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Abstract 

We introduce MetaboAnalyst version 6.0 as a unified platform for processing , analyzing , and interpreting data from targeted as well as untargeted 
metabolomics studies using liquid chromatography - mass spectrometry (LC–MS). The two main objectives in developing version 6.0 are to 
support tandem MS (MS2) data processing and annotation, as well as to support the analysis of data from exposomics studies and related 
e xperiments. K e y features of MetaboAnalyst 6.0 include: (i) a significantly enhanced Spectra Processing module with support for MS2 data and 
the asari algorithm; (ii) a MS2 Peak Annotation module based on comprehensive MS2 reference databases with fragment-le v el annotation; (iii) a 
new Statistical Analysis module dedicated for handling complex study design with multiple factors or phenotypic descriptors; (iv) a Causal Analysis 
module for estimating metabolite - phenotype causal relations based on two-sample Mendelian randomization, and (v) a Dose-Response Analysis 
module for benchmark dose calculations. In addition, we have also improved MetaboAnalyst’s visualization functions, updated its compound 
database and metabolite sets, and significantly expanded its pathway analysis support to around 130 species. MetaboAnalyst 6.0 is freely 
a v ailable at https://www.metaboanalyst.ca . 
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Introduction 

Metabolomics involves the comprehensive study of all small
molecules in a biological system. It has diverse applications
ranging from basic biochemical research to clinical investiga-
tion of diseases, food safety assessment, environmental moni-
toring, etc. ( 1–5 ). User-friendly and easily accessible bioinfor-
matics tools are essential to deal with the complex data pro-
duced from metabolomics studies. MetaboAnalyst is a user-
friendly, web-based platform developed to provide compre-
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hensive support for metabolomics data analysis ( 6–10 ). The 
early versions (1.0–3.0) focused primarily on supporting sta- 
tistical and functional analysis of targeted metabolomics data.
Increasing support for untargeted metabolomics data from 

liquid chromatography–mass spectrometry (LC–MS) experi- 
ments have been gradually introduced in more recent versions 
of MetaboAnalyst. For instance, version 4.0 implemented 

a new module to support functional analysis directly from 

LC–MS peaks, while version 5.0 added an auto-optimized 
 24, 2024. Accepted: March 26, 2024 
c Acids Research. 
ons Attribution License (http: // creativecommons.org / licenses / by / 4.0 / ), 
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C–MS spectral processing module that works seamlessly
ith the functional analysis module. A detailed protocol
n how to use different modules for comprehensive analy-
is of untargeted metabolomics data was published in 2022
 11 ). According to Google Analytics, the MetaboAnalyst web
erver has processed over 2 million jobs, including 33 000
pectral processing jobs over the past 12 months. Many of
hese jobs are associated with untargeted metabolomics and
xposomics studies. 

Untargeted metabolomics data generated from high-
esolution LC–MS instruments are typically characterized by
housands of peaks with unknown chemical identities. To as-
ist with compound identification, tandem MS (called MS / MS
r MS2) spectra are often collected from pooled QC samples
uring the experiments ( 12 ). The two commonly used MS2
ethods are data-dependent acquisition (DDA) and data-

ndependent acquisition (DIA), with sequential window ac-
uisition of all theoretical mass spectra (SWATH) being a
romising special case of the latter. DDA data usually have
lear associations between the precursor ions and the cor-
esponding MS2 spectra, while DIA data generally require
econvolution of the MS2 data to reconstruct associations
ith their precursor ions ( 13 ). Incorporating MS2 process-

ng and annotation into untargeted metabolomics workflows
an greatly improve compound annotations and functional
nterpretation. 

Exposomics is an emerging field centered on profiling the
omplete set of exposures individuals encounter across their
ifespan, which often involves MS analysis of chemical mix-
ures traditionally rooted in toxicology and public health ( 4 ).
ntargeted LC–MS based metabolomics is increasingly ap-
lied to exposomics and toxicology studies. Exposomics data
rom human cohorts is often associated with complex phe-
otypic data due to their observational nature. This requires
ore sophisticated data analysis and visualization methods

hat can take into consideration of multiple factors or covari-
tes. Exposomics studies typically produce long lists of poten-
ial biomarkers that are significantly associated with pheno-
ypes of interest. Identification of causal links from this large
umber of metabolite-phenotype relations is a natural next
tep. It has become possible recently with the availability
f many metabolomic genome-wide association studies (mG-
AS) that link metabolites and genotypes ( 14–16 ). By inte-

rating mGWAS data with comparable GWAS data that as-
ociate genotypes with various phenotypes ( 17 ), we can now
stimate causal relationships between a metabolite and a phe-
otype of interest through Mendelian randomization (MR)
 18 ). Dose-response experiments are often performed to fur-
her quantify cause-and-effect relationships. The experiments
re often conducted at multiple dose levels using in vitro as-
ays or animal models to calculate dose-response curves for
isk assessment of chemical exposures ( 19–21 ). 

To address these emerging needs from both the
etabolomics and exposomics communities, we have de-

eloped MetaboAnalyst version 6.0. This version includes
any key features: 

— A significantly enhanced spectra processing workflow
with the addition of asari algorithm for LC–MS spec-
tra processing ( 22 ), as well as support for MS2 (DDA or
SWATH-DIA) data processing. 
— A new module for MS2 spectral database searching for
compound identification and results visualization. 

— A new module for causal analysis between metabolites
and phenotypes of interest based on two-sample MR
(2SMR). 

— A new module for dose-response analysis including dose-
response curve fitting and benchmark dose (BMD) calcu-
lation. 

— A new module for statistical analysis with complex meta-
data; 

— A number of other important updates including: im-
proved functional analysis of untargeted metabolomics
data by integrating MS2-based compound identifi-
cation; updated compound database, pathways and
metabolite sets; as well as improved data visualization
support across multiple modules. 

MetaboAnalyst 6.0 is feely accessible at https://www.
metaboanalyst.ca , with comprehensive documentations and
updated tutorials. To better engage with our users, a dedi-
cated user forum ( https://omicsforum.ca ) has been operational
since May 2022. To dates, this forum contains > 4000 posts
on ∼700 topics related to different aspects of using Metabo-
Analyst. 

Ov er all design and w orkflo w of 
MetaboAnalyst 6.0 

MetaboAnalyst 6.0 accepts a total of five different data types
across various modules encompassing spectra processing, sta-
tistical analysis, functional analysis, meta-analysis, and inte-
gration with other omics data. Once the data are uploaded,
all analysis steps are conducted within a consistent framework
including data integrity checks, parameter customization, and
results visualization (Figure 1 ). Some of the key features in
MetaboAnalyst 6.0 are described below. 

Supporting asari and MS2 spectra in LC–MS 

spectra processing workflow 

LC–MS spectra processing remains an active research topic
in the field of untargeted metabolomics. Many powerful
tools have been developed over time, including XCMS ( 23 ),
MZmine ( 24 ), MS-DIAL ( 13 ) and asari ( 22 ). In addition to
using different peak detection algorithms, most tools require
manual parameter tuning to ensure good results. Such practice
often leads to results that vary significantly ( 25 ). To mitigate
this issue, MetaboAnalyst 5.0 introduced an auto-optimized
LC–MS processing pipeline to minimize the parameter-related
effects ( 10 ,26 ). The asari software has introduced a set of
quality metrics, concepts of mass tracks and composite mass
tracks and new algorithmic design to minimize errors in fea-
ture correspondence. It requires minimal parameter tuning
while achieving much faster computational performance ( 22 ).
The asari algorithm is now available in the LC–MS spectra
processing options, alongside the traditional approaches. 

MS2 spectra processing and metabolite identification
are important components of untargeted metabolomics. It is
now recognized that MS2 spectral deconvolution is neces-
sary to achieve high-quality compound identification results
for both DDA and SWATH-DIA data ( 27–29 ). MetaboAna-
lyst 6.0 offers an efficient, auto-optimized pipeline for MS2

https://www.metaboanalyst.ca
https://omicsforum.ca
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Figure 1. MetaboAnalyst 6.0 workflow for targeted and untargeted metabolomics data. Multiple data input types are accepted. Untargeted 
metabolomics inputs require extra steps for spectra processing and peak annotation. The result table can be used for statistical and functional analysis 
within a consistent w orkflo w in the same manner as for targeted metabolomics data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spectral deconvolution. The DDA data deconvolution method
is derived from the DecoID algorithm ( 28 ), which employs
a database-dependent regression model to deconvolve con-
taminated spectra. The SWATH-DIA data deconvolution al-
gorithm is based on the DecoMetDIA method ( 29 ), with the
core algorithm re-implemented using a Rcpp / C++ framework
to achieve high performance. When MS2 spectra replicates
are provided, an extra step will be performed to generate
consensus spectra across replicates. The consensus spectra
are searched against MetaboAnalyst’s curated MS2 reference
databases for compound identification based on dot product
( 28 ) or spectral entropy ( 30 ) similarity scores. The complete
pipelines for DDA and SWATH-DIA are available from the
Spectra Processing [LC–MS w / wo MS2] module. 

Raw spectra must be saved in common open formats and
uploaded individually as separate zip files. LC–MS spectra
data is mandatory, while MS2 is optional. Upon data up-
loading, MetaboAnalyst 6.0 first validates the status of the
MS files. For SWATH-DIA data, the SWATH window de-
sign is automatically extracted from the spectra. If the re-
lated information is missing, users will be prompted to man-
ually enter the window design. On the parameters setting
page, users can choose the auto-optimized centWave algo-
rithm ( 26 ) or the asari algorithm for LC–MS data processing.
If MS2 data is included, spectra deconvolution, consensus, and
database searching will be performed using the identified MS
features as target list. Once the spectra processing is complete,
users can explore both MS and MS2 data processing results
(Figure 2 A-B) and download the files or directly go to the 
Functional Analysis module. 

MS2 peak annotation 

MS2 data could be acquired independently from MS data 
acquisition. To accommodate this scenario and offer com- 
patibility with MS2 spectra results from other popular tools 
such as MS-DIAL, we have added a Peak Annotation [MS2- 
DDA / DIA] module to allow users to directly upload MS2 

spectra for database searching. Users can enter a single MS2 

spectrum or upload an MSP or MGF file containing multiple 
MS2 spectra. For single spectrum searching, users must spec- 
ify the m / z value of the precursor ion. However, for batch 

searching based on an MSP file, users do not need to spec- 
ify the precursors’ m / z values. To ensure timely completion of 
database searching, the public server processes only 20 spec- 
tra for each submission (the first 20 spectra by default). Users 
can manually specify spectra for searching. After conducting 
this pilot analysis with 20 spectra, users can download the R 

command history and use our MetaboAnalystR package to 

annotate all MS2 spectra ( 26 ). 
Multiple databases are available for compound identifica- 

tion. Database searching can be performed based on regu- 
lar reference MS2 spectra and / or their corresponding neutral 
loss spectra. The results are visually summarized as mirror 
plots based on the matching scores (Figure 2B). Users can in- 
teractively explore the MS2 database matching results. The 
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Figure 2. Example outputs from MetaboAnalyst 6.0. ( A ) Integrated 3D PCA score and loading plots summarizing the raw spectra processing results. ( B ) 
An interactive mirror plot showing the MS2 matching result. Matched fragments are marked with a red diamond. ( C ) Functional analysis results with the 
top four significant pathways labelled. ( D ) A forest plot comparing the effect sizes calculated based on individual SNPs (black) or using all SNPs by 
different MR methods (red). ( E ) Bar plots of the dose response curve fitting results showing how many times each model type was identified as the best 
fit. ( F ) A dose-response curve fitting result showing each of the concentration values (black points), the fitted curve (solid blue line), and the 
estimated benchmark dose (solid red line) with its lo w er and upper 95% confidence intervals (dashed red lines), respectively. 
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molecular formulas for the MS2 peaks in the reference
database spectra are predicted using the BUDDY program
( 31 ). Users can download the complete compound identifica-
tion table together with the mirror plots. 

Causal analysis via two-sample Mendelian 

randomization 

Understanding the causal relationships between metabolites
and phenotypes is of great interest in both metabolomics and
exposomics. GWAS have established links between genetic
variants (e.g. single nucleotide polymorphism, or SNPs) and
various phenotypes ( 32 ), while recent mGWAS provide con-
nections between genotypes with metabolites or metabolite
concentration changes. It becomes possible to estimate causal
relationships between metabolites and a phenotype of interest.
If a metabolite is causal for a given disease, genetic variants
which influence the levels of that metabolite, either directly
through affecting related enzymes or indirectly through influ-
encing lifestyle choices (such as dietary habits), should result
in a higher risk of the disease. These causal effects can be esti-
mated through Mendelian randomization (MR) analysis ( 18 ).
MR relies on the principle that genetic variants are randomly
distributed across populations, similar to how treatments are
randomly assigned in clinical trials. By leveraging this random
allocation, MR can evaluate whether a relationship between a
metabolite and a phenotype is causal, while reducing the im-
pact of confounding factors and reverse causality that often
plague observational studies. 

MR analysis in MetaboAnalyst is based on the 2SMR
approach (using the TwoSampleMR and MRInstruments R
packages) which enables application of MR methods using
summary statistics from non-overlapping individuals ( 17 ,33 ).
Users should first select an exposure (i.e. a metabolite) and
an outcome (i.e. a disease) of interest. Based on the selections,
the program searches for potential instrumental variables (i.e.
SNPs) that are associated with both the metabolite from our
large collections of the recent mGWAS studies ( 14 ) and the
disease from the OpenGWAS database ( 17 ). The next step is
to perform SNP filtering and harmonization to identify inde-
pendent SNPs through linkage disequilibrium (LD) clumping
( 34 ). When SNPs are absent in the GWAS database, proxy
SNPs are identified using LD. In addition, it is critical to har-
monize SNPs to make sure effect sizes for the SNPs on both
exposures and the outcomes are for the same reference al-
leles. The last step before conducting MR analysis is to ex-
clude SNPs affecting multiple metabolites to reduce horizontal
pleiotropy which occurs when a genetic variant influences the
outcome through pathways other than the exposure of inter-
est ( 35 ). MetaboAnalyst’s MR analysis page provides diverse
statistical methods (currently 12), each of which has its own
strengths and limitations. For instance, the weighted median
method is robust to the violation of MR assumptions by some
of the genetic variants, while Egger regression method is more
robust to horizontal pleiotropy. Users can point their mouse
over the corresponding question marks beside each method to
learn more details. 

Dose–response analysis 

Dose–response analysis is commonly used in toxicology and
pharmacology for understanding how varying concentrations
of a chemical can impact a biological system. It plays a pivotal 
role in risk assessment of chemical exposures ( 36 ). A key out- 
put of dose-response analysis is the benchmark dose (BMD),
the minimum dose of a substance that produces a clear, low 

level health risk relative to the control group ( 37 ). Chemicals 
identified from exposomics are often followed up by dose–
response studies to understand their mechanism of action or 
adverse outcome pathways ( 21 , 38 , 39 ). 

Dose–response experiment design includes a control group 

(dose = 0) and at least three different dose groups, typically 
with the same number of replicates in each group. The data 
should be formatted as a csv file with their dose information 

included as the second row or column. The analysis workflow 

consists of four main steps: (i) data upload, integrity check- 
ing, processing and normalization; (ii) differential analysis to 

select features that vary with dose levels; (iii) curve fitting on 

the intensity or concentration values of those selected features 
against a suite of linear and non-linear models, and (iv) com- 
puting BMD values for each feature. The algorithm for dose–
response analysis was adapted from the algorithm we devel- 
oped for transcriptomics BMD analysis ( 40 ,41 ). 

Updated compound database and knowledge 

libraries 

Compound database 

The compound database has been updated based on HMDB 

5.0 ( 42 ), with particular efforts made to synchronize with 

the IDs of other databases such as KEGG ( 43 ) and PubChem 

( 44 ) to improve cross-references during compound mapping 
and pathway analysis. The compound database was expanded 

by ∼4000 compounds (after removing ∼10 000 deprecated 

HMDB entries and adding ∼14 000 new entries). 

MS2 reference spectra database. 

A total of 12 MS2 reference databases were collected and cu- 
rated from public resources, including the HMDB experimen- 
tal MS2 database ( 42 ), the HMDB predicted MS2 database 
( 42 ), Global Natural Product Social Molecular Networking 
(GNPS) database ( 45 ), MoNA ( 46 ), MassBank ( 46 ), MINEs 
( 47 ), LipidBlast ( 48 ), RIKEN ( 49 ), ReSpect ( 50 ), BMDMS
( 51 ), VaniyaNP ( 46 ) and the MS-DIAL database (v4.90) ( 52 ).
The complete MS2 reference database currently comprises 
10 420 215 MS2 records from 1 551 012 unique compounds.
We also created a neutral loss spectra database calculated 

based on the algorithm implemented by the METLIN neutral 
loss database ( 53 ). The molecular formula of all MS2 frag- 
ments were pre-calculated using BUDDY ( 31 ). 

Pathway and metabolite set libraries 

The KEGG pathway libraries have been updated to their re- 
cent version (12 / 20 / 2023) via KEGG API. Based on user feed- 
back, the pathway analysis for both targeted and untargeted 

metabolomics data now supports ∼130 species (up from 28 

species in version 5.0), including many new mammals, plants,
insects, fungi, and bacteria, etc. We also updated the metabo- 
lite set libraries based on HMDB 5.0, MarkerDB ( 54 ), as well 
as manual curation. For instance, a total of 62 metabolite sets 
associated with dietary and chemical exposures were added 

during this process. The metabolite set library also incorpo- 
rated ∼3700 pathways downloaded from the RaMP-DB ( 55 ).
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ther features 

tatistical analysis with complex metadata 

he Statistical Analysis [metadata table] module in Metabo-
nalyst 6.0 now provides a comprehensive suite of meth-
ds for analyzing and visualizing metabolomics data in rela-
ion to various metadata, be it discrete or continuous. Users
an quickly assess the correlation patterns among different ex-
erimental factors using the metadata overview heatmaps or
nteractive PCA visualization. The interactive heatmap visu-
lization coupled with hierarchical clustering allows users to
asily explore feature abundance variations across different
amples and metadata variables. The statistical methods in
his module include both univariate linear models with co-
ariate adjustment as well as multivariate methods such as
NOVA Simultaneous Component Analysis ( 56 ,57 ). Random

orest is offered for classification with consideration of dif-
erent metadata variables of interest. More details about this
odule can be found in our recently published protocol ( 11 ).

nhanced functional analysis for untargeted 

etabolomics 

unctional analysis of untargeted metabolomics was initially
stablished based on mummichog and Gene Set Enrichment
nalysis (GSEA) since MetaboAnalyst 4.0 ( 58 ). It was further
nhanced in MetaboAnalyst 5.0 by incorporating retention
ime into calculating empirical compounds. MetaboAnalyst
.0 now allows users to upload an LC–MS peak list along
ith a corresponding MS2-based compound list to filter out
nrealistic empirical compounds to further improve the accu-
acy in functional analysis ( 59 ). 

nhanced data visualization support 

e have enhanced the quality of the interactive and synchro-
ized 3D plots across the dimensionality reduction methods
PCA, PLS-D A, sPLS-D A) used in MetaboAnalyst based on
he powerful three.js library ( https:// threejs.org/ ). New fea-
ures include customizable backgrounds, data point annota-
ions and confidence ellipsoids (Figure 2 A). We have also im-
lemented interactive plots for clustering heatmaps in the Sta-
istical Analysis modules to better support visual exploration
f large data matrices typical in untargeted metabolomics.
oth mouse-over and zoom-in functionalities are supported
o allow users to examine specific features or patterns of in-
erest. In addition to these enhancements, we also updated the
isualization for KEGG’s global metabolic network ( 43 ). 

ase study 

o illustrate the utility of the new features of MetaboAnalyst
.0, we used a metabolomics dataset collected in-house that
imed at studying glucose-induced insulin secretion in iso-
ated human islets. The dataset contains five samples of high-
lucose (16.7 mM) exposures, five samples of low-glucose (2.8
M) exposures, both for 30 min, and five quality control

QC) samples. The LC-MS spectra were collected using our Q-
xactive Orbitrap platform (Thermo Scientific, Waltham, MA
SA), together with three SWATH-DIA acquisitions from the
ooled QC. The spectra were first centroided and converted
nto mzML format using ProteoWizard ( 60 ,61 ) and uploaded
o MetaboAnalyst 6.0. LC–MS spectra processing was per-
ormed using the asari algorithm. All detected MS1 features
were used as a target list for MS2 deconvolution and database
searching. A total of 27 209 MS1 features were detected, with
4959 of them identified with at least one potential named
chemical identity. Functional analysis using the mummichog
algorithm indicated compounds showing significant changes
between the high-glucose and low-glucose groups were in-
volved in the Carnitine shuttle , Caffeine, Tryptophan, and
Coenzyme A metabolism pathways (Figure 2 C). These path-
ways have been consistently identified in previous studies
( 62–65 ). Finally, we performed a causal analysis on the as-
sociations between one of the significant metabolites identi-
fied, L-Cystathionine and type 2 diabetes (GWAS ID: finn-b-
E4_DM2). The default parameters were used for both SNP
filtering and harmonization, as well as MR analysis. Based
on these results, a significantly altered cystathionine level was
found to have a causal effect on type 2 diabetes (Figure 2 D),
which aligns well with a study published recently ( 66 ). This
case study highlights how MetaboAnalyst 6.0 allows users to
investigate the chemical identities of MS peaks, elucidate as-
sociations between metabolites and phenotypes to unveil pre-
viously unknown functional insights. To showcase the dose-
response analysis module, we utilized a published data col-
lected from BT549 breast cancer cells treated with four differ-
ent doses of etomoxir ( 21 ). Figure 2 E summarizes the results
from dose-response modeling. Figure 2 F shows an example
feature-level BMD calculated based on the fitted curve. The
workflow is included as a series of tutorials on our website. 

Comparison with other tools 

Several web-based tools have been developed to address vari-
ous aspects of metabolomics data processing, statistical analy-
sis, functional interpretation, and results visualization. Table 1
compares the main features of MetaboAnalyst 6.0 with other
popular tools including the previous version, XCMS online
( 23 ), GNPS ( 45 ), Workflow4Metabolomics (W4M) ( 67 ) and
MetExplore ( 68 ). For raw data processing, MetaboAnalyst
primarily focuses on supporting LC–MS data, whereas W4M
also supports GC–MS and NMR raw data processing, and
GNPS emphasizes MS2-based compound identification via
molecular networks. In comparison, MetaboAnalyst provides
an auto-optimized workflow along with an additional algo-
rithm (asari) for efficient LC–MS spectra processing, together
with more extensive MS2 spectra libraries for compound
identification. In terms of statistical analysis, MetaboAnalyst
6.0 has introduced new modules for dealing with complex
metadata, causal analysis and dose–response analysis, while
maintaining all other functionalities. MetaboAnalyst contains
unique features for enrichment and pathway analysis, and
these strengths were further improved in version 6.0, with the
addition of unique functions and supports for more species.
For network analysis and integration, MetExplore specializes
in metabolic network visualization and integration with other
omics. These features are addressed by our companion tool,
OmicsNet ( 69 ). Overall, MetaboAnalyst 6.0 continues to be
the most comprehensive tool for metabolomics data process-
ing, analysis and interpretation. 

Conclusion 

By incorporating a new MS2 data processing workflow,
MetaboAnalyst 6.0 now offers a web-based, end-to-end plat-
form for metabolomics data analysis. The workflow spans

https://threejs.org/
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Table 1. Comparison of MetaboAnalyst 6.0 with its pre vious v ersion and other common web-based metabolomics tools. Symbols used for feature 
e v aluations with ‘ 

√ 

’ for present, ‘-’ for absent, and ‘+’ for a more quantitative assessment (more ‘+’ indicate better support) 

MetaboAnalyst 

Tools 6.0 5.0 XCMS Online GNPS W4M MetExplore 

Raw spectra processing 
MS1 feature detection +++ ++ + − + −
MS1 feature annotation ++ ++ ++ − + −
MS2 spectra deconvolution 

√ − − − − −
MS2 compound identification +++ − +++ +++ − −
Raw spectra results visualization ++ ++ + + + −
GC-MS / NMR spectra processing − − − − √ −
Statistical Analysis 
Univariate +++ ++ + − ++ −
Multivariate +++ ++ + − ++ −
Clustering +++ +++ + − + −
Classification 

√ √ − − − −
Complex metadata support 

√ − − − − −
Biomarker analysis 

√ √ − − − −
Power analysis 

√ √ − − − −
Meta-analysis 

√ √ − − − −
Dose-response analysis 

√ − − − − −
Causal analysis 

√ − − − − −
Functional analysis 
Functional analysis (MS peaks) +++ ++ ++ − − −
Enrichment analysis (compounds) +++ ++ − − − + 
Functional meta-analysis 

√ √ − − − −
Network analysis ++ ++ − + − ++ 

• XCMS online: https:// xcmsonline.scripps.edu/ . 
• GNPS: https:// gnps.ucsd.edu/ . 
• Workflow4Metabolomics (W4M): https:// workflow4metabolomics.org/ . 
• MetExplore: https:// metexplore.toulouse.inra.fr/ metexplore2/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from raw MS spectra processing to compound identification
to functional analysis. A key motivation in developing ver-
sion 6.0 was to support the data analysis needs emerging from
exposomics and follow-up validation studies. The new statis-
tical analysis module specifically takes into account of com-
plex metadata to better identify robust associations. From
these associations, users can perform causal analysis based
on 2SMR to narrow down candidate compounds. The re-
maining compounds can be validated through dose-response
studies based on in vitro or animal models. Our case study
highlights the streamlined analysis workflow from raw spectra
processing to compound annotation, to functional interpreta-
tion, and finally to causal insights. In conclusion, MetaboAn-
alyst 6.0 is a user-friendly platform for comprehensive anal-
ysis of metabolomics data and help address emerging needs
from recent exposomics research. For future directions, we
will continue to improve metabolome annotations, better in-
tegrate with other omics data, and explore new ways to inter-
act with users via generative artificial intelligence technologies
( 70–73 ). 
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