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Abstract 

AlphaFind is a web-based search engine that pro vides f ast str uct ure-based retrie v al in the entire set of AlphaFold DB str uct ures. Unlike other 
protein processing tools, AlphaFind is focused entirely on tertiary str uct ure, automatically extracting the main 3D features of each protein chain 
and using a machine learning model to find the most similar str uct ures. T his inde xing approach and the 3D feature extraction method used by 
AlphaFind ha v e both demonstrated remarkable scalability to large datasets as well as to large protein str uct ures. T he w eb application itself has 
been designed with a focus on clarity and ease of use. The searcher accepts an y v alid UniP rot ID, P rotein Data B ank ID or gene symbol as input, 
and returns a set of similar protein chains from AlphaFold DB, including various similarity metrics between the query and each of the retrie v ed 
results. In addition to the main search functionality, the application provides 3D visualizations of protein str uct ure superpositions in order to allow 

researchers to instantly analyze the str uct ural similarity of the retrie v ed results. T he AlphaFind w eb application is a v ailable online f or free and 
without any registration at https://alphafind.fi.muni.cz . 
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Introduction 

Protein structural data are highly beneficial scientific resources
that serve as the basis for ever-growing and valuable research.
Thanks to seven decades of intensive research, we currently
have > 200 000 experimental protein 3D structures deposited
in the Protein Data Bank (PDB) ( 1 ). Furthermore, the Al-
phaFold algorithm ( 2 ), trained on these experimental data,
produces highly reliable protein 3D structure predictions. As
a result, the AlphaFold database has been published ( 3 ), con-
taining > 200 million 3D protein structures. In parallel, other
databases of predicted protein 3D structures have been pub-
lished, such as ESM Metagenomic Atlas ( 4 ), collecting 600
Received: January 30, 2024. Revised: April 10, 2024. Editorial Decision: April 28
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million protein 3D structures. Various research fields in bioin- 
formatics benefit from such databases, with new cutting-edge 
technology on the horizon ( 5 ). 

To take full advantage of this enormous amount of data, it 
is essential to organize them efficiently . Specifically , it is nec- 
essary to perform a structure-based search, because structural 
similarities frequently imply functional correspondence, even 

without high sequence similarity. 
Unfortunately, conventional protein structure tools (e.g.

PDBeFold) are not able to handle such huge datasets. To 

address this issue, novel searching tools have been devel- 
oped, e.g. Foldseek ( 6 ), 3D-SURFER ( 7 ) or Dali server ( 8 ).
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ons Attribution License (https: // creativecommons.org / licenses / by / 4.0 / ), 
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Figure 1. Visual representation of AlphaFind’s w orkflo w. 

 

 

 

 

 

 

 

 

 

 

 

 

owever, their functionality has limitations. The main lim-
tation of tools such as Dali server or 3D-SURFER is that
heir methods do not scale well to large datasets. Foldseek
earch ( https:// search.foldseek.com/ ), while also not support-
ng search in the whole 214-million AlphaFold DB (instead us-
ng a pre-clustered 52-million subset AFDB50), handles large
rotein datasets very well by converting the local residue in-
eractions into a sequence of structural patterns—this allows
oldseek to exploit various well-established and extremely ef-
cient sequence searching techniques. However, its localized
pproach of focusing only on the local interactions between
ach residue and its closest neighbor has its own limitations
hen searching for broader similarity patterns within entire

tructures. 

escription of the web server 

he application is available as an online service free of charge.
t is composed of two integral components—a front end and a
ack end. The front end is accessible via an internet browser,
ommunicating with the back end that evaluates queries and
eturns results back to the front end. The back end starts with
n offline phase, where it pre-processes the data and creates a
earch index for rapid search request evaluation in the online
hase. 

rotein structure representation 

e utilize the compact data embedding method described in
 9 ) in conjunction with data clustering and machine learn-
ng. This approach captures the semantic relationships be-
ween protein structures and quickly identifies the most rel-
vant groups of data for a given query. The embedding of a
rotein is essentially an extremely compressed representation
f its 3D structure, which only accounts for the broad struc-
ural features of the whole structure while neglecting primary
r secondary structure information. 

ata preparation / indexation 

n the offline phase, we first extract semantic information from
aw cif files into vector embeddings, thereby compressing the
riginal AlphaFold DB size from ∼23 TiB into ∼20 GiB and
btaining representation that is more suitable for data pro-
essing algorithms. Then, we build an index on the embed-
ings using a learned indexing approach. Learned indexes
orm a new research stream defined by Kraska et al. for 1D
umeric data ( 10 ). This research direction was later expanded
o the domain of complex data where data items are compared
sing a distance function. The distance expresses complex sim-
larity beyond mere comparison of two integers, as shown in
 11 ,12 ). The latter two methods in conjunction with ( 9 ) estab-
ish the basis of the indexing solution presented here. 

orkflow 

lphaFind was developed to provide an intuitive and useful
nterface for discovering structurally similar proteins within
lphaFold DB. The workflow, as depicted in Figure 1 , was
ptimized and tested for maximum computational efficiency
o provide fast and accurate results. The following steps take
lace from the moment that the user poses a query: 

(1) Translating the input into a UniProt ID : AlphaFind sup-
ports three forms of input: UniProt ID, PDB ID and
gene symbol. Since UniProt ID is internally used to iden-
tify a protein, other forms of input must be translated
into UniProt ID using publicly available application pro-
gramming interfaces (APIs). For PDB ID to UniProt
ID conversion, we use https:// www.ebi.ac.uk/ pdbe/ api/
mappings/ uniprot/ , and for gene symbol to UniProt ID
conversion, AlphaFind relies on https://rest.uniprot.org/
idmapping . 

(2) Searching for a set of candidate proteins : Using the
UniProt ID, the server finds the associated protein struc-
ture embedding created during data preparation. This
embedding is served to the index (a fully connected neu-
ral network), which returns the top 10 most similar clus-

https://search.foldseek.com/
https://www.ebi.ac.uk/pdbe/api/mappings/uniprot/
https://rest.uniprot.org/idmapping
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ters to the embedding, narrowing down the set of candi-
dates from 214 million to ∼10 million. Then, Euclidean
distance is evaluated between the input and each candi-
date object embedding ( 13 ). We sort such candidates by
this proximity and take just 1000 closest proteins, which
reduces the search space even further. 

(3) Evaluating global and local similarity : Based on the de-
sired result set size ( n = 50, initially), the nearest n pro-
teins out of the candidate set are selected to evaluate local
(root-mean-square deviation, RMSD) and global (TM-
score) similarity, together with aligned residues and se-
quence identity , using the US-align tool ( 14 ). This is the
most time-intensive step of the search process, taking up
to several tens of seconds. 

(4) Downloading metadata for query and results : After col-
lecting the search results, AlphaFind uses the AlphaFold
DB’s API to collect useful information, such as the name
of the protein structure and the host organism name,
and groups the results by organism name for easier
orientation. 

(5) Visualizing protein structures’ overlap : To represent the
protein structure similarity visually, AlphaFind utilizes
NGL Viewer ( 15 ) to display an overlay of every pair
of the input protein and a result protein. Additionally,
for a more detailed view, each result points to the Mol*
Viewer ( 16 ). 

(6) Showing more results : The user has the option to expand
the search results by additional candidate proteins iden-
tified in step 2: they can choose to display 50, 100, 200
or 300 more. If this option is selected, steps 3–5 repeat,
and the result table is updated. 

(7) Downloading the results : Once searching is finished, the
user can download the results for future use or archival
in the CSV format using the ‘Export all to CSV’ button. 

To reduce response times, once steps 2 and 3 are executed
for a given input protein, the web server stores the computed
results, causing a significant reduction in subsequent waiting
times when searching for the same protein. 

Implementation 

The front end was implemented in TypeScript using the Re-
act framework ( https:// reactjs.org/ ) and the Bootstrap library
( https:// getbootstrap.com/ ). The back end is written in Python
3.10 with Flask ( https:// flask.palletsprojects.com/ ). 

We tested AlphaFind on a diverse set of proteins varying
in size, complexity and quality. AlphaFind provided biolog-
ically relevant results even for small, large and lower quality
structures. When AlphaFind did not offer structures with high
TM-scores, the results remained biologically relevant. The per-
formance of AlphaFind is scalable. 

Limitations 

AlphaFind is constructed on AlphaFold DB in version 3, pre-
dating the v4 update. The application returns up to 1000 simi-
lar protein structures to a single query. The results returned by
AlphaFind are approximate, and as such, they may not neces-
sarily contain all the most structurally similar proteins present
in AlphaFold DB. 

Approximate searching trades off resource demands (such
as hardware, time and money) for precision. It is customary
in complex data management, as the ‘objective answer’, e.g.
which protein structure is more similar to another, does not
have an indisputable answer in the first place. Moreover, the 
design of the application allows for loading additional data,
which expands and also refines the prior search answer. This 
functionality enables the user to find protein structures, which 

could have been missed in the previously shown search results.
AlphaFind processes the entire protein structure—its he- 

lices, sheets and its unstructured regions—and handles them 

with equal weight. Therefore, high occurrence of unstructured 

regions in the input structure can bias the search. This phe- 
nomenon is more prevalent in coiled-coil structures but can 

also be observed in some small structures. 

Results and discussion 

Searc hing c haracteristics 

Due to the data embedding method used, AlphaFind is mainly 
concerned with global structural similarity, always comparing 
the entire structure and treating all parts with equal weight, re- 
gardless of primary or secondary structure. Unlike established 

searching methods, which tend to place more focus on occur- 
rence of certain folds or high local similarity in particular re- 
gions, AlphaFind is more likely to find structural similarity 
across organisms where these regions are less conserved. 

AlphaFind indexes the entire AlphaFold DB, which con- 
tains 214 million protein structures. The conversion to em- 
beddings allows the application to search the database and 

return the first 50 results in an average of 7 s with negligible 
back-end load. The user can expand the obtained results in 

increments of 50, 100, 200 and 300, which takes, on average,
additional 7, 9, 11 and 15 s, respectively. During periods of 
high load, the users’ requests may be queued and processed 

with a slight delay, increasing with the number of concurrent 
users that interact with the application. 

We provide three use cases to demonstrate AlphaFind 

performance in different conditions. The first use case 
(hemoglobin alpha 1) is a typical use case for testing of pro- 
tein structure databases. Since this protein has been an object 
of intensive research for nearly five decades, a high number 
of very similar protein structures are present in PDB and Al- 
phaFold DB, and can thus be found by AlphaFind. The sec- 
ond use case is cytochrome P450, a protein containing a high 

number of secondary structure elements and a complex archi- 
tecture ( 17 ). This use case demonstrates that complex struc- 
tural patterns do not inhibit AlphaFind’s ability to reliably 
search for similar structures. The third use case shows how 

AlphaFind can help answer actual research questions. PIN 

proteins are currently the subject of intense research interest,
but a determination of their 3D structure is difficult and has 
only been successful for a few PIN representatives. Thanks to 

AlphaFind, predicted structures of various PIN proteins can 

be collected and analyzed. We demonstrate this on the PIN5 

protein, which is intensely studied by experimentalists at the 
moment. 

Example I: hemoglobin alpha 1 

Hemoglobin is a protein that facilitates the transport of oxy- 
gen and other gases in red blood cells. Almost all verte- 
brates contain hemoglobin. It consists of four protein subunits 
(globins), and is one of the first proteins whose 3D structure 
has been experimentally determined. There are many types 
of hemoglobin, with hemoglobin alpha 1 (encoded by the 
HBA1 gene) occurring in humans and being the main form 

of hemoglobin in adults. 

https://reactjs.org/
https://getbootstrap.com/
https://flask.palletsprojects.com/
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Figure 2. Hemoglobin alpha 1 from Homo sapiens (UniProt ID: P69905) 
in y ello w. Examples of AlphaFind search results: hemoglobin alpha 5 
from Aquarana catesbeiana (UniProt ID: A0A2G9QLR9) in blue, 
hypothetical protein from Ranitomeya imitator (UniProt ID: A0A821PI99) 
in green and globin from Alphaproteobacteria bacterium (UniProt ID: 
A0A3M1M8B2) in red. 

Figure 3. Cytochrome P450 family 76 subfamily C polypeptide 7 from Z. 
ma y s (UniP rot ID: A0A1D6JW22) in y ello w. Examples of AlphaFind 
search results: uncharacterized protein from Oreochromis niloticus 
(UniProt ID: A0A669CAC6) in blue, cytochrome P450 2C19 from Equus 
caballus (UniProt ID: A0A3Q2H4N0) in green and cytochrome P450 2H1 
from Haliaeetus albicilla (UniProt ID: A0A091PH09) in red. 

 

h

E

C  

m  

o  

i  

a  

c  

q  

s  

s  

c  

i  

m

E

T  

p  

t  

t  

a  

a  

e  

t  

i  

Figure 4. Auxin efflux carrier component 5 from Arabidopsis thaliana 
(UniProt ID: Q9FFD0) in yellow. Examples of AlphaFind search results: 
auxin efflux carrier component from Citrus unshiu (UniProt ID: 
A0A2H5NWV3) in blue, uncharacterized protein from Eucalyptus grandis 
(UniProt ID: A0A059BG64) in green and auxin efflux carrier component 
from Vitis vinifera (UniProt ID: A0A438CTF0) in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, AlphaFind shows us (Figure 2 ) that highly similar
emoglobin structures can also be found in other species. 

xample II: cytochromes P450 

ytochromes P450 are enzymes that are important for the
etabolism of many endogenous compounds and xenobi-
tics. P450 enzymes have been identified across all biolog-
cal kingdoms: animals, plants, fungi, bacteria and archaea,
s well as in viruses. Cytochrome P450 proteins contain one
hain that is composed of > 20 sheets and helices. Their se-
uence similarity is very low. In this use case, we can observe
imilarities among cytochrome P450 structures from various
pecies (Figure 3 ). The search starts with a cytochrome from
orn ( Zea mays ), and within the first 50 hits, we find sim-
lar structures originating from various animals (fish, eagle,
ouse, cat, horse, etc.). 

xample III: PIN5 protein 

he PIN proteins are transmembrane proteins that regulate
lant growth by influencing auxin transport from the cytosol
o the extracellular space. They only occur in plants and fea-
ure a configuration of 10 main helices that collectively form
 pore. Eight types of PIN proteins are known (PIN1–PIN8),
nd recently, the structures of three PIN proteins were uncov-
red and published in Nature . The structure of the PIN5 pro-
ein differs from other PINs ( 18 ) and has not yet been exper-
mentally determined. This use case shows (Figure 4 ) that the
PIN5 protein structure is strongly conserved among many dif-
ferent plant species. 

Conclusion 

In this article, we presented AlphaFind, a novel web applica-
tion for fast structure-based search of similar proteins in Al-
phaFold DB and PDB. AlphaFind utilizes the learned metric
index (LMI) approach and a 3D feature extraction method
designed for protein structures. The web application presents
the search results as a table, sortable according various crite-
ria, i.e. TM-score, RMSD and the number of aligned residues.
The users can also download the results as a CSV file or vi-
sualize superpositions of input and output proteins via NGL
Viewer. AlphaFind is easy to use and is platform-independent.
Documentation describing its usage is referenced on the fol-
lowing web page: https://alphafind.fi.muni.cz . 

Data availability 

AlphaFind application is available at no cost and no reg-
istration at https://alphafind.fi.muni.cz . The user manual is
referenced in the application and is also directly avail-
able at https:// github.com/ Coda- Research- Group/AlphaFind/
wiki/Manual . The application’s source code is accessible un-
der the MIT license at https:// github.com/ Coda-Research-
Group/AlphaFind and is also available on Zenodo at https:
// doi.org/ 10.5281/ zenodo.11085863 . The LMI is published
and its performance reproducibly examined in ( 19 ). The em-
beddings and weights for the LMI model are available in
the Czech National Repository’s pilot at https:// doi.org/ 10.
48700/datst.d35zf-1ja47 . 
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