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Abstract 

P rediction of conf ormational B-cell epitopes is a crucial task in vaccine design and de v elopment. In this w ork, w e ha v e de v eloped SEMA 2.0, a 
user-friendly w eb platf orm that enables the research community to tackle the B-cell epitopes prediction problem using state-of-the-art protein 
language models. SEMA 2.0 offers comprehensive research tools for sequence- and str uct ure-based conformational B-cell epitopes prediction, 
accurate identification of N-glycosylation sites, and a distinctive module for comparing the str uct ures of antigen B-cell epitopes enhancing our 
ability to analyze and understand its immunogenic properties. SEMA 2.0 website https://sema.airi.net is free and open to all users and there is 
no login requirement. Source code is a v ailable at https: // github.com / AIRI-Institute / SEMAi 
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ntigen-antibody interactions play a significant role in the im-
une response. The specific, discontinuous binding sites on

he antigen structure that are recognized by antibodies pro-
uced by B-cells are known as conformational B-cell epitopes.
redicting conformational B-cell epitopes in antigens is a crit-
cal task in immunology and vaccine development. AI-based
pproaches based on large pre-trained protein language mod-
ls (PLMs) offer significant advantages in addressing this chal-
enge. Recently, we have developed SEMA (Spatial Epitope

odelling with Artificial Intelligence), a web server that pre-
icts conformational epitopes with high accuracy ( 1 ). 
In this work, we introduce SEMA 2.0, a new version of the

EMA web platform featuring an updated dataset, improved
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underlying models, and novel functionality . Notably , large
state-of-the-art pre-trained PLMs were used for sequence-
based prediction of conformational B-cell epitopes. For the
sequence-based prediction, we used new ESM2 (Evolution-
ary Scale Modeling) models with 3 billion parameters which
show improvements over ESM-1v models with 650 million
parameters that we used in the previous version of SEMA
( 1–3 ). For the structure-based prediction of B-cell conforma-
tional epitopes, we utilized PLMs with a geometric modality,
SaProt (Structure-aware Protein language model) in contrast
to ESM-IF1 (ESM Inverse folding model) used in the previ-
ous version ( 4 ). This approach takes into account the spatial
arrangement of the target antigen as well as its primary se-
quence, allowing for the prediction of B-cell conformational
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within a 12 Å distance. 
epitopes while considering the antigen’s conformational and
multimeric states. 

Several web servers and models for the conformational B-
cell epitope predictions were recently published. Among them
BepiPred 3.0 ( 5 ), SEPPA-3.0 ( 6 ), DiscoTope 3.0 ( 7 ). The ma-
jor advantage of the SEMA 2.0 web server, is leveraging large
pre-trained PLMs to achieve high performance metrics to-
gether with additional functionality. In particular, we have de-
veloped a model capable of identifying local structural simi-
larities within two antigen structures aiding in the identifica-
tion of similar conformational B-cell epitopes that may mimic
immune responses. Post-translational modifications (PTMs),
such as N- glycosylation are known to significantly affect the
immunogenic properties of the antigen ( 6 ,8 ). To take into ac-
count this SEMA 2.0 includes a pre-trained model designed to
predict N-glycosylation sites alongside conformational B-cell
epitopes. 

Overall, this work introduces a comprehensive web server
for B-cell conformational epitope prediction, enriching the
field of computational immunology with new functionalities
and broad applicability. 

Materials and methods 

Datasets 

Epitopes dataset 
The epitopes dataset was generated as described in the ( 1 )
using the Protein Data Bank (PDB) database as released on
28 December 2023. In brief, for the amino acid residues of
the antigen within the 8 Å of the interacting antibody the
contact number was calculated. Amino acid residues beyond
16 Å of the interaction site were masked. Additionally, the
training set was filtered out from the homologous sequences
in the test set using the BLAST tool ( 9 ). For this purpose se-
quences with more than 30% identity and the E -value lower
0.05 were excluded from the training set. The final train
and test sets consist of 1544 and 101sequences respectively
( Supplementary Tables S1 and S2 ). 

N-glycosylation dataset 
To train the model for N-glycosylation sites prediction, we
used a dataset collected by Wang et al. ( 10 ). We used a binary
classification to mark residues with N-glycans and without.
In total, the dataset included 8,963 samples and was divided
into training and test sets in a ratio of 9:1. 

SEMA-1D ensemble 

In SEMA-1D we used an ensemble of 5 ESM-1v models with
650 million parameters. For SEMA-1D 2.0, we replaced the
ESM-1v models with more powerful ESM-2 models ( 2 ) with
3 billion parameters each. We used exactly the same training
hyperparameters as in ( 1 ). We also trained an ensemble of 5
ESM-2 models with 650 million parameters for comparison. 

SEMA-3D ensemble 

The previous version of the SEMA-3D ensemble consisted
of 5 ESM-IF1 geometric models. In SEMA-3D 2.0, we used
an ensemble of 5 pre-trained protein bimodal SaProt models
with 650 million parameters each ( 4 ). SaProt is a transformer
model, with architecture similar to ESM2. Structure informa-
tion of each residue is encoded in one of 20 tokens from 3Di
Foldseek vocabulary ( 11 ). Foldseek finds nearest neighbours
for each residue and derives multiple features: seven angles,
the Euclidean CA distance and two sequence distance features 
from the six CA coordinates of the two backbone fragments.
It utilizes vector quantized variational autoencoder (VQ-VAE) 
to encode these relative structure features into one of 20 3Di 
tokens ( 11 ). This makes it possible to predict epitopes based 

on both structure- and sequence- modalities. To obtain 3Di 
tokens, the input protein structures derived from the PDB 

database were processed by FoldSeek. Models in SEMA-3D 

2.0 were trained on the same dataset as SEMA-1D 2.0 using 
structures derived from the PDB database as an input. Train- 
ing hyperparameters for models in SEMA-3D were the same 
as for the previous version and described in ( 1 ). Additionally,
inference of the SEMA-3D model can be done in multichain 

mode. Within this mode, the protein subunits are presented 

as a single sequence, while the structure-aware dictionary is 
calculated in the same way as in the SEMA-3D monomer. 

Model for structural comparison of antigens 

The architecture of the model that allows the conducting lo- 
cal structure comparison of proteins is shown in Figure 1 . The 
model is trained to identify local structural similarities within 

proteins, based on the non-linear transformation of multipli- 
cation of the embeddings of PLM with geometric modalities. 

A specific dataset comprising protein structures and 

epitope-like regions from homologous proteins was prepared.
For this purpose, AlphaFold-predicted structures from the 
SwissProt database ( 12 ) were clustered based on sequence ho- 
mology > 45%. Clustering was performed using MMSeqs ( 13 ) 
software with the coverage mode set to 0, and a coverage 
threshold of 0.7 established. Within each cluster, the central 
structure was selected as the reference. To select discontinu- 
ous epitope-like protein fragments, amino acid residues on the 
protein structure’s surface were randomly selected that have 
epitope score predicted by SEMA 2.0 higher than threshold 

value. Protein fragments within a 5.0 Å radius of surface- 
exposed amino acid residues were included to the discon- 
tinuous epitope-like entity. Each fragment had a minimum 

length of five amino acid residues. Such entities were included 

in the dataset if the average p-LDDT value, as predicted by 
AlphaFold for the structure, exceeded 70, and at least five 
polar and solvent-exposed amino acid residues were present 
within the structure. This analysis was conducted using Py- 
MOL scripts (version 2.5.4). Thus for each pair of homol- 
ogous proteins within the cluster, discontinuous epitope-like 
protein regions in size from 20 to 70 residues were selected. 

The model was trained to predict matching residues be- 
tween the reference structure and discontinuous epitope-like 
protein regions. The matching residues were represented as 
a binary matrix, indicating residue-wise matches between the 
reference and epitope structures. The prediction of each el- 
ement in the alignment matrix was treated as a distinct bi- 
nary classification task, for which the training involved min- 
imizing the binary cross-entropy loss function. The training 
dataset comprised 28 688 samples, with 3156 samples ran- 
domly selected for model validation. The following set of 
hyper-parameters was used to train the model: SaProt-35M 

encoder , AdamW optimizer , 1 × 10 

−4 learning rate with lin- 
ear scheduler, trained for six epochs. To filter out noise in the 
model output we include only those pairs of matching residues 
that have at least two additional matching amino acid residues 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae386#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae386#supplementary-data
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Figure 1. Training of the model to detect str uct ural similarities between epitopes and antigen str uct ures. Within the pipeline, both epitope-like str uct ures 
and target antigen str uct ures are used to generate str uct urally a w are SaP rot sequences, which are then passed into the SaP rot-35M encoder. T he outer 
product of encoder embeddings is then fed into a 2-la y er MLP (multi-la y er perceptron) network to predict matches between individual residues. Mint 
green elements of the predictions matrix correspond to values of 1 (match), and grey elements—to values of 0 (no match). This prediction is used to 
identify str uct urally similar regions. 
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-glycosylation model 

he N-glycosylation prediction model was obtained by
dding a fully-connected linear layer on the top layer of the
SM-2 pre-trained model. The fully-connected layer takes in-
ut from the last layer of the respective pre-trained PLM and
eturns a one-dimensional vector of logits. Logits were used
or the classification of Asparagine amino acid residue on
hether it was N-glycosylated or not. We used the Adam op-

imizer and binary cross-entropy (BCE) loss function to train
he model. The model was trained for two epochs with a start-
ng learning rate of 1e −5. 

esults 

pdated SEMA-1D and SEMA-3D ensembles 

he previous version of SEMA-1D has been updated by utiliz-
ng larger pre-trained PLMs. These models underwent training
sing either the previous training set or a new training set. The
rimary distinction from the previously published training set
 1 ) lies in the inclusion of additional labeled antigen samples
rom newly released structures of the PDB database. In con-
rast to the previous version, a stricter filter was applied to
xclude homologous sequences (with similarity > 30%) from
he training set that is present in the test set samples. 

Following ( 1 ), the new SEMA-1D and SEMA-3D, as well as
he final ensemble, were evaluated using two test sets: masked
nd unmasked. The masked test set included tasks to pre-
ict epitope residues within a distance of 16 Å from known
pitopes, thereby avoiding potentially uncharacterized anti-
en regions due to the absence of experimental data. Con-
ersely, the unmasked test set involved tasks to predict epitope
esidues across the entire length of the antigen sequence. 

As shown in Table 1 , implementing a more stringent exclu-
ion of homologous sequences from the training set leads to
 slight decrease in the ROC AUC metric for ESM-1v. How-
ver, the utilization of larger models from the ESM-2 family
arkedly enhances model performance. Specifically, the ESM-
2 model with 3 billion parameters achieves an ROC AUC of
0.76 on the unmasked test set and 0.73 on the masked test
sets. 

For the new SEMA-3D ensemble, we utilized the state-of-
the-art PLM that incorporates both sequence and geometric
modalities, SaProt ( 4 ). The application of SaProt has led to en-
hanced performance metrics compared to the previous version
of the SEMA-3D ensemble, which was based on the ESM-IF1
models ( 14 ), as detailed in Table 1 . 

Moreover, we demonstrate that the final ensembling of
SEMA-1D and SEMA-3D predictions significantly improves
the ROC AUC metrics on both masked and unmasked test
sets, as shown in Table 1 . 

To benchmark the performance of the SEMA-1D and
SEMA-3D ensembles against other commonly used tools, we
evaluated the metrics for DiscoTope-3.0 ( 7 ), BepiPred-3.0 ( 5 )
and SEPPA 3.0 ( 6 ) using the same test sets (Table 2 and
Figure 2 ). DiscoTope-3.0 and BepiPred-3.0 models exhibited
similar performance on the unmasked test sets compared to
all SEMA 2.0 models. However, the SEMA-1D / 3D ensem-
ble demonstrates superior performance on the masked test
set. The masked test set was designed to focus on protein
regions in close proximity to experimentally determined an-
tibody contacts while excluding uncharacterized protein re-
gions. Specifically, it includes only antigen residues located
within a proximity of 16 Å from the known antibody binding
site, with a positive label assigned for antigen residues located
within 4.5 Å from the targeting antibody residues, and a neg-
ative label if it is located further away. This test set enables
a more rigorous evaluation of the model’s ability to delineate
the boundaries of the conformational epitope, while excluding
distant regions for which the experimental annotation might
be missing. The superior performance of SEMA 2.0 within this
test set highlights the additional advantages of our model. 

The special interest of the SEMA-3D model could be in the
prediction of the conformational B-cell epitopes of the anti-
gen structures that fold in the multimeric state. SEMA-3D can
also predict epitopes for dimers, e.g. S AR S-CoV-2 M protein
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Table 1. Performance comparison (ROC AUC) of SEMA 1.0 and SEMA 2.0 models based on the PLM model using the training and test sets from work 
( 1 ) (old dataset) and updated training set (new dataset) 

Old dataset New dataset 

Model Modality Masked test Unmasked test Masked test Unmasked test 

SEMA 1.0 ESM-1v 1D 0.715 0.748 0.691 0.723 
ESM-IF1 3D 0.726 0.756 0.726 0.752 

SEMA 2.0 ESM-2 650M 1D 0.728 0.768 0.715 0.747 
ESM-2 3B 1D 0.723 0.766 0.731 0.766 
SaProt 3D 0.743 0.781 0.731 0.761 
SaProt+ESM-2 650M 1D / 3D 0.752 0.79 0.740 0.771 
SaProt+ESM-2 3B 1D / 3D 0.751 0.791 0.744 0.777 

Table 2. Quality comparison of SEMA2.0 and other models 

Model AUC Threshold PPV Sensivity MCC 

Masked test SEMA-1D 0 .731 0 .362 0 .613 0 .67 0 .278 
SEMA-3D 0 .731 0 .71 0 .615 0 .666 0 .276 
SEMA-1D / 3D 0 .744 0 .483 0 .617 0 .677 0 .288 
DiscoTope-3.0 0 .716 0 .164 0 .602 0 .651 0 .249 
BepiPred-3.0 0 .69 0 .148 0 .595 0 .638 0 .23 
SEPPA3.0 0 .632 0 .048 0 .581 0 .599 0 .179 

Unmasked test SEMA-1D 0 .766 0 .343 0 .561 0 .696 0 .218 
SEMA-3D 0 .761 0 .637 0 .561 0 .689 0 .215 
SEMA-1D / 3D 0 .777 0 .479 0 .564 0 .703 0 .229 
DiscoTope-3.0 0 .77 0 .164 0 .568 0 .694 0 .229 
BepiPred-3.0 0 .763 0 .102 0 .56 0 .693 0 .215 
SEPPA3.0 0 .636 0 .048 0 .542 0 .611 0 .137 

For all models, we used same the set of proteins as in (1). Performance of the models was assessed using AUC, Matthews correlation coefficient (MCC), 
positive predictive value (PPV) and sensitivity metrics. To calculate MCC, PPV and sensitivity we converted prediction values to a binary values applying a 
threshold. Threshold was set as an optimal cut-off provided by ROC AUC analysis corresponding to the highest true positive rate together with the lowest 
false positive rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 3 ) with similar ROC AUC scores, 0.906 for the dimer
versus 0.884 for the monomers separately. 

N-glycosylation prediction model 

We integrated within the SEMA 2.0 pre-trained model to pre-
dict the N-glycosylation sites. For this purpose, we fine-tuned
the ESM-2 model with 650 million parameters to solve the
binary classification task. The fine-tuned model demonstrated
similar high metrics as the MuSiteDeep model ( 10 ) with a
ROC AUC value of 0.99. 

Structural comparison of antigens 

In SEMA 2.0, we add an additional model to identify local
similarities between two input antigen structures. This model
(Figure 1 ) is based on the neural network that conducts a
comparison of representations from the PLM with geometric
modalities SaProt ( 4 ) for amino acid residues of two proteins
to predict the presence of structural similarities. 

The hyperparameters of the model were experimentally de-
rived to achieve the highest PRC AUC and ROC AUC metrics
on the held-out portion of the dataset. Our best-performing
model achieved 0.949 PRC AUC (0.998 ROC AUC) on the
validation set of homologous protein fragments. 

Although the model was trained on pairs of small epitope-
like structures and larger antigens, our test cases show that
the model is generalized to capture structural similarity across
two full-length antigens. 

As a test case, we performed a comparison of RBD do-
mains of S AR S-CoV and S AR S-CoV-2. As expected, the algo-
rithm allows to correctly assign the structurally similar regions
(Figure 4 ). Other test cases included the identification of mim- 
icking regions within synthetic immunogens and correspond- 
ing antigen structures. In both cases published by ( 15 ,16 ), the 
module allows to both identify epitopes as well correctly align 

the matched residues. 

Usage 

SEMA web server 

The SEMA 2.0 web interface starts from the home page, which 

offers a concise description of the instruments. From there,
users can access more detailed instructions via the ‘About’ 
tab or start their analysis directly. SEMA facilitates two types 
of analyses: the prediction of conformational B-cell epitopes 
based on either the primary protein sequence or tertiary struc- 
ture (accessible through the ‘Predict epitopes’ tab), and the 
structural comparison of antigen epitopes (found under the 
‘Compare epitopes’ tab). 

Epitope prediction 

The epitope prediction tool utilizes both sequence-based 

(SEMA-1D) and structure-based (SEMA-3D) approaches. The 
models in these ensembles have been fine-tuned to predict 
the propensity of amino acid residues to interact with the 
Fab regions of immunoglobulins. Users can select between 

the SEMA-1D or SEMA-3D models by clicking on the cor- 
responding radio buttons. 

SEMA-1D accepts an amino acid sequence as input data,
which can be submitted in two ways: by pasting or typing a 
sequence of interest. The output includes a predicted epitope 
score and an N-glycosylation label for each residue within 
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Figure 2. ROC AUC metrics calculated on masked (left) and unmasked (right) test sets from ( 1 ). 
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he amino acid sequence. Users can download results in CSV
ormat. 

The results are visualized as a color-coded sequence, where
he background color indicates the predicted epitope score,
anging from brown (non-epitope) to cyan (epitope). Pre-
icted N-glycosylated amino acids are marked with an aster-
sk (refer to Figure 3 , top part). 

SEMA-3D processes tertiary structure and sequence as in-
ut data. Users can submit input data by either specifying a
arget chain or the entire structure in two ways: (i) entering a
DB ID, by which the corresponding structures will be down-

oaded from the PDB database or (ii) uploading a custom PDB
le. In both scenarios, users have the option to specify a par-
icular chain for analysis; if no chain is specified, the analysis
ill be conducted on the entire structure. 
The SEMA-3D output includes a predicted epitope score

nd an N-glycosylation label for each residue in the amino
cid sequence (as illustrated in Figure 3 ). Users can download
 zip archive containing a file with results in CSV format and
n original PDB file. The visualization displays both the color-
oded sequence and the tertiary structure of the protein, using
he same color gradient to indicate epitope scores. Predicted
-glycosylated amino acids (AAs) are marked with an asterisk

n the sequence and represented as spheres in the 3D structure.

pitopes comparison 

he epitope comparison tool predicts conformational B-cell
pitopes of two antigens and highlights regions of local struc-
ural similarity within the protein structures. This function-
lity enables the identification of structurally similar epitopes
cross two antigen structures. 

Users can input tertiary structures, with the option to focus
n a target chain for the proteins being studied. Each structure
an be submitted in one of two ways: (i) by typing the PDB ID
nd chain, wherein the corresponding structures will be ex-
tracted from the PDB file downloaded from the PDB database
or (ii) by uploading a custom PDB file and specifying a
chain. 

The output includes predicted similarity and SEMA-3D epi-
tope scores for each residue in the amino acid sequences of
both proteins under study (Figure 4 ). The similarity scores in-
dicate the degree of local structural similarity between residual
pairs from the first and second input proteins. Users can down-
load a zip archive file including epitopes prediction results for
each protein in CSV format, similarity score for residuals pairs
(for pairs with similarity scores greater than 2) in CSV format,
and original PDB files. 

The visualization of results shows the tertiary structures of
the proteins under study, colored according to their similarity
score. This indicates that parts of the tertiary structures with
structural similarities are highlighted in matching colors (for
similarity scores > 2), whereas dissimilar parts are displayed
in grey. Epitopes are depicted as sticks, with their radii pro-
portional to the epitope scores. 

Web server implementation 

SEMA 2.0 web server is based on the Unicorn HTTP server
in combination with Nginx. The deep-learning framework
was implemented in the Business logic layer by Python. We
used PostgreSQL for the server’s database. The web interface
is implemented with JavaScript libraries, jQuery and 3Dmol
library. 

Discussion 

In this work, we present SEMA 2.0, a web server that
utilizes cutting-edge PLMs specifically fine-tuned to predict
conformational B-cell epitopes. Compared to its predeces-
sor, SEMA 2.0 incorporates additional functionalities, includ-
ing a model dedicated to predicting N-glycosylation post-
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Figure 3. Example of SEMA-3D web server input ( A ) and output ( B ) for the SARS-CoV-2 M protein dimer (PDB ID: 7VGR, chains A and B). The protein 
sequence is color-coded based on predicted v alues: bro wn indicates a low epitope score of zero, while cyan denotes that the epitope score exceeds the 
threshold, classifying the protein region as an epitope. Amino acids predicted to undergo N-glycosylation are marked with an asterisk in the sequence 
and depicted as spheres in the 3D visualization. 

 

 

 

 

 

 

 

 

 

translational modifications (PTMs) within protein sequences,
support for multi-chain proteins in the SEMA-3D model,
and a tool for evaluating the structural similarity of antigen
epitopes. 

In this study, we show that the substitution of ESM-1v mod-
els with the bigger pre-trained PLMs ESM-2 ( 2 ) and SaProt
( 4 ) results in a substantial increase in the quality of predic-
tion. The application of the PLMs with geometric modalities
allows us to efficiently take into account the structural prop-
erties of the antigen, which, in particular, can be used for anti- 
gens with multiple conformations or different oligomerization 

states. 
Additionally, we developed a model that can be applied to 

identify similar epitopes within different antigen structures,
for instance, those corresponding to various viral or bacterial 
strains. It can also be applied for detecting regions that mimic 
the immune response in proteins without homology or overall 
structural similarity. 
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Figure 4. (A) Examples of epitopes comparison model inference for the RSV-Presenting Epitope Scaffold (PDB ID 4N9G, chain C) and RSV immunogen 
(PDB ID 4JLR, chain C) ( B ) De no v o protein encoding RSV epitopes from ( 16 ) (PDB ID 6S3D, chain N) and RSV antigen (PDB ID 7UJA, chain A). ( C ) 
SARS-CoV-2 S-protein RBD (PDB ID 7LM9, chain A) and SARS-CoV RBD (PDB ID 7RBY, chain C). Epitope comparison analysis output for SARS-CoV2 
S-protein RBD and (PDB ID 7B3O, chain E; PDB ID 7LM9, chain A). Similar regions of the tertiary str uct ures are depicted in the same colors (similarity 
score > 2), whereas regions with no similarity are shown in grey. Epitope residues are represented as sticks, with their radii corresponding to the 
epitope scores. 

D

T  

n  

e  

/  

o

S

S

F

N

C

N

R

 

 

 

R
©
T
(
c

ata availability 

he models are available via web interface https://sema.airi.
et . The source code, including code for the dataset gen-
ration and models training, is available at GitHub ( https:
/ github.com/ AIRI-Institute/ SEMAi ) and Zenodo ( https://doi.
rg/ 10.5281/ zenodo.11076971 ). 

upplementary data 

upplementary Data are available at NAR Online. 

unding 

o external funding. 

onflict of interest statement 

one declared. 

eferences 

1. Shashkova, T.I. , Umerenkov, D. , Salnikov, M. , Strashnov, P .V ., 
Konstantinova, A.V. , Lebed, I. , Shcherbinin, D.N. , Asatryan, M.N. , 
Kardymon, O.L. and Ivanisenko, N.V. (2022) SEMA: antigen B-cell 
conformational epitope prediction using deep transfer learning. 
Front. Immunol., 5272.

2. Lin, Z. , Akin, H. , Rao, R. , Hie, B. , Zhu, Z. , Lu, W. , Smetanin, N. , 
Verkuil, R. , Kabeli, O. , Shmueli, Y. , et al. (2023) Evolutionary-scale 
prediction of atomic-level protein structure with a language model.
Science , 379 , 1123–1130.

3. Rives, A. , Meier, J. , Sercu, T. , Goyal, S. , Lin, Z. , Liu, J. , Guo, D. , Ott, M. ,
Zitnick, C.L. , Ma, J. , et al. (2021) Biological structure and function 
emerge from scaling unsupervised learning to 250 million protein 
sequences. Proc. Natl. Acad. Sci. U.S.A., 118 , e2016239118.

4. Su, J. , Han, C. , Zhou, Y. , Shan, J. , Zhou, X. and Yuan, F. (2023) 
SaProt: protein language modeling with structure-aware 
vocabulary. bioRxiv doi: 
https:// doi.org/ 10.1101/ 2023.10.01.560349 , 02 October 2023, 
preprint: not peer reviewed,

5. Clifford, J.N. , Høie, M.H. , Deleuran, S. , Peters, B. , Nielsen, M. and 
Marcatili,P. (2022) BepiPred-3.0: Improved B-cell epitope 

prediction using protein language models. Protein Sci. , 31 , e4497. 

eceived: February 8, 2024. Revised: April 11, 2024. Editorial Decision: April 24, 2024. Accepted: A
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 

his is an Open Access article distributed under the terms of the Creative Commons Attribution-Non
https: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re-use, distributio
ommercial re-use, please contact journals.permissions@oup.com 
6. Zhou, C. , Chen, Z. , Zhang, L. , Yan, D. , Mao, T. , Tang, K. , Qiu, T. and 
Cao,Z. (2019) SEPPA 3.0—enhanced spatial epitope prediction 
enabling glycoprotein antigens. Nucleic Acids Res., 47 , 
W388–W394.

7. Høie, M.H. , Gade, F.S. , Johansen, J.M. , Würtzen, C. , Winther, O. , 
Nielsen, M. and Marcatili, P. (2024) DiscoTope-3.0: Improved 
B-cell epitope prediction using inverse folding latent 
representations. Front. immunol., 15 , 1322712.

8. Rudd, P.M. , Elliott, T. , Cresswell, P. , Wilson, I.A. and Dwek, R.A. 
(2001) Glycosylation and the immune system. Science , 291 , 
2370–2376.

9. Camacho, C. , Coulouris, G. , Avagyan, V. , Ma, N. , Papadopoulos, J. , 
Bealer, K. and Madden, T.L. (2009) BLAST+: architecture and 
applications. BMC bioinformatics , 10 , 421.

10. Wang, D. , Liu, D. , Yuchi, J. , He, F. , Jiang, Y. , Cai, S. , Li, J. and Xu, D. 
(2020) MusiteDeep: a deep-learning based webserver for protein 
post-translational modification site prediction and visualization. 
Nucleic Acids Res., 48 , W140–W146.

11. van Kempen, M. , Kim, S.S. , Tumescheit, C. , Mirdita, M. , Lee, J. , 
Gilchrist, C.L. , Söding, J. and Steinegger, M. (2024) Fast and 
accurate protein structure search with Foldseek. Nat. Biotechnol., 
42 , 243–246.

12. Varadi, M. , Anyango, S. , Deshpande, M. , Nair, S. , Natassia, C. , 
Yordanova, G. , Yuan, D. , Stroe, O. , Wood, G. , Laydon, A. , et al. 
(2022) AlphaFold Protein Structure Database: massively 
expanding the structural coverage of protein-sequence space with 
high-accuracy models. Nucleic Acids Res. , 50 , D439–D444. 

13. Hauser, M. , Steinegger, M. and Söding, J. (2016) MMseqs software 
suite for fast and deep clustering and searching of large protein 
sequence sets. Bioinformatics , 32 , 1323–1330.

14. Jing, B. , Eismann, S. , Suriana, P. , Townshend, R.J. and Dror, R. (2020)
Learning from protein structure with geometric vector 
perceptrons. arXiv doi: https:// arxiv.org/ abs/ 2009.01411 , 16 may 
2021, preprint: not peer reviewed.

15. Correia, B.E. , Bates, J.T. , Loomis, R.J. , Baneyx, G. , Carrico, C. , 
Jardine, J.G. , Rupert, P. , Correnti, C. , Kalyuzhniy, O. , V ittal, V. , et al. 
(2014) Proof of principle for epitope-focused vaccine design. 
Nature , 507 , 201–206.

16. Sesterhenn, F. , Yang, C. , Bonet, J. , Cramer, J.T. , Wen, X. , Wang, Y. , 
Chiang, C.-I. , Abriata, L.A. , Kucharska, I. , Castoro, G. , et al. (2020) 
De novo protein design enables the precise induction of 
RSV-neutralizing antibodies. Science , 368 , eaay5051.
pril 29, 2024 

Commercial License 
n, and reproduction in any medium, provided the original work is properly cited. For 

https://sema.airi.net
https://github.com/AIRI-Institute/SEMAi
https://doi.org/10.5281/zenodo.11076971
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae386#supplementary-data
https://doi.org/10.1101/2023.10.01.560349
https://arxiv.org/abs/2009.01411

	Graphical abstract
	Introduction
	Materials and methods
	Results
	Usage
	Discussion
	Data availability
	Supplementary data
	Funding
	Conflict of interest statement
	References

