interface on the stability of protein structure 
complexes. Residues exhibiting a change in free energy of 
1.5 kcal/mol or more were identified as critical hot spots, 
while those with a free energy shift within the range of 0.5 to 
1.5 kcal/mol were labeled as hot spots.

Functional binding site prediction
InDeep was utilized for predicting functional binding sites. 
This tool anticipates ligand-binding sites, specifically target-
ing ligandable binding sites for iPPIs (inhibitors of PPIs) and 
epitope-binding interactability patches. The predictions are 
based on deep learning techniques and leverage a meticu-
lously curated protein dataset to ensure accuracy and 
reliability.

3 Results
Following the filtration and pocket detection processes, the 
protein subset comprises 4770 HD complexes with 18 266 
orthosteric pockets and an additional of 4188 PL complexes 
with 4972 liganded pockets. Within ligandable binding sites, 
1830 pockets are engaged by an allosteric ligand, 817 pockets 
are bound by an orthosteric non-competitive ligand, and 
2325 pockets are occupied by an orthosteric competitive li-
gand. Altogether, the dataset encompasses 52 distinct fami-
lies of PPIs.

We designed PIE to explore a new pocket-centered dataset 
and establish links with the compound-centered dataset. The 
pocket-centered web interface comprises two main parts:

3.1 Query part

� Two search modes (basic and advanced) are available for 
users to conduct searches using criteria such as PDB ID, li-
gand ID, protein name, or organism. 

� Results are displayed in a list format, sorted by the num-
ber of matches. The first result is loaded in the visualiza-
tion part. 

� The second section includes a constructed minimum span-
ning tree (TMAP) representing the pocketome (Fig. 1). 
This TMAP provides a simplified yet powerful visual 
representation, capturing pocket similarity in the high- 
dimensional pocketome space. Users can apply color- 
coding based on various options, such as Pfam identifier, 
dataset classification (HD or PL), pocket volume, expo-
sure, hydrophobicity, aromaticity, and pocket asphericity. 
Each point on the TMAP represents a pocket, and the 
search bar allows users to focus on a specific pocket. 
Users can fly over each pocket one by one and click on a 
pocket to load the pocket-centered web interface of the re-
lated PDB. 

3.2 Visualization part

� Developed with the NGL JavaScript package, the visuali-
zation part displays a 3D view of the protein com-
plex (Fig. 1). 

� Visualization options allow users to view pockets detected 
by VolSite, view ligands, change protein representation, 
and adjust the threshold for intractability and druggabil-
ity surfaces prediction (InDeep). 

� Within the available choices for depicting the 3D struc-
tures of HD and PL complexes, users can observe critical 
and warm hotspots residues detected by FoldX. 

� At the bottom of the page, a table lists the main descrip-
tors of each pocket detected by VolSite. Users can display 
the nearest pocket neighbors, and the distance between 
pockets is based on descriptors. 

� The top five results from the HD and PL datasets are dis-
played. Links are available to allow exploration of the 
dataset, both compound-centered and pocket-centered, 
with proteins and ligands present in the table. 

� Superimposition of all available PL complexes onto the 
chosen HD complexes. This feature can be used to investi-
gate how the ligands were developed to modulate a given 
target, where is in the pocket they bind and with which 
possible hot spot they interfere. 

3.3 Case study: exploring MDM2 structure 
interactions with PIE features
When utilizing the MDM2 structure bound by p53 (PDB 
code: 2mps) as the query, PIE's capabilities can be effectively 
assessed (see Fig. 1). First, the visualization of this system in 
the NGL javascript window (panel a) can be supplemented 
by FoldX hot spot predictions (yellow sticks) and our InDeep 
predictions. InDeep predictions, particularly those related to 
Interactability, are illustrated with yellow isolevel probabili-
ties. Notably, the isolevel probabilities are adjustable using a 
slider that ranges from 0 to 1. This feature enables the precise 
highlighting of hydrophobic hot spots within the three-finger 
pharmacophore, offering a nuanced and customizable explo-
ration of the hydrophobic channels depicted in the analysis. 
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This nicely confirm the well-established three-finger pharma-
cophore on p53 (F306-W310-L313) bound to the 
MDM2 pocket.

Second, the VolSite pocket is presented as a negative image 
of the binding site (Panel b), featuring a set of probes phar-
macophoric probes (aromatic, hydrophobic, etc.) which also 
nicely overlay with the three-finger pharmacophore. Then, 
the user can overlay onto the MDM2/p53 complex structures 
all available ligands for MDM2 (Panel c) whose structure has 
been solved, deposited in the PDB and kept in PIE. This 
allows a useful visualization of the binding modalities of the 
different ligands and how the chemical moieties of the ligands 
have been used to mimic the p53 epitope.

A table beneath the GUI lists all identified neighboring 
pockets using PSI metrics (Panel d). PSI ranges from 0 
(depicted in red) to 1 (in green), with higher PSI values indi-
cating greater pocket similarity. Notably, the nearest neigh-
bors of 2mps' sole pocket include other MDM2 structures, as 
expected. Surprisingly, non-MDM2 systems, such as histone 
lysine acetyltransferase CREBBP bound to partner transcrip-
tion factor p65 (PDB code: 2lww), WD_REPEATS_REGION 
domain-containing protein bound to SET domain-containing 
protein (PDB code: 5trq), and ADP-ribosylation factor-like 
protein 2 bound to ADP-ribosylation factor-like protein 2- 
binding protein (PDB code: 3doe), also emerge, sharing com-
monalities with the p53 helix that binds the MDM2 pocket 
with hydrophobic residues. Moreover, some of these systems, 
despite lacking alpha helices, exhibit a similar hydrophobic 
set of bound residues.

Panel e showcases the full PPI pocketome visualization, 
allowing for exploration and analysis of PPI pockets either by 
clicking on each pocket or using the search field. It becomes 

evident that the TMAP visualization of the pocketome pro-
vides an alternative approach for assessing results, consider-
ing the number of shared neighbors to establish proximity 
within the tree. The use of Pfam-based (Mistry et al. 2021) 
coloring further highlights the effectiveness of this 
categorization.

4 Discussion
Tools like PIE could play a pivotal role in bioinformatics and 
structural biology by enabling researchers to explore, analyze, 
and understand the intricate world of protein structures and 
interactions. Its significance lies in its capacity to bridge the 
gap between structural data and biological insights, ultimately 
contributing to advancements in drug discovery, disease un-
derstanding, and the broader field of molecular biology.

PIE is a valuable tool for addressing the challenges associ-
ated with studying PPIs and ligand interactions. Here are 
some ways in which PIE helps overcome these challenges:

� Data integration and accessibility: PIE promotes open 
data access and sharing. This is crucial for advancing PPI 
and ligand interaction research, as it allows researchers to 
validate findings, collaborate, and build upon existing 
knowledge. This comprehensive data integration allows 
researchers to access a wide range of information about 
PPIs and ligand interactions in one place, simplifying the 
process of data gathering and analysis. 

� Visualization: PIE provides interactive and intuitive visu-
alizations of protein structures and interactions. 
Visualization is crucial for understanding complex PPIs 
and ligand interactions, as it allows researchers to see the 

Figure 1. Visualization of the PDB code 2mps (HD) results from PIE in the iPPI-DB database. (a) Visualization of p53/MDM2 (pdb code 2mps) in the NGL 
javascript window. (b) VolSite pocket is presented as a negative image of the binding site. (c) Overlay onto the MDM2/p53 complex structures all 
available ligands for MDM2. (d) table beneath the GUI lists all identified neighboring pockets using PSI metrics. (e) showcases the full PPI pocketome 
visualization as a minimum spanning tree.
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spatial arrangement of proteins and ligands, identify bind-
ing sites, and explore structural details (pockets, hot 
spots, and ligands). 

� User-Friendly interface: A user-friendly interface and ac-
cessibility of PIE make it easier for researchers from di-
verse backgrounds to utilize the tool effectively. This 
inclusivity promotes collaboration and knowledge sharing 
in the scientific community, through persistent links. 

� Comparative analysis: PIE enables comparative analysis 
of PPIs and ligand interactions across different proteins 
and complexes. Researchers can identify common binding 
motifs, structural similarities, and shared partners, which 
can lead to insights into conserved interaction patterns. 

� Ligandability assessment: PIE incorporates annotations to 
identify binding sites, and druggable regions within proteins 
through InDeep predictions. This aids in prioritizing targets 
for further experimental validation and drug discovery 
efforts, as it helps researchers identify targetable sites on pro-
teins and prioritize them for further investigation. 

� Hot spot identification: PIE includes the prediction of hot 
spots, which are crucial for comprehending the funda-
mental factors that influence the affinity of protein inter-
actions, and these predictions can provide valuable 
insights for drug design and therapeutic targeting. 

In summary, PIE addresses the challenges associated with 
studying PPIs and ligand interactions by providing a multifac-
eted platform that combines structural and functional 
insights. This resource facilitates research in the fields of drug 
discovery, molecular biology, and structural biology by pro-
viding valuable insights into complex protein interactions.

5 Conclusion
PIE serves as a powerful resource that empowers researchers in 
bioinformatics and structural biology to explore, analyze, and 
understand the intricate world of protein structures and inter-
actions. Its user-friendly interface, predictive tools, data inte-
gration, and customization options make it an essential asset 
for advancing research in these fields and accelerating discov-
eries that have a profound impact on fields such as drug devel-
opment, disease understanding, and molecular biology.

PIE has the potential to significantly impact our under-
standing of molecular interactions and protein functions by 
providing researchers with a comprehensive toolkit to ana-
lyze and visualize complex interactions and ultimately have a 
deeper comprehension of the molecular basis of life.
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