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Abstract 

PubTator 3.0 ( https:// www.ncbi.nlm.nih.gov/ research/ pubtator3/ ) is a biomedical literature resource using state-of-the-art AI techniques to offer 
semantic and relation searches for key concepts like proteins, genetic variants, diseases and chemicals. It currently provides over one billion 
entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access 
subset, updated w eekly. P ubT ator 3.0’ s online interf ace and API utiliz e these precomputed entity relations and synon yms to pro vide adv anced 
search capabilities and enable large-scale analy ses, streamlining man y comple x inf ormation needs. We sho w case the retrie v al quality of P ubTator 
3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google 
Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically impro v es 
the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers 
to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery. 
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Introduction 

The biomedical literature is a primary resource to address in-
formation needs across the biological and clinical sciences ( 1 ),
however the requirements for literature search vary widely.
Activities such as formulating a research hypothesis require
an exploratory approach, whereas tasks like interpreting the
clinical significance of genetic variants are more focused. 

Traditional keyword-based search methods have long
formed the foundation of biomedical literature search ( 2 ).
While generally effective for basic search, these methods also
have significant limitations, such as missing relevant articles
Received: January 18, 2024. Revised: March 2, 2024. Editorial Decision: March 1
Published by Oxford University Press on behalf of Nucleic Acids Research 2024.
This work is written by (a) US Government employee(s) and is in the public dom
due to differing terminology or including irrelevant articles be- 
cause surface-level term matches cannot adequately represent 
the required association between query terms. These limita- 
tions cost time and risk information needs remaining unmet. 

Natural language processing (NLP) methods provide sub- 
stantial value for creating bioinformatics resources ( 3–5 ), and 

may improve literature search by enabling semantic and re- 
lation search ( 6 ). In semantic search, users indicate specific 
concepts of interest (entities) for which the system has pre- 
computed matches regardless of the terminology used. Rela- 
tion search increases precision by allowing users to specify the 
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ype of relationship desired between entities, such as whether
 chemical enhances or reduces expression of a gene. In this re-
ard, we present PubTator 3.0, a novel resource engineered to
upport semantic and relation search in the biomedical litera-
ure. Its search capabilities allow users to explore automated
ntity annotations for six key biomedical entities: genes, dis-
ases, chemicals, genetic variants, species, and cell lines. Pub-
ator 3.0 also identifies and makes searchable 12 common
ypes of relations between entities, enhancing its utility for
oth targeted and exploratory searches. Focusing on relations
nd entity types of interest across the biomedical sciences al-
ows PubTator 3.0 to retrieve information precisely while pro-
iding broad utility (see detailed comparisons with its prede-
essor in Supplementary Table S1 ). 

 yst em o v erview 

he PubTator 3.0 online interface, illustrated in Figure 1
nd Supplementary Figure S1 , is designed for interactive lit-
rature exploration, supporting semantic, relation, keyword,
nd Boolean queries. An auto-complete function provides se-
antic search suggestions to assist users with query formu-

ation. For example, it automatically suggests replacing ei-
her ‘COVID-19 

′′ or "S AR S-CoV-2 infection’ with the seman-
ic term ‘@DISEASE_COVID_19 

′′ . Relation queries – new to
ubTator 3.0 – provide increased precision, allowing users
o target articles which discuss specific relationships between
ntities. 

PubTator 3.0 offers unified search results, simultaneously
earching approximately 36 million PubMed abstracts and
ver 6 million full-text articles from the PMC Open Ac-
ess Subset (PMC-OA), improving access to the substantial
mount of relevant information present in the article full text
 7 ). Search results are prioritized based on the depth of the re-
ationship between the query terms: articles containing iden-
ifiable relations between semantic terms receive the highest
riority, while articles where semantic or keyword terms co-
ccur nearby (e.g. within the same sentence) receive secondary
riority. Search results are also prioritized based on the article
ection where the match appears (e.g. matches within the ti-
le receive higher priority). Users can further refine results by
mploying filters, narrowing articles returned to specific pub-
ication types, journals, or article sections. 

PubTator 3.0 is supported by an NLP pipeline, depicted in
igure 2 A. This pipeline, run weekly, first identifies articles
ewly added to PubMed and PMC-OA. Articles are then pro-
essed through three major steps: (i) named entity recognition,
rovided by the recently developed deep-learning transformer
odel AIONER ( 8 ), (ii) identifier mapping and (iii) relation

xtraction, performed by BioREx ( 9 ) of 12 common types of
elations (described in Supplementary Table S2 ). 

In total, PubTator 3.0 contains over 1.6 billion entity anno-
ations (4.6 million unique identifiers) and 33 million relations
8.8 million unique pairs). It provides enhanced entity recogni-
ion and normalization performance over its previous version,
ubTator 2 ( 10 ), also known as PubTator Central (Figure 2 B
nd Supplementary Table S3 ). We show the relation extrac-
ion performance of PubTator 3.0 in Figure 2 C and its com-
arison results to the previous state-of-the-art systems ( 11–13 )
n the BioCreative V Chemical-Disease Relation ( 14 ) corpus,
nding that PubTator 3.0 provided substantially higher ac-
uracy. Moreover, when evaluating a randomized sample of
ntity pair queries compared to PubMed and Google Scholar,
PubTator 3.0 consistently returns a greater number of arti-
cles with higher precision in the top 20 results (Figure 2 D and
Supplementary Table S4 ). 

Materials and methods 

Data sources and article processing 

PubTator 3.0 downloads new articles weekly from the BioC
PubMed API ( https:// www.ncbi.nlm.nih.gov/ research/ bionlp/
APIs/ BioC-PubMed/ ) and the BioC PMC API ( https://www.
ncbi.nlm.nih.gov/ research/ bionlp/ APIs/ BioC-PMC/ ) in BioC-
XML format ( 16 ). Local abbreviations are identified using
Ab3P ( 17 ). Article text and extracted data are stored inter-
nally using MongoDB and indexed for search with Solr, ensur-
ing robust and scalable accessibility unconstrained by external
dependencies such as the NCBI eUtils API. 

Entity recognition and normalization / linking 

PubTator 3.0 uses AIONER ( 8 ), a recently developed named
entity recognition (NER) model, to recognize entities of six
types: genes / proteins, chemicals, diseases, species, genetic
variants, and cell lines. AIONER utilizes a flexible tagging
scheme to integrate training data created separately into a
single resource. These training datasets include NLM-Gene
( 18 ), NLM-Chem ( 19 ), NCBI-Disease ( 20 ), BC5CDR ( 14 ),
tmVar3 ( 21 ), Species-800 ( 22 ), BioID ( 23 ) and BioRED ( 15 ).
This consolidation creates a larger training set, improving
the model’s ability to generalize to unseen data. Furthermore,
it enables recognizing multiple entity types simultaneously,
enhancing efficiency and simplifying the challenge of distin-
guishing boundaries between entities that reference others,
such as the disorder ‘Alpha-1 antitrypsin deficiency’ and the
protein ‘Alpha-1 antitrypsin’. We previously evaluated the per-
formance of AIONER on 14 benchmark datasets ( 8 ), includ-
ing the test sets for the aforementioned training sets. This eval-
uation demonstrated that AIONER’s performance surpasses
or matches previous state-of-the-art methods. 

Entity mentions found by AIONER are normalized (linked)
to a unique identifier in an appropriate entity database. Nor-
malization is performed by a module designed for (or adapted
to) each entity type, using the latest version. The recently-
upgraded GNorm2 system ( 24 ) normalizes genes to NCBI
Gene identifiers and species mentions to NCBI Taxonomy.
tmVar3 ( 21 ), also recently upgraded, normalizes genetic vari-
ants; it uses dbSNP identifiers for variants listed in dbSNP
and HGNV format otherwise. Chemicals are normalized by
the NLM-Chem tagger ( 19 ) to MeSH identifiers ( 25 ). Tag-
gerOne ( 26 ) normalizes diseases to MeSH and cell lines to
Cellosaurus ( 27 ) using a new normalization-only mode. This
mode only applies the normalization model, which converts
both mentions and lexicon names into high-dimensional TF-
IDF vectors and learns a mapping, as before. However, it
now augments the training data by mapping each lexicon
name to itself, resulting in a large performance improve-
ment for names present in the lexicon but not in the an-
notated training data. These enhancements provide a sig-
nificant overall improvement in entity normalization perfor-
mance ( Supplementary Table S3 ). 

Relation extraction 

Relations for PubTator 3.0 are extracted by the unified re-
lation extraction model BioREx ( 9 ), designed to simulta-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
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Figure 1. PubTator 3.0 system overview and search results page: 1. Query auto-complete enhances search accuracy and synonym matching. 2. Natural 
language processing (NLP)-enhanced rele v ance: Search results are prioritized according to the strength of the relationship between the entities queried. 
3. Users can further refine results with facet filters—section, journal and type. 4. Search results include highlighted entity snippets explaining relevance. 
5. Histogram visualizes number of results by publication year. 6. Entity highlighting can be switched on or off according to user preference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

text. 
neously extract 12 types of relations across eight entity
type pairs: chemical–chemical, chemical–disease, chemical–
gene, chemical–variant, disease–gene, disease–variant, gene–
gene and variant–variant. Detailed definitions of these rela-
tion types and their corresponding entity pairs are presented in
Supplementary Table S2 . Deep-learning methods for relation
extraction, such as BioREx, require ample training data. How-
ever, training data for relation extraction is fragmented into
many datasets, often tailored to specific entity pairs. BioREx
overcomes this limitation with a data-centric approach, rec-
onciling discrepancies between disparate training datasets to
construct a comprehensive, unified dataset. 

We evaluated the relations extracted by BioREx using per-
formance on manually annotated relation extraction datasets
as well as a comparative analysis between BioREx and notable
comparable systems. BioREx established a new performance
benchmark on the BioRED corpus test set ( 15 ), elevating the
performance from 74.4% ( F -score) to 79.6%, and demon-
strating higher performance than alternative models such as
transfer learning (TL), multi-task learning (MTL), and state-
of-the-art models trained on isolated datasets ( 9 ). For PubTa-
tor 3.0, we replaced its deep learning module, PubMedBERT
( 28 ), with LinkBERT ( 29 ), further increasing the performance
to 82.0%. Furthermore, we conducted a comparative anal-
ysis between BioREx and SemRep ( 11 ), a widely used rule-
based method for extracting diverse relations, the CD-REST 

( 13 ) system, and the previous state-of-the-art system ( 12 ), us- 
ing the BioCreative V Chemical Disease Relation corpus test 
set ( 14 ). Our evaluation demonstrated that PubTator 3.0 pro- 
vided substantially higher F -score than previous methods. 

Programmatic access and data formats 

PubTator 3.0 offers programmatic access through its 
API and bulk download. The API ( https://www.ncbi. 
nlm.nih.gov/ research/ pubtator3/ ) supports keyword, en- 
tity and relation search, and also supports exporting 
annotations in XML and JSON-based BioC ( 16 ) for- 
mats and tab-delimited free text. The PubTator 3.0 FTP 

site ( https:// ftp.ncbi.nlm.nih.gov/ pub/ lu/ PubTator3 ) pro- 
vides bulk downloads of annotated articles and extraction 

summaries for entities and relations. Programmatic ac- 
cess supports more flexible query options; for example,
the information need ‘what chemicals reduce expression 

of JAK1?’ can be answered directly via API (e.g. https: 
// www.ncbi.nlm.nih.gov/ research/ pubtator3-api/ relations? 
e1=@GENE _ JAK1&type=negative _ correlate&e2=Chemical ) 
or by filtering the bulk relations file. Additionally, the Pub- 
Tator 3.0 API supports annotation of user-defined free 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://www.ncbi.nlm.nih.gov/research/pubtator3/
https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator3
https://www.ncbi.nlm.nih.gov/research/pubtator3-api/relations?e1=@GENE_JAK1&type=negative_correlate&e2=Chemical
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Figure 2. ( A ) The PubTator 3.0 processing pipeline: AIONER ( 8 ) identifies six types of entities in PubMed abstracts and PMC-OA full-text articles. Entity 
annotations are associated with database identifiers by specialized mappers and BioREx ( 9 ) identifies relations between entities. Extracted data is 
stored in MongoDB and made searchable using Solr. ( B ) Entity recognition performance for each entity type compared with PubTator2 (also known as 
PubTatorCentral) ( 13 ) on the BioRED corpus ( 15 ). ( C ) Relation extraction performance compared with SemRep ( 11 ) and notable previous best systems 
( 1 2 , 1 3 ) on the BioCreative V Chemical-Disease Relation ( 14 ) corpus. ( D ) Comparison of information retrieval for PubTator 3.0, PubMed, and Google 
Scholar for entity pair queries, with respect to total article count and top-20 article precision. 
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ase study I: entity relation queries 

e analyzed the retrieval quality of PubTator 3.0 by prepar-
ng a series of 12 entity pairs to serve as case studies for
omparison between PubTator 3.0, PubMed and Google
cholar. To provide an equal comparison, we filtered about
0% of the Google Scholar results for articles not present
n PubMed. To ensure that the number of results would
emain low enough to allow filtering Google Scholar re-
ults for articles not in PubMed, we identified entity pairs
rst discussed together in the literature in 2022 or later. We
hen randomly selected two entity pairs of each of the fol-
owing types: disease / gene, chemical / disease, chemical / gene,
hemical / chemical, gene / gene and disease / variant. None of
the relation pairs selected appears in the training set. The
comparison was performed with respect to a snapshot of the
search results returned by all search engines on 19 May 2023.
We manually evaluated the top 20 results for each system and
each query; articles were judged to be relevant if they men-
tioned both entities in the query and supported a relationship
between them. Two curators independently judged each ar-
ticle, and discrepancies were discussed until agreement. The
curators were not blinded to the retrieval method but were
required to record the text supporting the relationship, if rel-
evant. This experiment evaluated the relevance of the top 20
results for each retrieval method, regardless of whether the
article appeared in PubMed. 
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Our analysis is summarized in Figure 2 D, and
Supplementary Table S4 presents a detailed comparison
of the quality of retrieved results between PubTator 3.0,
PubMed and Google Scholar. Our results demonstrate that
PubTator 3.0 retrieves a greater number of articles than the
comparison systems and its precision is higher for the top
20 results. For instance, PubTator 3.0 returned 346 articles
for the query ‘GLPG0634 + ulcerative colitis’, and manual
review of the top 20 articles showed that all contained
statements about an association between GLPG0634 and
ulcerative colitis. In contrast, PubMed only returned a total
of 18 articles, with only 12 mentioning an association. More-
over, when searching for ‘COVID19 + PON1’, PubTator 3.0
returns 212 articles in PubMed, surpassing the 43 articles
obtained from Google Scholar, only 29 of which are sourced
from PubMed. These disparities can be attributed to several
factors: (i) PubTator 3.0’s search includes full texts available
in PMC-OA, resulting in significantly broader coverage of
articles, (ii) entity normalization improves recall, for example,
by matching ‘paraoxonase 1’ to ‘PON1’, (iii) PubTator 3.0
prioritizes articles containing relations between the query
entities, (iv) Pubtator 3.0 prioritizes articles where the entities
appear nearby, rather than distant paragraphs. Across the 12
information retrieval case studies, PubTator 3.0 demonstrated
an overall precision of 90.0% for the top 20 articles (216 out
of 240), which is significantly higher than PubMed’s precision
of 81.6% (84 out of 103) and Google Scholar’s precision of
48.5% (98 out of 202). 

Case study II: retrieval-augmented generation 

In the era of large language models (LLMs), PubTator 3.0 can
also enhance their factual accuracy via retrieval augmented
generation. Despite their strong language ability, LLMs are
prone to generating incorrect assertions, sometimes known
as hallucinations ( 30 ,31 ). For example, when requested to
cite sources for questions such as ‘which diseases can dox-
orubicin treat’, GPT-4 frequently provides seemingly plausi-
ble but nonexistent references. Augmenting GPT-4 with Pub-
Tator 3.0 APIs can anchor the model’s response to verifiable
references via the extracted relations, significantly reducing
hallucinations. 

We assessed the citation accuracy of responses from three
GPT -4 variations: PubTator-augmented GPT -4, PubMed-
augmented GPT-4 and standard GPT-4. We performed a qual-
itative evaluation based on eight questions selected as fol-
lows. We identified entities mentioned in the PubMed query
logs and randomly selected from entities searched both fre-
quently and rarely. We then identified the common queries for
each entity that request relational information and adapted
one into a natural language question. Each question is there-
fore grounded on common information needs of real PubMed
users. For example, the questions ‘What can be caused by
tocilizumab?’ and ‘What can be treated by doxorubicin?’
are adapted from the user queries ‘tocilizumab side effects’
and ‘doxorubicin treatment’ respectively. Such questions typ-
ically require extracting information from multiple articles
and an understanding of biomedical entities and relation-
ship descriptions. Supplementary Table S5 lists the questions
chosen. 

We augmented the GPT-4 large language model (LLM) with
PubTator 3.0 via the function calling mechanism of the Ope-
nAI ChatCompletion API. This integration involved prompt-
ing GPT-4 with descriptions of three PubTator APIs: (i) find 

entity ID, which retrieves PubTator entity identifiers; (ii) find 

related entities, which identifies related entities based on an 

input entity and specified relations and (iii) export relevant 
search results, which returns PubMed article identifiers con- 
taining textual evidence for specific entity relationships. Our 
instructions prompted GPT-4 to decompose user questions 
into sub-questions addressable by these APIs, execute the 
function calls, and synthesize the responses into a coherent fi- 
nal answer. Our prompt promoted a summarized response by 
instructing GPT-4 to start its message with ‘Summary:’ and re- 
quested the response include citations to the articles providing 
evidence. The PubMed augmentation experiments provided 

GPT-4 with access to PubMed database search via the Na- 
tional Center for Biotechnology Information (NCBI) E-utils 
APIs ( 32 ). We used Azure OpenAI Services (version 2023-07- 
01-preview) and GPT-4 (version 2023-06-13) and set the de- 
coding temperature to zero to obtain deterministic outputs.
The full prompts are provided in Supplementary Table S6 . 

PubTator-augmented GPT-4 generally processed the ques- 
tions in three steps: (i) finding the standard entity identi- 
fiers, (ii) finding its related entity identifiers and (iii) search- 
ing PubMed articles. For example, to answer ‘What drugs can 

treat breast cancer?’, GPT-4 first found the PubTator entity 
identifier for breast cancer (@DISEASE_Breast_Cancer) using 
the Find Entity ID API. It then used the Find Related Entities 
API to identify entities related to @DISEASE_Breast_Cancer 
through a ‘treat’ relation. For demonstration purposes, we 
limited the maximum number of output entities to five. Finally,
GPT-4 called the Export Relevant Search Results API for the 
PubMed article identifiers containing evidence for these rela- 
tionships. The raw responses to each prompt for each method 

are provided in Supplementary Table S6 . 
We manually evaluated the accuracy of the citations in 

the responses by reviewing each PubMed article and ver- 
ifying whether each PubMed article cited supported the 
stated relationship (e.g. Tamoxifen treating breast cancer).
Supplementary Table S5 reports the proportion of the cited 

articles with valid supporting evidence for each method. GPT- 
4 frequently generated fabricated citations, widely known 

as the hallucination issue. While PubMed-augmented GPT-4 

showed a higher proportion of accurate citations, some ar- 
ticles cited did not support the relation claims. This is likely 
because PubMed is based on keyword and Boolean search and 

does not support queries for specific relationships. Responses 
generated by PubTator-augmented GPT-4 demonstrated the 
highest level of citation accuracy, underscoring the poten- 
tial of PubTator 3.0 as a high-quality knowledge source for 
addressing biomedical information needs through retrieval- 
augmented generation with LLMs such as GPT-4. In our ex- 
periment, using Azure for ChatGPT, the cost was approxi- 
mately $1 for two questions with GPT-4-Turbo, or 40 ques- 
tions when downgraded to GPT-3.5-Turbo, including the cost 
of input / output tokens. 

Discussion 

Previous versions of PubTator have fulfilled over one billion 

API requests since 2015, supporting a wide range of research 

applications. Numerous studies have harnessed PubTator an- 
notations for disease-specific gene research, including efforts 
to prioritize candidate genes ( 33 ), determine gene–phenotype 
associations ( 34 ), and identify the genetic underpinnings of 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae235#supplementary-data
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isease comorbidities ( 35 ). Several projects have used PubTa-
or to create gene and genetic variant resources ( 36 ,37 ) or to
nrich disease knowledge graphs ( 38 ,39 ). Moreover, PubTator
as supported biocuration efforts ( 40 ,41 ) and the creation of
LP benchmarks ( 42 ). With enhanced accuracy, PubTator 3.0
ill better support these use cases. 
Introducing relation annotations to PubTator 3.0 opens

ovel avenues for expanded use scenarios. With relations pre-
omputed from the literature, complex research questions can
ften be answered directly. Drug repurposing, for example,
an be formulated as identifying chemicals which target spe-
ific genes. Conversely, determining the genetic targets of a
hemical can be achieved by querying the same chemical / gene
elations. Clinicians evaluating genetic variants, e.g. for rare
iseases or personalized medicine, may explore the relation-
hips between specific genetic variants and disease. Biologists,
n the other hand, may utilize interactions between multiple
enes to assemble complex molecular pathways. 

There are several notable limitations for PubTator 3.0. Al-
hough it is capable of extracting relations from full-text ar-
icles, this feature is currently restricted to abstracts due to
omputational constraints. However, the system has been de-
igned to support full-text relation extraction in a future en-
ancement. The current system only extracts 12 relation types,
hough these represent common uses. Finally, entity anno-
ation and relation extraction are automated; though these
ystems exhibit high performance, their accuracy remains
mperfect. 

onclusion 

ubTator 3.0 offers a comprehensive set of features and tools
hat allow researchers to navigate the ever-expanding wealth
f biomedical literature, expediting research and unlocking
aluable insights for scientific discovery. The PubTator 3.0 in-
erface, API, and bulk file downloads are available at https:
/ www.ncbi.nlm.nih.gov/ research/ pubtator3/ . 

ata availability 

ata is available through the online interface at https://
ww.ncbi.nlm.nih.gov/ research/ pubtator3/ , through the API
t https:// www.ncbi.nlm.nih.gov/ research/ pubtator3/ api or
ulk FTP download at https:// ftp.ncbi.nlm.nih.gov/ pub/ lu/
ubTator3/. 
The source code for each component of PubTator 3.0

s openly accessible. The AIONER named entity recognizer
s available at https:// github.com/ ncbi/ AIONER . GNorm2,
or gene name normalization, is available at https://github.
om/ ncbi/ GNorm2 . The tmVar3 variant name normalizer
s available at https:// github.com/ ncbi/ tmVar3 . The NLM-
hem Tagger, for chemical name normalization, is available
t https:// ftp.ncbi.nlm.nih.gov/ pub/ lu/ NLMChem . The Tag-
erOne system, for disease and cell line normalization, is avail-
ble at https:// www.ncbi.nlm.nih.gov/ research/ bionlp/ Tools/
aggerone . The BioREx relation extraction system is available
t https:// github.com/ ncbi/ BioREx . The code for customizing
hatGPT with the PubTator 3.0 API is available at https:

/ github.com/ ncbi-nlp/ pubtator-gpt . The details of the appli-
ations, performance, evaluation data, and citations for each
ool are shown in Supplementary Table S7 . All source code is
lso available at https:// doi.org/ 10.5281/ zenodo.10839630 . 
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