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Abstract 

ADMETlab 3.0 is the second updated version of the web server that provides a comprehensive and efficient platform for evaluating ADMET- 
related parameters as well as physicochemical properties and medicinal chemistry characteristics in v olv ed in the drug disco v ery process. T his 
new release addresses the limitations of the previous version and offers broader coverage, improved performance, API functionality, and decision 
support. For supporting data and endpoints, this version includes 119 features, an increase of 31 compared to the previous version. The updated 
number of entries is 1.5 times larger than the previous version with over 400 000 entries. ADMETlab 3.0 incorporates a multi-task DMPNN 

architecture coupled with molecular descriptors, a method that not only guaranteed calculation speed for each endpoint simultaneously, but also 
achie v ed a superior performance in terms of accuracy and robustness. In addition, an API has been introduced to meet the growing demand for 
programmatic access to large amounts of data in ADMETlab 3.0. Moreo v er, this v ersion includes uncert aint y estimates in the prediction results, 
aiding in the confident selection of candidate compounds for further studies and experiments. ADMETlab 3.0 is publicly for access without the 
need for registration at: https://admetlab3.scbdd.com . 
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ntroduction 

rug development is a long journey full of high risk, high in-
estments and extremely high attrition rates. The preclinical
tage lays the crucial groundwork and, as a demanding phase
n drug development, confronts a considerable attrition rate
f approximately 93% ( 1 ). Even if certain drug candidates
rogress to clinical studies, over 75% of them are likely to
ail in phases I, II and III clinical trials, and during the sub-
equent drug approval process ( 2 ,3 ). In this process, undesir-
ble pharmacokinetic properties, including absorption, distri-
ution, metabolism, and excretion (ADME) properties, play
 crucial role, leading to the failure of approximately 40%
f candidate molecules. Addition to them, toxicity, another
mportant evaluation indicator in the drug development pro-
ess, also accounts for up to 30% of drug development failures
 2 ,4 ). This underscores the substantial impact of ADME and
oxicity (ADMET) properties on the overall success or fail-
re of drug development efforts, and the importance of early
ssessment of ADMET properties for drug development. 

To evaluate the ADMET properties of new molecular enti-
ies (NMEs) as early as possible, various in vitro and in vivo
ethods including medium- and high-throughput screening
ave been developed, which also facilitate the rapid accu-
ulation of experimental data. However, as the number of
MEs continues to increase, these experimental approaches
ave shown several inherent shortcomings: time-consuming,
ostly, and animal welfare issues involved, which have greatly
imited their application and spurred the emergence of in
ilico methods for predicting ADMET properties. In recent
ecades, with the rapid development of computer science
nd the accumulation of ADMET experimental data, in sil-
co predictive models and derived web tools aimed at facil-
tating the efficient evaluation of ADMET properties have
een greatly developed. Representative tools include admet-
AR ( 5 ), SwissADME ( 6 ) and ProTox-II ( 7 ), as well as sev-
ral web-based platforms developed after the release of AD-

ETlab 2.0 ( 8 ), such as ADMETboost ( 9 ) and Interpretable-
DMET ( 10 ). Despite their evident utility, current platforms

till have certain limitations including narrower coverage of
ndpoints and lower calculation efficiency, etc. Understand-
ng and addressing these limitations is crucial for improv-
ng the effectiveness and reliability of computer tools in drug
evelopment. 
Since its first release in 2018 and the updated version in

021, we have been dedicated to enhancing the performance
nd user experience of the ADMETlab webserver. As one of
he most popular ADMET prediction platforms, our platform
as not only garnered numerous appreciative feedback from
rdinary users but has also earned recognition in the field of
I-driven drug discovery thanks to its superior performance
nd wider ADMET predictions coverage ( 11–13 ). To date, the
rticle publishing ADMETlab 2.0 has been cited 955 times ac-
ording to Google Scholar, and the web server has been visited
ore than 1.7 million times. Inspired by increasingly frequent

ccess and user expectations for enhancements, including the
evelopment of Application Programming Interface (API) ca-
abilities to facilitate batch evaluation, we have upgraded AD-
ETlab to version 3.0 to address existing issues and further

ptimize its user experience. ADMET 3.0 currently covers
 more comprehensive set of ADMET endpoints, including
00 000 high-quality entries and 119 endpoints, marking an
nhancement of 31 additional endpoints in comparison to its
redecessor. The multi-task deep message passing neural net-
works (DMPNN) framework combined with molecular de-
scriptors was applied to construct predictive models for vari-
ous endpoints, which significantly improved the performance
and robustness of these models ( 14 ,15 ). More than that, in re-
sponse to the escalating demand for enhanced in-batch evalu-
ation and analysis experiences, we implemented API capabili-
ties in ADMETlab 3.0, specifically designed for those dealing
with substantial volumes of data. Additionally, an uncertainty
estimation module using evidential deep learning techniques is
deployed in ADMETlab 3.0, which can evaluate the reliability
of prediction results by providing precise measurement of un-
certainties in the outcomes of ADMET predictions, thereby fa-
cilitating informed decision-making processes regarding can-
didate prioritization during virtual screening. In summary, we
believe that the updated ADMET 3.0 is expected to provide
drug developers and chemists with a more comprehensive, re-
liable, and accurate service based on its broader coverage, im-
proved performance, API functionality, and decision support.
ADMETlab 3.0 is freely available for all users without login
at: https://admetlab3.scbdd.com . 

Methods and w ebserv er description 

Data collection 

To provide a broader and deeper insight into the ADMET
profiles, molecular physicochemical properties, and medicinal
chemistry rules for query compounds, our team performed
an extensive re-collection and reorganization based on the
existing ADMET dataset. We incorporated a wide spectrum
of open-access bioactivity databases including ChEMBL ( 16 ),
PubChem ( 17 ) and OCHEM ( 18 ), as well as rigorously peer-
reviewed literature ( 19–24 ). To ensure the quality, consis-
tency and reliability of the data, and to build more accu-
rate and generalizable models based on it, a series of pre-
processing was performed: organometallic compounds, iso-
meric mixtures and chemical mixtures were selectively re-
moved, salts were neutralized, counterions were eliminated,
and canonical SMILES strings were adopted as model input
format. After these pretreatments, we finally obtained over
400 000 molecules covering 77 ADMET-related endpoints
for model building. The detailed information of 77 datasets
and their respective data splitting information can be seen in
Supplementary Table S1 . 

Directed message passing neural network 

(DMPNN) 

The ADMETlab 2.0 employed the multi-task graph atten-
tion (MGA) model, a multi-task framework based on rela-
tion graph convolutional networks (RGCN). Although ver-
sion 2.0 has shown significant improvement compared to
its predecessor, we are continually seeking further enhance-
ments to achieve superior performance without compromis-
ing computational speed. In ADMETlab 3.0, we leveraged
directed message passing neural network (DMPNN), a sub-
class of graph convolutional neural networks (GCNN), by
utilizing Chemprop ( 25 ,26 ), a DMPNN-based package de-
veloped by a team from the Massachusetts Institute of Tech-
nology. DMPNN considers directed edges and learns molecu-
lar encodings through bond-centered convolutions instead of
atom-centered convolutions, thus avoiding unnecessary loops
during the message passing phase. ADMETlab 2.0 

′ s superior
prediction ability over its predecessor and other webservers

https://admetlab3.scbdd.com
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
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primarily owed to its multi-task graph neural network struc-
ture. To inherit the multi-tasking benefits from the previous
version—simultaneously improving model performance and
computational speed—we implemented Chemprop’s multi-
task training approach in ADMETlab 3.0. 

Recent studies have demonstrated that incorporating ex-
ternal features, rather than relying solely on SMILES, can
further enhance the performance of DMPNN ( 14 ,27 ). The
advantage of this combination likely stems from the com-
plementary relationship between the global information of
molecules from descriptors and the local information ex-
tracted by DMPNN. RDKit 2D descriptors offer a com-
prehensive overview of molecular characteristics, including
molecular size and shape, topological information, and func-
tional groups. Our approach adopted the combination of
DMPNN with RDKit 2D descriptors (hereinafter referred
to as DMPNN-Des), an optional combination provided in
Chemprop, to significantly enhance predictive performance.
Presently, DMPNN methods have been successfully applied in
various fields of drug discovery, including antibiotic discovery
( 28–30 ), reaction property prediction ( 31 ), infrared spectra
prediction ( 32 ), solute parameters prediction ( 14 ), and molec-
ular optical peak prediction ( 15 ). 

The multi-task DMPNN-Des framework in this work con-
sists of four key modules. Firstly, there is a feature-extraction
function that transforms an input molecule into both a molec-
ular graph and a RDKit 2D descriptor vector. Secondly, a
DMPNN structure is employed to learn atomic and bond em-
beddings from molecular graph features. Subsequently, an ag-
gregation function is utilized to concatenate the graph readout
feature and RDKit 2D descriptors, creating a more compre-
hensive molecular embedding. Lastly, a standard feed-forward
neural network is employed to transform these molecular em-
beddings into target property values. The overview of AD-
MET profiles and the framework of the DMPNN-Des model
is summarized in Figure 1 . 

Model validation methods 

In this latest update, a comprehensive set of 77 prediction
models including 59 classification models and 18 regression
models, has been implemented. Additionally, the platform in-
cludes 34 other directly computable endpoints and 8 drug-
related rules, which cover the computation of physicochemi-
cal properties utilizing the RDKit package, the generation of
medicinal chemistry and toxicophore rules using Scopy ( 33 ),
and the incorporation of six frequent hitter detection meth-
ods developed by our team ( 34–37 ). For each ADMET end-
point, the dataset was randomly split into training, validation,
and test sets by a ratio of 8:1:1. The larger part was used for
training, and the validation and test sets were used to opti-
mize hyperparameters and test the predictive capacity of each
model, respectively. We built and compared models based on
sole DMPNN and DMPNN-Des for all the 77 endpoints with
a view to selecting the best prediction model to deploy on the
website. The Adam optimizer method ( 38 ) was applied for
training the models, with Bayesian optimization was adopted
for hyperparameter optimization. The detailed information of
the optimal hyperparameters of DMPNN and DMPNN-Des
models is listed in Supplementary Tables S2 and S3 , respec-
tively. To evaluate the performance of the models, R-square
(R 

2 ), root mean squared error (RMSE), and mean absolute er-
ror (MAE) were applied for regression tasks, while the area
under the ROC curve (AUC), accuracy (ACC), and Matthews 
correlation coefficient (MCC) ( 39 ) were applied for classifica- 
tion tasks. To obtain robust and accurate prediction models,
each training process was repeated five times with randomly 
partitioned data, and the best-performing models were incor- 
porated into the online platform. 

Webserver implementation 

Similar to its predecessor, the ADMETlab 3.0 application has 
been crafted using Django as its backbone. The front end, us- 
ing frameworks such as Bootstrap and JQuery, is responsi- 
ble for obtaining user queries, communicating with the back 

end, and selecting visual components in a user-friendly inter- 
face. Better than ADMET1.0 and 2.0, ADMETlab 3.0 intro- 
duces an API that can be easily integrated into various re- 
search pipelines. This API, implemented using Django Ninja,
is responsible for crucial tasks such as storing computational 
data, overseeing the execution and management of predic- 
tive analyses for ADMET-related compounds, and enabling 
interoperability with external applications through a public 
API. Furthermore, a noteworthy addition to the latest ver- 
sion is the incorporation of a caching mechanism. This mod- 
ule temporarily stores user calculation results on the server 
through database storage, which aims to improve the overall 
speed and efficiency of the web service. Chemprop was uti- 
lized for the implementation of prediction models. The web 

server has been successfully tested on the latest versions of 
popular browsers, including Mozilla Firefox, Google Chrome,
Microsoft Edge and Apple Safari. 

New features and updates 

Comprehensive coverage of ADMET endpoints 

To obtain as much ADMET-related data as possible and fur- 
ther improve the practicability of the ADMET webserver, we 
collected new data from two aspects: new data for new end- 
points and new data for existing endpoints. Up to now, we 
extended the number of predictable endpoints from 88 in AD- 
METlab 2.0 to 119 in ADMET 3.0, that is, we have incorpo- 
rated 31 new endpoints. In addition, we also collected new 

molecules for four previously existing endpoints. As a result,
the number of updated entries is 1.5 times larger than the pre- 
vious version, which is over 400 000. Herein, we presented 

a comparison between the training datasets available in AD- 
METlab versions 2.0 and 3.0 and the details can be shown in 

Figure 2 . 
The 119 ADMET endpoints in ADMET 3.0 are composed 

of 21 physicochemical, 20 medical chemistry, 9 absorption,
9 distribution, 14 metabolism, 2 excretion, 36 toxicity prop- 
erties and 8 toxicophore rules. The detailed information of 
the 119 endpoints including their data description, results in- 
terpretation, and empirical decision can be seen in the ‘Help’ 
section of the website. Compared with ADMET 2.0, the 31 

newly added endpoints are as follows: 4 physicochemical, 7 

medical chemistry, 2 absorption, 5 distribution, 4 metabolism 

properties and 9 toxicity endpoints. Among these, 7 medici- 
nal chemistry endpoints are directly computable, requiring no 

additional data support. The data for the remaining 24 end- 
points are utilized to expand the ADMET database, construct- 
ing more comprehensive and precise models. 

The update includes new physicochemical properties such 

as pKa(acid), pKa(base), melting point and boiling point.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
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Figure 1. Ov ervie w scheme of ADMETlab 3.0 data and DMPNN-Des model frame w ork. 
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or absorption, two endpoints—human oral bioavailability
50%) and Parallel Artificial Membrane Permeability Assay
P AMP A)—were integrated. Distribution data covers trans-
embrane transporter inhibitors. Metabolism updates fea-

ure CYP inhibition and human liver microsomal stability
ata. The toxicity section now includes five types of toxic-
ty (nephrotoxicity , neurotoxicity , ototoxicity , hematotoxicity ,
enotoxicity) and in vitro toxicity assessments (hERG block-
rs, RPMI-8226 immunotoxicity, A549 and Hek293 cytotoxi-
ity). Notably, hematotoxicity data stems from recent research
n chemical structure and hematotoxicity relationships. 
Increased diversity and quantity of data contribute to a
more general understanding of the relationships between
molecular features and the corresponding properties to be
learned, leading to more robust and accurate predictions.
Therefore, in addition to the above new endpoints and their
datasets, we also expanded the volume of data for four impor-
tant datasets for drug absorption, distribution, and excretion,
namely Caco-2, logD7.4, VDss and half-life, with increasing
rates of 20%, 20%, 125% and 20%, respectively. We made a
thorough analysis on data distribution and diversity for each
endpoint. Users can access these information in the ‘Diversity
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Figure 2. ( A ) The dataset sizes for absorption, distribution, metabolism, and physicochemical properties. ( B ) The dataset sizes for toxicity properties. 
T he w athet blue (lighter) bars represent the v olume of rene w ed data, while the Aegean blue (dark er) bars indicate the e xisting data v olume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

& Distribution’ item under ‘Help’ section of the website to
gain a deeper understanding of the data composition for the
model. 

Overall, the high-quality updates to the data have made
ADMETlab 3.0 the most comprehensive ADMET online pre-
diction platform known to date. These processed datasets laid
a solid foundation for subsequent model construction, accu-
rate prediction, and in vitro or in vivo in-depth study of AD-
MET properties of new compound molecules. 

Robust and accurate multi-task DMPNN models 

There are a total of 77 predictive models based on DMPNN-
Des or DMPNN, of which 18 are regression models and 59
are classification models. The performance scores for the clas-
sification and regression models for both MPNN and MPNN-
Des were summarized in Supplementary Tables S4 and S5 , re-
spectively. For these regression models, R 

2 values of the ex-
isting 13 endpoints mainly ranged from 0.75 to 0.95. Even
for the endpoint with the lowest performance, the R 

2 value
for LC50FM still reaches a satisfactory 0.68. Regarding the 
newly added five regression endpoints, the R 

2 values for four 
of them fell between 0.8 and 0.9. The remaining one, T 1 / 2 (a 
classification endpoint in ADMET2.0), although hindered by 
its complex pharmacological mechanism and a small dataset,
still achieved an R 

2 of near 0.7. For these classification mod- 
els, the AUC values of existing 40 endpoints were in the range 
of 0.72 to 0.99, and the AUC values of the newly added 20 

classification endpoints were between 0.73 and 0.96, which 

have also been proven to be practical and reliable to a certain 

extent. In conclusion, the overall performance of the ADMET 

predictive models based on DMPNN was excellent for both 

regression and classification endpoints and we believe that the 
online predictive webserver developed based on these models 
can provide extensive, accurate and detailed ADMET infor- 
mation for drug developers and medicinal chemists. 

To further assess the performance and efficacy of our 
models, we conducted a comprehensive comparison of the 
two types of models embedded in ADMETlab 3.0, namely 
DMPNN-Des and DMPNN, against MGA models. All these 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
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Figure 3. Comparison among DMPNN-Des, DMPNN and MGA in regression and classification tasks. ( A ) R 

2 of regression tasks. ( B ) AUC of 
pharmacokinetics parameters (ADME) in classification tasks. ( C ) AUC of toxicity parameters in classification tasks. 
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odels were trained and tested on the same dataset and split
ethod used in this study. The outcomes of this comparative

nalysis were visually depicted in Figure 3 . As illustrated in
igure 3 A, for most tasks in regression tasks, both DMPNN-
es and DMPNN models exhibited significantly superior R 

2 

erformance compared to MGA. 
However, it’s noteworthy that for certain specific tasks, such

s melting point, LC50FM and half-life, MGA demonstrated
lightly superior performance compared to the naïve MPNN
n the past. Nevertheless, its performance remained lower
han that achieved by MPNN-Des. In classification tasks, both
MPNN-Des and DMPNN consistently showed significantly
higher AUC scores when compared with MGA. Notably, these
methods outperformed MGA in 47 out of 59 tasks, underscor-
ing their superior performance in the classification domain. In
terms of the AUC of ADME (Figure 3 B), MGA demonstrated
superior AUC scores for only four of the 27 tasks, includ-
ing two cytochrome enzyme endpoints and two absorption
endpoints. For the performance of toxicity tasks (Figure 3 C),
MGA only achieved higher AUC scores for seven out of 32
endpoints, including AMES, respiratory toxicity, nephrotox-
icity, hERG 10 μm, and three others. The above results sug-
gested that DMPNN-Des or DMPNN generally exhibited a
more dominant and superior classification performance over
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Figure 4. A Python code example for making predictions by calling an API. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the MGA method. The overall performance of DMPNN-Des
was slightly better than DMPNN; however, the addition of
descriptors can slightly reduce processing speed (see in the
following runtime analysis). To provide users with flexibil-
ity, both DMPNN-Des, and DMPNN are available as options
in the webserver API, allowing users to select their preferred
model for compound evaluation. 

API integration and architecture upgrades 

The Application Programming Interface (API) in ADMETlab
3.0 provides the option for researchers to use the command
line for efficient access. This is particularly beneficial for tasks
involving large volume of data. The API achieves accessibil-
ity by employing well-established protocols that are compat-
ible with widely used programming languages, thus simplify-
ing interactions with the core functionalities of the web server.
Users can retrieve comprehensive calculation results conve-
niently via a simple script (Figure 4 ). A tutorial introducing
the utility and providing detailed code examples can be found
in the ‘ API Tutorial ’ section on the website. 

ADMETlab 3.0 

′ s API provides two key functions: (i)
Molecule Wash. This includes practical functions crucial
for generating a reliable outcome, including standardizing
molecules, addressing fragments, assigning charges, handling
tautomerism, isotope correction, and managing stereochem-
istry, which are crucial for generating a reliable outcome.
(ii) Off-website Batch Prediction. the API returns all the 119
ADMET-related properties for a request molecule. Users can
follow the tutorial or use the example scripts to obtain the full
prediction results in CSV format. 

Additionally, the API can return the ‘structure’ as an SVG
string representing the molecular structure and a unique iden-
tifier ‘taskid’ for result retrieval. Note that uncertainty es-
timates for each prediction result are exclusively available 
through the API. To maintain server stability, we recom- 
mend no more than five requests per second. For optimal 
user experience, web interface queries take precedence over 
API requests. Notably, users can choose between DMPNN 

or DMPNN-Des as the prediction model. The API’s flexi- 
bility also encourages developers to leverage its functional- 
ity for broader applications or integrations, including the de- 
velopment of repositories, graphic user interfaces, and web 

applications for ADMET evaluation. By making full use of 
API functionality, the efficiency of high throughout ADMET 

evaluation by medicinal chemists is expected to be greatly 
improved. 

Uncertainty evaluation for predicted results 

In predictive modelling, offering uncertainty estimates for pre- 
dictive results is a crucial metric to evaluate the accuracy and 

reliability of predictions. This metric reflects the model’s confi- 
dence, with lower uncertainty indicating increased confidence 
and higher uncertainty signalling an unreliable prediction for 
a given molecule. 

For the regression model, an evidence-based deep learning 
approach is utilized to predict target properties and deduce 
the parameters of the underlying evidential distribution ( 40 ).
The method integrates an evidential layer after feature extrac- 
tion in a strategic position to capture nuanced support for 
each prediction. Implemented in Chemprop, we adopted the 
‘evidential_total’ estimation method for the regression model,
which goes beyond conventional uncertainty assessments by 
calculating both evidential epistemic and aleatoric uncer- 
tainty. For the classification model, Monte Carlo dropout 
is employed to assess uncertainty across different properties 
( 41 ). Monte Carlo dropout assesses uncertainty across differ- 
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Table 1. Comparison of the main features of ADMETlab (2.0 and 3.0 version) with other web-based platforms 

Features 
ADMETlab 
3.0 

ADMETlab 
2.0 SwissADME 

admetSAR 

2.0 FAF-Drugs4 pkCSM vNN-ADME ADMETboost 
Interpretable- 
ADMET 

Physicochemical 
property 

21 17 12 5 20 6 0 7 10 

Medicinal 
chemistry 

20 13 10 0 16 0 0 0 0 

ADME 34 23 9 35 0 20 9 18 20 
Toxicity 36 27 0 12 0 10 6 4 29 
Toxicophoric rule 8 8 0 0 4 0 0 0 0 
PAINS included Yes Yes Yes No Yes No No No Yes 
Batch 
evaluation / API 
support 

+++ ++ + + ++ ++ ++ + + 

Explanation +++ ++ ++ + ++ ++ + + +++ 
Uncertainty 
estimation 

Yes No No No No No No No No 

Availability Free Free Free Free Free Free Registration 
required 

Free Restricted visit 

Computation time 
(1000 molecules) 

87 84 1560 267 967 1845 2400 5 (per 
molecule) 

Restricted 
evaluation 

*Medicinal chemistry contains drug-likeness rules, chemical friendly measures, and substructural rules of frequent hitters; ADME contains absorption, distribution, 
metabolism, and excretion related endpoints; Toxicity contains human toxicity , animal toxicity , environmental toxicity , and toxic pathways. A higher number of ‘+’ 
symbols indicates better support in the respective item. Runtime assessment for each platform was conducted ten times, and the average runtime value in seconds was 
demonstrated. 
URL links: 
ADMETlab 2.0: https:// admetmesh.scbdd.com/ 
SwissADME: http:// www.swissadme.ch/ 
admetSAR 2.0: http:// lmmd.ecust.edu.cn/ admetsar2/ 
FAF-Drugs4: https://fafdrugs4.rpbs.univ- paris- diderot.fr/
pkCSM: http:// biosig.unimelb.edu.au/ pkcsm/ prediction 
vNN-ADMET: https:// vnnadmet.bhsai.org/ vnnadmet/ login.xhtml 
FAF-Drugs4: https://fafdrugs4.rpbs.univ- paris- diderot.fr/
ADMETboost: https:// ai-druglab.smu.edu/ admet 
Interpretable-ADMET: http:// cadd.pharmacy.nankai.edu.cn/ interpretableadmet/ 
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nt properties by simulating an ensemble of sub-models within
 single neural network. It generates a distribution of out-
omes, offering a prediction mean as the predicted value and
 variance as an uncertainty score for each property. 

We presented the model’s RMSE range within distinct
ncertainty intervals for regression tasks and provided un-
ertainty thresholds with their corresponding maximum
ouden’s index for classification tasks. In classification, the
ncertainty score exceeding maximum Youden’s index desig-
ates the model’s prediction as ‘low confidence’, while pre-
iction uncertainty below this threshold indicates ‘high confi-
ence’ in the model’s prediction. Users can retrieve prediction
esults with these confidence labels through the API, and ad-
itional details can be found in Supplementary Tables S6 and
7 for reference on confidence values. 

omparison with other web-based tools 

e compared endpoint information and processing efficiency
mong ADMETlab 3.0, ADMETlab 2.0, and several popu-
ar ADMET prediction platforms, including SwissADME, ad-
etSAR2.0, FAF-Drugs4, pkCSM, vNN-ADMET, ADMET-
oost and Interpret-ADMET. Details are summarized in Ta-
le 1 . As indicated by the results, ADMETlab 3.0 and 2.0
ersion unquestionably exhibits superior data support and
valuation performance on SwissADME, admetSAR2.0, FAF-
rugs4, pkCSM and vNN-ADMET. In comparison with the

wo latest platforms, ADMET-boost and Interpret-ADMET,
DMETlab 3.0 also showed overall better coverage and
tility performance. ADMET-boost covered 22 ADMET re-

ated parameters plus 7 physiochemical properties. Its optimal
odel turned out to be extreme gradient boosting, a method
that has proven powerful on moderate or smaller training
datasets ( 42 ). Interpret-ADMET, on the other hand, can pre-
dict 59 ADMET properties and physiochemical properties.
Specifically, Interpretable-ADMET not only made predictions
but also offered an interpretation module and an optimiza-
tion module to identify key substructures for specific prop-
erties and optimize the structure afterwards. However, due
to its limitations on user access and the lack of an interface
to perform batch calculations, its practicality is largely lim-
ited. ADMETlab 3.0, on the other hand, demonstrates in-
terpretability by providing uncertainty estimation scores for
prediction results, utilizing coloured dots to represent empir-
ical decision state of each output, and highlighting alert sub-
structures. Additionally, we have significantly improved the
user experience by introducing elaborate documentation, bet-
ter guidance, and enhanced web design compared to 2.0 ver-
sion. The detailed information for endpoint explanation, data
distribution and other aspects are summarized in Supplemen-
tary Document and the ‘help’ section on the website. In run-
time analysis, ADMETlab 3.0 exhibited a slightly longer run-
time compared to ADMETlab 2.0 in the web portal. This
is considered a commendable performance, given that AD-
METlab 3.0 has 31 more endpoints to calculate. Detailed run-
time assessment results of ADMETlab 3.0 with different mod-
elling options can be found in Supplementary Table S8 and
Supplementary Figure S1 . For users who prioritize uncertainty
reference, the combination of DMPNN-Des and uncertainty
demonstrated optimal performance on runtime. However, for
those primarily concerned with runtime efficiency, DMPNN-
Des can be the preferred choice, as it exhibited superior com-
putational efficiency across varying dataset sizes while main-
tained a better performance over sole DMPNN. 

https://admetmesh.scbdd.com/
http://www.swissadme.ch/
http://lmmd.ecust.edu.cn/admetsar2/
https://fafdrugs4.rpbs.univ-paris-diderot.fr/
http://biosig.unimelb.edu.au/pkcsm/prediction
https://vnnadmet.bhsai.org/vnnadmet/login.xhtml
https://fafdrugs4.rpbs.univ-paris-diderot.fr/
https://ai-druglab.smu.edu/admet
http://cadd.pharmacy.nankai.edu.cn/interpretableadmet/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae236#supplementary-data
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Conclusions and future plans 

ADMETlab 3.0 marks a significant advance in the field of
in silico tools for drug development. Building upon the suc-
cesses of its predecessor, ADMETlab 3.0 not only rectifies
limitations related to narrower coverage, uncertainty estima-
tion deficiencies, and integration capabilities but also intro-
duces innovative features to align with the dynamic require-
ments of the field. By incorporating the multi-task DMPNN
modeling method to aggregate local molecular information,
and further enhancing it by combining RDKit 2D descrip-
tors with global molecular information, the updated model
structure ensures the precision, efficiency, and reliability of
ADMET predictions. The augmentation of the dataset, en-
compassing over 400 000 entries and 31 additional endpoints
firmly establish ADMETlab 3.0 as a comprehensive and po-
tent platform. The integration of API capabilities streamlines
in-batch evaluation, especially beneficial for users handling
substantial data volumes. Furthermore, the implementation of
an uncertainty estimation module addresses challenges associ-
ated with interpretation, out-of-domain regimes, and robust-
ness guarantees. This enhancement provides a valuable tool
for informed decision-making in candidate prioritization dur-
ing virtual screening. With these advancements, ADMETlab
3.0 is poised to play a vital role as an indispensable resource
for researchers and practitioners in accelerating drug research
and development. 

Data availability 

ADMETlab 3.0 is publicly accessible without registration at
https://admetlab3.scbdd.com or via API. Results are promptly
displayed on the website and available for download in op-
tional formats. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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