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Abstract 

Evaluating pharmacokinetic properties of small molecules is considered a k e y feature in most drug de v elopment and high-throughput screening 
processes. Generally, pharmacokinetics, which represent the fate of drugs in the human body, are described from four perspectives: absorption, 
distribution, metabolism and e x cretion—all of which are closely related to a fifth perspectiv e, to xicity (ADMET). Since obtaining ADMET data 
from in vitro , in vivo or pre-clinical stages is time consuming and e xpensiv e, man y eff orts ha v e been made to predict ADMET properties via 
computational approaches. Ho w e v er, the majority of a v ailable methods are limited in their ability to provide pharmacokinetics and to xicity f or 
diverse targets, ensure good overall accuracy, and offer ease of use, interpret abilit y and extensibility for further optimizations. Here, we introduce 
Deep-PK, a deep learning-based pharmacokinetic and toxicity prediction, analysis and optimization platform. We applied graph neural networks 
and graph-based signatures as a graph-le v el feature to yield the best predictive performance across 73 endpoints, including 64 ADMET and 9 
general properties. With these po w erful models, Deep-PK supports molecular optimization and interpretation, aiding users in optimizing and 
understanding pharmacokinetics and toxicity for given input molecules. The Deep-PK is freely available at https:// biosig.lab.uq.edu.au/ deeppk/ . 

Gr aphical abstr act 

I

D
7  

c  

a  

m  

m  

t  

d  

a  

 

 

 

 

 

 

 

 

 

R
©
T
w

ntroduction 

rug discovery is a costly, lengthy and uncertain problem ( 1–
 ). Usually, the process of proposing a novel drug, from pre-
linical testing to approval, takes 12–15 years ( 5 ,8 ), on aver-
ge, and the cost exceeds $2.5 billion ( 5 , 9 , 10 ). Most of the
apped hardness of this process emerges from the stringent
ultiple phases defined by regulatory agencies, which need

o certify both the safety and potency of the new compounds
uring pre-clinical and clinical trials before their respective
pproval ( 11 ,12 ). In these phases, an inherent issue in drug
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discovery is the high attrition rate, where 80–90% of projects
are discontinued before even getting tested in humans ( 5 ), and
almost 95% of the drugs entering human trials fail ( 4 , 5 , 13 ).
Along the same lines ( 14 ), estimates suggest that only 1 out
of 5000–10 000 discovered compounds reaches the U.S. Food
and Drug Administration (FDA)’s review phase ( 15 ). 

Evaluating, understanding and optimizing pharmacokinetic
and toxicity properties under the umbrella of ADMET (ab-
sorption, distribution, metabolism, elimination and toxicity)
categories have become essential for reducing attrition rates
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in later phases of drug research and development ( 3 ,16–21 ).
Over 80% of newly proposed drugs fail during development
stages because of inadequate ADMET properties ( 22 ). It is es-
timated that success rates could increase significantly if AD-
MET properties were properly set at pre-clinical and clinical
stages ( 23–26 ). 

Both in vivo and in vitro assessments of small molecules
have become important strategies for the initial selection or
identification of chemical leads ( 27 ). Although being precise
and useful in screening small molecules, reducing the over-
all number of molecules likely to present issues on pharma-
cokinetic and toxicity properties, in vivo and in vitro ADMET
studies are expensive, inefficient and time consuming (in terms
of human resources, equipment and laboratory operations) to
assess the ADMET properties on the ever-growing number of
developed compounds ( 25 ,28–30 ), besides the efforts on au-
tomation to tackle the drug screening bottleneck. 

Under these circumstances, computational ( in silico ) ap-
proaches are a great alternative for pre-screening the high
number of compounds being proposed on a day-to-day basis
( 25 ,30–35 ). Furthermore, in vitro or in vivo analyses are only
possible after the molecule has already been synthesized ( 36 ),
not being feasible to test them a priori . Hence, in silico AD-
MET evaluation is advantageous in terms of meeting the high
compound throughput, allowing prioritization of compound
libraries. 

Several methods and tools have been proposed to pro-
mote ADMET evaluation, including SwissADME ( 34 ), AD-
METlab ( 25 ,30 ), pkCSM ( 32 ), Interpretable-ADMET ( 35 )
and toxCSM ( 33 ). In spite of the computational effort, all
these tools have major issues with integrating other important
tasks apart from the predictive analysis, such as optimization
and predictive molecular interpretation. In addition, the ma-
jority of the currently proposed tools do not consider a proper
set of ADMET endpoints nor open their used experimental
data. Unavailability and lack of scalability are also common
drawbacks of current ADMET tools and methods. In sum-
mary, they are not able to accurately and correctly guide drug
development research at scale. 

We introduce Deep-PK, an advanced web-based tool
designed to address the challenges and issues associated
with small molecule pharmacokinetics and toxicity. Deep-PK
stands out for its interpretability, accuracy and robustness, of-
fering a comprehensive solution for the prediction, optimiza-
tion, analysis and interpretation of these crucial profiles. It de-
pends on the robustness of graph neural networks (GNNs) to
build a set of 73 robust ADMET models. With predictive, op-
timization and interpretation features, Deep-PK yields a trust-
worthy platform for the development of safer, less toxic and
highly bioavailable drugs. 

Materials and methods 

Data preparation 

Data collection and curation. In Deep-PK, small molecule
datasets on 73 endpoints were employed to train, (cross-
)validate and test the deep learning models, including 49
and 24 that represent binary classification and regression
tasks, respectively. These datasets correspond to 8 absorp-
tion, 5 distribution, 13 metabolism, 3 excretion and 35 tox-
icity experimental assays. In addition, 9 datasets involving
general and complementary physicochemical properties were
also used to assist in the characterization of small molecules 
( Supplementary Table S1 ). We collected the experimental 
ADMET data from four pharmacokinetic prediction meth- 
ods, namely ADMETlab 2.0 ( 25 ), Interpretable-ADMET ( 35 ),
toxCSM ( 33 ) and pkCSM ( 32 ). 

Given the high level of heterogeneity among the small 
molecules and their respective ADMET targets, we proceeded 

with preprocessing steps to guarantee the validity and quality 
of the data. As shown in Figure 1 , the first step involved con- 
verting all SMILES (simplified molecular-input line-entry sys- 
tem), which represent the small molecules, in their canonical 
form. Molecular sanitization using RDKit version 2022.9.3 

( 37 ) was also performed and included standardizing up to 

seven non-standard valence states, kekulizing aromatic rings,
removing molecular weights ≥2000 and adding explicit hy- 
drogens. Any molecules that failed at the canonization and 

sanitization steps were discarded from our acquired data. 
The experimental labels were rigorously verified in the pre- 

processing pipeline of Deep-PK. SMILES with discrepancies 
such as different categorical labels, units or a variation of 20% 

in label values (for regression tasks) were identified and dis- 
carded from the dataset utilized to acquire ADMET experi- 
mental data for Deep-PK. The details of curated datasets are 
shown in Supplementary Table S1 . 

Training, validation and test datasets. We conducted a com- 
prehensive assessment of the Deep-PK pipeline’s robustness 
and scalability through two distinct approaches. Initially, we 
utilized datasets from other tools, incorporating their train- 
ing, validation and test split information. Subsequently, we 
aggregated all data points for each endpoint from various 
databases, creating what we refer to as the Deep-PK dataset. 

To evaluate our deep learning pipeline, we specifically fo- 
cused on the endpoints provided by ADMETlab 2.0 and 

toxCSM, as we consider them state of the art given their re- 
spective predictive performance for pharmacokinetic and tox- 
icity prediction. The number of data points may vary between 

the original dataset and the curated version due to the stan- 
dardization process. In summary, we assessed the Deep-PK 

pipeline on 53 and 36 endpoints for the ADMETlab 2.0 and 

toxCSM platforms, respectively. 
For the Deep-PK pipeline models, the curated datasets un- 

derwent a random split into training, validation and test 
datasets at a ratio of 8:1:1 after merging across all available 
databases and standardization. Consequently, Deep-PK en- 
compasses 73 endpoints, involving both 49 classification and 

24 regression tasks. All datasets are available for download 

at https:// biosig.lab.uq.edu.au/ deeppk/ data . 
Analysis of molecular properties. Using a radar plot, we 

added an indication of whether users’ query molecules fall 
within the range of certain FDA-approved drugs’ ADMET 

range. This range is based on 329 FDA-approved drugs and 

their predicted ADMET values (see Supplementary Figure S8 ).
Prediction confidence. The reliability of models is pivotal 

in assessing their credibility, and this is often gauged through 

prediction probabilities, particularly in the context of clas- 
sification tasks ( 38 ). While this measure is valuable, it may 
not comprehensively address the coverage of chemical space 
bridging the training data and query molecules. 

In pursuit of a more nuanced understanding of confidence,
Deep-PK goes beyond mere prediction probabilities. For both 

classification and regression tasks, our model assesses whether 
the query molecule falls within the 95% range of training 
molecular weight. Additionally, in regression tasks, the model 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://biosig.lab.uq.edu.au/deeppk/data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
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Figure 1. Deep-PK pipeline. In the data collection and curation steps, publicly a v ailable datasets were gathered and curated to eliminate redundancy, 
resolve label conflicts and ensure consistency in endpoint label units. These curated datasets were then utilized for preparing benchmark and Deep-PK 
dat asets ( Supplement ary Table S1 ). In addition to the def ault node / edge features pro vided b y Chemprop, our approach incorporated 449 graph-le v el 
features in the D-MPNN (directed message passing neural network) learning process. Hyperparameter optimization was carried out using Bayesian 
optimization with 3-fold cross-validation. Deep-PK provides predictions for 73 pharmacokinetic and toxicity endpoints, along with detailed information on 
corresponding molecules accessible through the analysis page. Users can explore optimization strategies for a query molecule through the optimization 
step, which includes 100 deriv ativ es and predictions of ADMET and general properties. 
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hecks whether the predicted values align with the 95% range
f training labels. This extended scrutiny offers a more de-
ailed perspective on the model’s confidence, accounting for
oth the molecular weight and predicted values, thereby pro-
iding a richer evaluation of model reliability across various
imensions of chemical space. 

eep learning 

r aph neur al netw or ks. The core framework of Deep-PK re-
ies on the D-MPNN of Chemprop introduced by Yang et al.
 39 ). D-MPNN facilitates information propagation through
irected edges, enabling the transmission of crucial informa-
ion with a specific directionality between nodes. This unique
eature empowers D-MPNN to enhance the aggregation of
olecular representations by finely controlling the flow of in-

ormation. 
During the training phase, our pipeline employed
atthew’s correlation coefficient (MCC) for classifica-
tion tasks and R 

2 (coefficient of determination) for regression
tasks as loss functions. This selection was made to optimize
the model’s performance across different tasks. To miti-
gate batch effects and reduce the risk of obtaining inflated
performance values, we implemented an ensemble method,
3-fold cross-validation, which averages and calculates the
standard deviation of performance metrics across three mod-
els, ensuring a comprehensive and consistent assessment of
performance. This approach enhances the robustness of our
model evaluations by providing a more reliable measure of
predictive accuracy. 

Feature engineering. In addition to the initial 8 atom
(node) features and 4 bond (edge) features adopted from
Chemprop, our approach incorporates 216 graph-based sig-
natures ( 32 ,40 ), 37 toxicophore counts ( 41 ) and 196 molec-
ular descriptors extracted from RDKit, except 4 descrip-
tors such as ‘MaxAbsPartialCharge’, ‘MaxPartialCharge’,
‘MinAbsPartialCharge’ and ‘MinPartialCharge’, which re-
turned a not-a-number value on several SMILES, as addi-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data


W 472 Nucleic Acids Research , 2024, Vol. 52, Web Server issue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tional molecular (graph) level features. To ensure the efficiency
and relevance of the features, we applied a variance thresh-
old of 0.0 to eliminate any non-relevant and non-additive
information ( 42 ). 

Hyperparameter optimization. To efficiently search for all
12 individual hyperparameter spaces from the Chemprop
pipeline, we employed a Bayesian optimization method with
500 randomly initialized runs and another 500 values for pos-
terior optimizations on the following parameters: the num-
ber of message passing iterations (depth), the dropout prob-
ability (dropout), activation function, batch size, aggrega-
tion, the hidden size of neural network layers, initial learn-
ing rate, maximum learning rate, final learning rate, warm-up
epochs, the number of feed-forward layers and aggregation
normalization. In total, we ran 160 000 optimization runs for
73 Deep-PK, 53 ADMETlab 2.0 and 36 toxCSM endpoints
individually. 

GNN interpretability. The concept of explainability in
GNNs has been known to be useful for identifying key parts
(subgraphs) of prediction. We use this substructure highlight-
ing of Chemprop to provide ideas like what sites should be
kept, changed or removed from queries in terms of each end-
point and across those that shared the same explainability
( Supplementary Figures S9 and S10 ). 

Optimization. The optimization of Deep-PK generates up
to 100 samples from a query molecule by adding, replacing or
removing substructures using the MultI-constraint MOlecule
S Ampling (MIMOS A) method ( 43 ). We implemented a pre-
trained model for optimizing the quantitative estimate of
drug-likeness (QED) ( 44 ), which is one of the key features of
drug discovery. 

Web server 

Deep-PK was developed using Bootstrap 3.3.7 and Flask 1.0.2
and hosted on an Apache 2 Ubuntu server. This web server is
freely available at https:// biosig.lab.uq.edu.au/ deeppk . 

Input 

Deep-PK can be used to assess the pharmacokinetic and toxic-
ity properties of small molecules based on ADMET and, also,
general properties. As shown in Supplementary Figure S1 ,
Deep-PK accepts four types of inputs: (i) a single SMILES
string; (ii) a SMILES file containing a set of small molec-
ular compounds (up to 2000 molecules); (iii) a structural
data file (SDF) covering a list of molecular structures (up to
2000 molecules); and (iv) a single molecular drawing, where
its respective SMILES is retrieved from the drawn molecule
structure. These are the most standard formats in small
molecule research, commonly used in their respective web
servers. Example files and a help page to guide users are pro-
vided at https:// biosig.lab.uq.edu.au/ deeppk/ prediction and
https:// biosig.lab.uq.edu.au/ deeppk/ help , respectively. Users
can choose which ADMET prediction mode they want to
make their compound analysis on, including running every-
thing all at once. 

Output 

The web server encompassing Deep-PK stresses its four main
prediction outputs: (i) the prediction results page, where the
pharmacokinetic, toxicity and general small molecule prop-
erties are displayed after all selected models have their out-
comes completed ( Supplementary Figure S2 ); (ii) the focus 
page, where the predictions of each molecule are better de- 
tailed and explained with confidence values and interpreta- 
tions based on the literature ( Supplementary Figure S3 ); (iii) 
the analysis page, where each molecule that had their AD- 
MET properties predicted can be further analysed in terms 
of general properties, drug-likeness and predictive substruc- 
ture importance ( Supplementary Figures S4 –S10 ); and (iv) the 
optimization page, where the given query molecule is opti- 
mized, aiming to improve the pharmacokinetic and toxicity 
properties, which are of interest to the target user or researcher 
( Supplementary Figure S11 ). Whereas the results for the pre- 
diction and optimization pages can be downloaded in a CSV 

(comma-separated value) file, the results of the analysis page 
are retrieved in a ZIP file. 

Application programming interface 

The Deep-PK integrates an application programming inter- 
face (API) to facilitate the development, validation and test- 
ing of cheminformatics and drug discovery analytical pipeline.
Each submission in Deep-PK’s API has a unique string identi- 
fier, which can be used to retrieve the predictive results after 
the web server processing. It is worth noting that these results 
are also available through the web server prediction results 
page. Deep-PK’s API allows the use of SDFs, SMILES files and 

SMILES strings. When the predictions are completed, Deep- 
PK outputs only standard tabular results in a JavaScript ob- 
ject notation format. The documentation (in both Python and 

Curl languages) and examples of how to use Deep-PK’s API 
are available at https:// biosig.lab.uq.edu.au/ deeppk/ api _ docs .

Processing times 

Deep-PK has been proposed to serve as a scalable platform 

for predicting a diverse range of pharmacokinetic and toxic- 
ity properties of small molecules. While assessing Deep-PK’s 
capabilities, we estimated that it takes up to 15 min to predict 
all 73 ADMET properties for a single molecule after the pre- 
diction processing work starts—i.e. after the respective web 

server job is released from the queue to be processed. Fur- 
thermore, the processing time for optimizing a single molecule 
and providing the predictions for the resultant 100 optimized 

molecules is estimated to be 20 min after being released from 

the optimization queue. Finally, Deep-PK takes up to 55 min 

to analyse the characteristics of each molecule, considering 
this is the first job to be processed in the analysis queue. The 
small molecule analysis includes the substructural explana- 
tions per endpoint, which we consider as the current process- 
ing bottleneck for Deep-PK. Future work involves improving 
the efficiency of the molecule’s explanation component. 

Validation 

The performance of Deep-PK models / pipelines was thor- 
oughly compared with available tools. Since those tools were 
trained and tested on different datasets that are difficult to 

obtain, the metrics, MCC and R 

2 for classification and re- 
gression tasks, for each approach were collected from their 
original papers. To simplify and enhance visualization, the 73 

results were categorized into six types of target predictions: 
absorption, distribution, metabolism, excretion, toxicity and 

property. These predictions were further divided into two task 

types: classification and regression. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://biosig.lab.uq.edu.au/deeppk
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://biosig.lab.uq.edu.au/deeppk/prediction
https://biosig.lab.uq.edu.au/deeppk/help
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://biosig.lab.uq.edu.au/deeppk/api_docs
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enchmarking across available tools 

DMETlab 2.0. The comprehensive evaluation of the Deep-
K pipeline (Figure 1 ), encompassing feature extraction to
yperparameter optimization, was compared with ADMET-
ab 2.0, a cutting-edge pharmacokinetic and toxicity predic-
ion tool. The assessment covered 53 endpoints, comprising
0 classification and 13 regression tasks, providing a thor-
ugh examination of the model’s performance across diverse
argets. 

To simplify the presentation of results, both MCC and
 

2 metrics, ranging from 0 to 1 for classification and regres-
ion tasks, were merged in Supplementary Figure S12 . No-
ably, Deep-PK exhibited enhanced performance (the perfor-
ance increase is > 0) across 46 endpoints, showcasing its
ighest performance gap of 0.43 on ‘NR-A’, while demonstrat-
ng comparatively lower performance on 5 endpoints with
he lowest performance gap of −0.082 (MCC) from ‘oral
ioavailability 30%’ (see Supplementary Figure S12 ). 
Analysing the average performance across each cat-

gory, Deep-PK showed the most notable improvement
n metabolism achieving an average performance in-
rease of +0.105 across 10 metabolism endpoints (see
upplementary Table S2 ). Adopting a categorization strategy
here performance changes within ±0.1 are considered no

mprovement, those exceeding 0.1 are deemed reasonable
mprovement and surpassing 0.2 are considered significant
mprovement, Deep-PK achieved significant improvement
n 4 models, reasonable improvement in 17 models and
aintained stability in 32 models with � ±0.1. This nuanced
reakdown provides a nuanced understanding of the Deep-
K model’s performance across various pharmacokinetic
ndpoints. 

toxCSM. In the assessment of 36 toxCSM toxicity pro-
les ( Supplementary Figure S13 ), Deep-PK demonstrated en-
anced performance across 30 endpoints, notably exhibiting a
ubstantial improvement in MCC (0.39) for ‘NR-ER’—a rea-
onable enhancement comparable to the earlier ADMETlab
.0 benchmark (MCC improvement of 0.13). The overall per-
ormance averages, encompassing MCC and R 

2 , were 0.58 for
oxCSM and 0.71 for Deep-PK. 

By employing a performance delta ( �) classification, where
0.1 signifies no / weak improvement, > 0.1 and < 0.2 indi-

ates reasonable improvement and ≥0.2 denotes significant
mprovement, Deep-PK achieved 7 significant improvements,
0 reasonable improvements and 19 instances where no / weak
mprovement was observed (see Supplementary Table S3 ). 

erformance on Deep-PK datasets 

s we confirmed that the Deep-PK pipeline is powerful
nough to improve the performance on most pharmacoki-
etic, toxicity and general property endpoints, we applied the
ame workflow on the Deep-PK datasets, which were merged
nd curated across four databases. 

The performance of Deep-PK on this curated dataset
as subsequently compared with other available tools (see

upplementary Table S4 and Supplementary Figures S14 and
15 ), albeit without employing identical training and test
atasets. It is important to note that such comparisons may
ot be directly equitable. Nevertheless, they provide valuable
nsights into the performance enhancements facilitated by our
ovel approach and the integration of new datasets. 
By comparing Deep-PK with other available methods (max-
imum available methods versus Deep-PK), we observed sig-
nificant improvements in 6 instances (up to an MCC in-
crease of +0.43) on ‘renal excretion (OCT2)’, alongside rea-
sonable enhancements in 15 cases (MCC increase of +0.1 or
greater) and weaker improvements across 38 endpoints. Con-
sistent with previous benchmark tests, the Deep-PK pipeline
demonstrated a significant performance boost in the excretion
and metabolism category, achieving an average MCC increase
of +0.10 and +0.07 across 13 metabolism and 3 excretion end-
points, respectively. 

Discussion 

The prediction of pharmacokinetic and toxicity properties
is a key step during the drug screening and lead optimiza-
tion processes. As more data and machine learning algorithms
are available, more accurate predictions have been available
( 25 ,32–35 ). Due to the nature of the difficulty of collecting
data, many tools have not been thoroughly benchmarked or
did not include their predictors in a single platform for better
usability. Although GNN has empowered the field of pharma-
cokinetic and toxicity predictions with its benefit of featur-
izing from the molecule itself giving the state-of-the-art per-
formance ( 25 ,35 ), the lack of performance comparison across
different approaches has been a limit for using or comparing
each other. 

We anticipate that Deep-PK’s predictive models, which
are anchored in the chemical landscape illustrated in
Supplementary Figure S16 , possess a degree of generalizability
that should translate into robust performance when applied to
novel molecules. Our analysis through principal component
analysis, utilizing both MACCS keys ( Supplementary Figure 
S16 A) and Morgan fingerprints ( Supplementary Figure S16 B),
demonstrates that the structural diversity of 2.3 million com-
pounds from ChEMBL (ChEMBLdb 33) is well represented,
even with a dataset size 20 times smaller than Deep-PK. Re-
markably, the chemical spaces of FDA-approved drugs (Drug-
Bank) fall within the coverage of Deep-PK, underscoring the
potential utility of our models for targeting FDA approval
pathways. 

However, it is crucial to acknowledge that the accuracy of
predictions may be constrained by the inherent limitations
of available assay data, particularly when users submit com-
pounds that are markedly different from those in the train-
ing dataset. While our focus does not extend to ‘zero-shot
learning’, we expect a certain level of similarity between user
queries and the datasets used to train, validate and test Deep-
PK models. Moreover, to bolster confidence in our predictions,
Deep-PK furnishes additional confidence values for each out-
come ( Supplementary Figure S3 ). 

By integrating molecular properties as graph-level fea-
tures, Deep-PK significantly enhanced prediction performance
across two benchmark datasets (i.e. ADMETlab 2.0 and
toxCSM), notably achieving improvements of > 0.43 and 0.39
in MCC values for NR-AR and NR-ER, respectively. These
advancements underscore Deep-PK’s potential as a robust
screening platform for nuclear hormone receptors, signify-
ing its potential utility in identifying endocrine-disrupting
chemicals, which are pivotal in various fields and types of
drugs. 

Additionally, it is noteworthy that assessing the varia-
tion of model performance across 3-fold cross-validations,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae254#supplementary-data
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475–486.
which maintain identical hyperparameter configurations but
undergo dataset shuffling with different random seeds, can
be crucial in gauging the reliability of deep learning mod-
els. For example, Supplementary Figure S17 illustrates signif-
icant performance fluctuations observed during 3-fold cross-
validations of the Cyp1a2 substrate, particularly when mod-
els exhibit lower performance. This statistical insight can
instill greater confidence in the models, especially when
their performance is naturally constrained from achieving
higher levels of accuracy. We have confirmed that Deep-
PK models demonstrate consistent performance across all 73
endpoints, further enhancing confidence in their reliability
( Supplementary Table S4 ). 

However, we observed some performance degradation
using Deep-PK datasets, particularly on four endpoints
( Supplementary Table S4 ), where the performance change ( �)
ranged from −0.15 to −0.58. The possible main factor be-
hind this performance drop is data corruption, as evidenced
by the contrast in performance. For example, while Deep-PK
achieved improved performance on Marine Tox (fathead min-
now) with MCC values of 0.767 and 0.601 on ADMETlab
2.0 and toxCSM datasets, respectively, it experienced a signif-
icant drop to an MCC of 0.16. This suggests a possible data
corruption issue in the process of merging the two datasets.
Consequently, we opted to select the best-performing model
across three versions of our datasets. 

It is crucial to distinguish between model credibility and
performance, as they represent distinct facets. While perfor-
mance confidence often focuses on metrics like classification
probability, this approach has inherent limitations, particu-
larly regarding its applicability to classification tasks exclu-
sively. However, for reliable predictions, it is imperative that
query molecules inhabit similar chemical spaces and label
ranges to the training data. To address this, Deep-PK effec-
tively incorporates additional confidence tags, such as ranges
of molecular weights and labels ( Supplementary Figure S3 ),
empowering users to interpret prediction results with greater
certainty. 

Furthermore, GNNs offer a unique advantage by encap-
sulating molecular features at node and edge levels, fa-
cilitating information propagation across different layers.
Leveraging graph-level features enables Deep-PK to iden-
tify key molecular regions influencing predictions, shedding
light on critical insights. Notably, Deep-PK not only high-
lights the most influential subgraphs within a query molecule
( Supplementary Figure S9 ) but also identifies common sub-
graphs among categories ( Supplementary Figure S10 ). This
capability proves invaluable, particularly in multifaceted cate-
gories like metabolism and toxicity, guiding targeted lead op-
timization efforts. Additionally, Deep-PK provides an indica-
tion of whether users’ query molecules fall within the range of
certain properties, particularly regression properties, such as
FDA-approved drugs’ ADMET range. This range is based on
329 FDA-approved drugs and their predicted ADMET values
(see Supplementary Figure S8 ). 

The goal of drug discovery optimization is to enhance
molecules based on ADMET endpoints. To further enhance
molecules, Deep-PK introduces an optimization protocol that
modifies substructures, bridging a gap in pharmacokinetic
prediction platforms that typically focus solely on value pre-
diction. Using the MIMOSA library, Deep-PK generates 100
new molecules from a query molecule with an improved QED.
These molecules are then evaluated for pharmacokinetic and
toxicity profiles, highlighting any changes in endpoints re- 
sulting from the optimization process. While Deep-PK’s op- 
timization function generates novel molecules with the poten- 
tial for improved ADMET properties, it is crucial to acknowl- 
edge that molecule generation primarily relies on log P and 

QED. Consequently, the outcomes of optimization may not 
consistently reflect enhanced ADMET characteristics. Nev- 
ertheless, the optimized molecules typically show heightened 

QED values and maintain compatibility across various chem- 
ical spaces, attributable to the comprehensive dataset utilized 

in their training. 
In summary, Deep-PK emerges as an invaluable screening 

and optimization platform for the drug discovery process,
offering deep analysis based on state-of-the-art performing 
GNN models and rapidly optimizing new molecules tailored 

for drug candidates. By doing so, it significantly reduces costs 
and time associated with unnecessary in vitro or in vivo pre- 
clinical tests, while also mitigating potential risks inherent in 

these tests. 

Data availability 

The curated ADMET training, validation and test datasets 
representing the pharmacokinetic and toxicity assays are 
available at https:// biosig.lab.uq.edu.au/ deeppk/ data . The 
dataset characteristics are properly explained at https://biosig. 
lab.uq.edu.au/ deeppk/ theory . 
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