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Abstract 

Small ubiquitin-like modifiers (SUMOs) are tiny but important protein regulators involved in orchestrating a broad spectrum of biological pro- 
cesses, either by covalently modifying protein substrates or by noncovalently interacting with other proteins. Here, we report an updated server, 
GPS-SUMO 2.0, for the prediction of SUMOylation sites and SUMO-interacting motifs (SIMs). For predictor training, we adopted three ma- 
chine learning algorithms, penalized logistic regression (PLR), a deep neural network (DNN), and a transformer, and used 52 404 nonredundant 
SUMOylation sites in 8262 proteins and 163 SIMs in 102 proteins. To further increase the accuracy of predicting SUMOylation sites, a pretraining 
model was first constructed using 145 545 protein lysine modification sites, followed by transfer learning to fine-tune the model. GPS-SUMO 

2.0 exhibited greater accuracy in predicting SUMOylation sites than did other existing tools. For users, one or multiple protein sequences or 
identifiers can be input, and the prediction results are shown in a tabular list. In addition to the basic statistics, we integrated knowledge from 

35 public resources to annotate SUMOylation sites or SIMs. The GPS-SUMO 2.0 server is freely available at ht tps://sumo.biocuc koo.cn/. We 
belie v e that GPS-SUMO 2.0 can serve as a useful tool for further analysis of SUMOylation and SUMO interactions. 
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ntroduction 

mall ubiquitin-like modifier (SUMO) proteins are highly con-
erved ubiquitin-like (UBL) proteins that play essential roles in
egulating a variety of biological processes, ranging from gene
xpression and chromatin remodelling to cellular dynamics
nd plasticity ( 1–3 ). In eukaryotic cells, SUMOs exhibit reg-
latory functions through covalently attaching to specific ly-
ine residues in substrates or by noncovalently binding to pro-
eins that consist of SUMO-interacting motifs (SIMs) ( 2–4 ).
revious studies have demonstrated that the lysine residues
f SUMO acceptor sites are frequently embedded in the con-
ensus motif ψ –K–X–E ( ψ , a hydrophobic amino acid such
s A, I, L, M, P, F, V or W; X, any amino acid residue) ( 5–
0 ). Also, SUMOylation provides a noncovalent binding site
or reader proteins comprising SIMs, which in turn shapes the
unction of SUMOylated substrates ( 2 ,9 ). The dysfunction of
UMOs is closely related to the occurrence of numerous types
f human diseases, such as neurodegenerative diseases, au-
oimmune diseases, and cancers ( 11–13 ). Thus, the identifi-
ation of SUMOylation sites and SIMs provides insight into
he important roles of SUMOs in cellular, physiological and
athological processes ( 1 ,2 ), and facilitates the exploration of
otential therapeutic targets for disease treatment ( 1 ,3 ). 
In addition to the use of experimental screening and iden-

ification methods, a series of computational prediction tools
ave been constructed to provide useful information for effi-
iently identifying SUMOylation sites and SIMs. From 2006
o 2009, we developed the group-based prediction system
GPS) algorithm SUMOsp ( 14 ) and its update SUMOsp 2.0
 15 ) for the prediction SUMOylation sites. In 2014, we in-
orporated the SIM inference module and released the up-
ated algorithm GPS-SUMO to predict both SUMOylation
ites and SIMs ( 3 ). In addition, other reliable tools, such as

usiteDeep ( 16 ), ResSUMO ( 17 ), JASSA ( 18 ), and SUMO-
lot ( http:// www.abgent.com/ sumoplot ), have been developed
or the study of lysine modification by SUMO conjugation
 Supplementary Table S1 ). In particular, MusiteDeep and
esSUMO adopt machine learning approaches to directly

earn informative features for in silico prediction of SUMOy-
ation sites ( 16 ,17 ). With the progress of high-throughput
roteomics, a large number of lysine-modified substrates and
ites have been characterized ( 5–7 , 19 , 20 ). In our developed
atabase CPLM 4.0, there are more than 590 000 lysine
odification sites, which contain > 53 000 SUMOylation

ites ( 19 ). Recently, we pretrained a foundation model for
eneral phosphorylation sites (p-sites) and fine-tuned each
inase-specific predictor for p-sites ( 21 ). Considering the large
mount of accumulated protein lysine modification (PLM)
ata, it’s not known whether pretraining a general model
f lysine-modified sites followed by fine-tuning is helpful for
omputational identification of SUMOylation sites. 

In this study, we released an updated online tool, GPS-
UMO 2.0, to predict SUMOylation sites and SIMs. We
rained the model with a nonredundant dataset of 52 404
UMOylation sites in 8262 proteins and 163 SIMs in 102
roteins. For the training of the predictor, three machine learn-
ng approaches, namely, the transformer, DNN and PLR ap-
roaches, were adopted, and contextual features, seven types
f sequence features and three types of structural features were
ntegrated. To further improve the accuracy of the computa-
ional prediction of SUMOylation sites, a foundation model
as pretrained utilizing 145 545 nonredundant lysine modi-
fication sites in 38 069 proteins, followed by transfer learn-
ing to fine-tune the model. In comparison to other available
tools, we carefully compiled an independent dataset not used
in training. This dataset includes 6665 known SUMOylation
sites as positive data and 71 248 negative sites. Our devel-
oped tool has demonstrated increased accuracy for SUMOy-
lation prediction. In the web interface, all users can submit
one or multiple protein sequences or identifiers, and the pre-
diction results are presented as a tabular list. In addition, we
further implemented 35 public resources for the annotation of
SUMOylation sites or SIMs, including but not limited to ex-
perimental evidence, physical interactions, 3D structures, and
disorder propensities. Overall, we anticipate that GPS-SUMO
2.0 could be useful and convenient for studying SUMOylation
and SUMO interactions. 

Materials and methods 

Data collection and preparation 

First, we downloaded 53495 experimentally identified
SUMOylation sites in 11 705 proteins from CPLM 4.0
( 19 ). In addition, 16 425 experimentally identified SUMOy-
lation sites were collected from 12 public databases, includ-
ing dbPTM ( 22 ), qPTM ( 23 ), iPTMnet ( 24 ), PhosphoSitePlus
( 25 ), ProteomeScout ( 26 ), mUbiSiDa ( 27 ), HPRD ( 28 ), Ac-
tiveDriverDB ( 29 ), VPTMdb ( 30 ), PTMcode v2 ( 31 ), UniProt
( 32 ) and BioGRID ( 33 ). Moreover, a series of keywords, in-
cluding ‘SUMO’, ‘SUMOylation’, ‘(SIM or SBD or SBM) and
SUMO’, were used to search the published literature from
2014 to 2022 in PubMed, and 5108 additional SUMOylation
sites were obtained (Figure 1 A). With the integration of the
datasets in GPS-SUMO 1.0, a total of 74 927 SUMOylation
sites and 176 SIMs in 14 809 proteins from 13 species were
ultimately obtained. We employed the widely used clustering
program CD-HIT ( 34 ) to avoid homology redundancy with a
sequence similarity threshold of 40% (Figure 1 B). Our nonre-
dundant benchmark dataset included 59 069 SUMOylation
sites and 163 SIMs ( Supplementary Table S2 ). 

Next, we obtained 39 938 nonredundant sites exclusively
SUMOylated under stress conditions, such as SUMO protease
inhibition, proteasome inhibition and heat shock ( 5–7 ). This
dataset was used to train an additional model for predict-
ing SUMOylation sites under stress conditions. From previous
studies ( 6 ,7 ), we obtained the relative abundance values of 40
765 SUMOylation sites, as well as their fractional protein in-
tensity values under standard growth conditions. The relative
abundance value is a SUMO site score, which has been cal-
culated based on multiple parameters such as the Andromeda
score, delta score, and localization delta score ( 6 ,7 ). The av-
erage SUMO site scores were determined for sites quantified
in both studies, and 34 950 SUMOylation sites were reserved
after redundancy clearance by CD-HIT ( 34 ). These SUMOy-
lation sites were ranked based on SUMO site scores, and used
for finetuning the default PLR model. 

Then, we defined the SUMOylation site peptide SSP( m , n )
as a lysine residue with m residues upstream and n residues
downstream. We utilized SSP ( 30 ,30 ), a SUMOylation residue
with 30 upstream residues and 30 downstream residues, for
training. The SSP ( 30 ,30 ) items around experimentally identi-
fied SUMOylation sites were considered as positive data, while
those around other lysine residues were treated as negative
data. The training data includes 52404 positive sites in 8262

http://www.abgent.com/sumoplot
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data


W 240 Nucleic Acids Research , 2024, Vol. 52, Web Server issue 

Figure 1. The procedure of the development of GPS-SUMO 2.0, including data collection, data integration, feature encoding as well as model 
construction. ( A ) Data preparation of SUMOylation sites and SIMs curated from the literature and public databases. ( B ) Data integration. The collected 
SUMOylaiton sites and SIMs were merged, and the nonredundant datasets of modification sites and SIMs were generated using CD-HIT. ( C ) Feature 
encoding of the GPS-SUMO 2.0 algorithm. In total, 11 types of sequence-encoded features were used, including the contextual feature, 7 sequence 
features and 3 structural features. ( D ) The model construction methods used for GPS-SUMO 2.0. Three machine learning approaches, including 
transformer, DNN and PLR, were used for the construction of predictive models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proteins ( Supplementary Table S2 A), and the independent test
set that was not used during training includes 6665 positive
sites ( Supplementary Table S2 B). As previously described ( 3 ),
most of SIMs follow a hydrophobic motif of [IVL]{3, 5}, and
a defined SIM( m , n ) represents that a SIM core was flanked
by m residues upstream and n residues downstream, respec-
tively . Similarly , 163 known SIM ( 30 ,30 ) items were taken as
positive data, and the remaining items around putative SIMs
were taken as negative data ( Supplementary Table S2 C). 

Performance evaluation measurements 

To evaluate the accuracy of GPS-SUMO 2.0, true positive
(TP), true negative (TN), false positive (FP), and false nega-
tive (FN) values were measured. Then, we calculated five com-
monly used measurements, sensitivity ( Sn ), specificity ( Sp ), ac-
curacy ( Ac ), precision ( Pr ) and the Mathew correlation coef-
ficient ( MCC ) separately, as follows: 

Sn = 

TP 

TP + FN 

Sp = 

TN 

TN + FP 

Ac = 

TP + TN 

TP + FP + TN + FN 
Pr = 

T P 
T P + F P 

MCC = 

( TP × TN ) − ( FN × FP ) 
√ 

( TP + FN ) × ( TN + FP ) × ( TP + FP ) × ( TN + FN )

As we implemented 11 features in GPS-SUMO 2.0, 10-fold 

cross-validation was performed for each feature. In addition,
4-, 6-, 8- and 10-fold cross-validations were conducted to 

evaluate the accuracy and robustness of the final predictor.
For the comparison of GPS-SUMO 2.0 with other existing 
tools, we used an independent test dataset with 6665 posi- 
tive SUMOylation sites. The receiver operating characteris- 
tic (ROC) curve was generated based on the Sn and 1 − Sp 

scores, and the area under the curve (AUC) was calculated 

( Supplementary Table S3 ). 

Feature encoding and model training 

In previous studies, we designed and developed a series of hy- 
brid learning frameworks to integrate multiple protein fea- 
tures to improve the prediction accuracy ( 21 , 35 , 36 ). Next,
we utilized 11 features of SSP ( 30 ,30 ) to increase the pre- 
diction accuracy (Figure 1 C). In this study, we first chose 
145 545 nonredundant lysine modification sites in 38 069 

proteins from CPLM 4.0 ( 19 ) to pretrain a transformer-based 

model. The model pretraining was carried on the ORISE Su- 
percomputer. The HPC platform is based on a CPU+ Acceler- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
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tor heterogeneous architecture. On each node, a 4-way 8-
ore X86 CPU with 128 GB memory is connected to four
eneral-purpose GPU-like accelerators with 32 PCle buses
hile every accelerator accesses the CPU through direct mem-
ry access (DMA) and the nodes are linked by a high-speed
etwork. 
Next, the pretrained model was fine-tuned using SUMOyla-

ion site datasets. This transformer-based model was used for
ncoding the contextual information of SSP ( 30 ,30 ). More-
ver, we encoded seven types of sequence-based features,
amely, the GPS method ( 21 ), composition of k -spaced amino
cid pairs (CKSAAPs), orthogonal binary coding (OBC),
Aindex, position-specific scoring matrix (PSSM) and auto-
orrelation functions (ACFs), as well as three types of struc-
ural features, namely, secondary structure (SS), accessible sur-
ace area (ASA) and backbone torsion angles (BTAs), of SSP
 30 ,30 ) items (Figure 1 C). Then, for each individual feature,
 4-layer DNN model was constructed for training and pre-
iction. The DNN model outputs a score to indicate the pos-
ibility of SUMOylation at lysine residues. Finally, we inte-
rated the scores of the 11 features via the PLR model im-
lemented in scikit-learn v1.0.2 with the ridge (L2) penalty
nd the ‘liblinear’ solver. The final score was calculated an
ndicator to estimate the probability of SUMOylation. Both
ransformer and DNN models were implemented in Keras
.10.0 based on Tensorflow 2.10.0. For the prediction of
IMs, the same transformer framework and feature integra-
ion methods were adopted on SIM ( 30 ,30 ) for model training
Figure 1 D). 

For convenience, we also implemented the default model
rained by PLR, and further finetuned by gene set enrich-
ent analysis (GSEA) method ( 37 ,38 ), only using the GPS

eature. First, the AUC value of the initial PLR model was cal-
ulated as 0.6930 using 10-fold cross-validation. Then, this
odel was used to score the 52404 positive sites in the train-

ng dataset, and the results were ranked by prediction values.
y testing, 3495 (top 10%) sites with the highest SUMO site
cores were taken as a gene set for enrichment analysis. Using a
ython package of GSEAPY ( https:// pypi.org/ project/ gseapy/ )
 37 ,38 ), the initial normalized enrichment score (NES) was
alculated as 7.691. Next, weights of individual GPS features
ere randomly increased or decreased, and the manipula-

ion was adopted if NES increased without decreasing the
UC value. Such a procedure was interactively performed
ith > 10 000 times, until NES was not increased any longer.
he final NES value was determined as 11.242, with an AUC
alue of 0.6963 ( Supplementary Figure S1 A). 

ntegrated annotations 

e integrated several other tools to annotate our prediction
esults on the web site. A web tool, IceLogo ( 39 ) ( http://iomics.
gent.be/ icelogoserver/ ), was used for motif analysis. This tool
hows enriched as well as depleted amino acids. We uploaded
ll positive SSP ( 30 ,30 ) and SIM ( 30 ,30 ) items to IceLogo, and
equence logos of SUMOylation sites and SIMs were gener-
ted, respectively. Moreover, we employed 3Dmol.js ( 40 ) to
isplay the three-dimensional structure and predicted sites of
he proteins. The disorder propensity values of the proteins
ere evaluated using IUPred ( 41 ). The ASA of the amino acids

nd the secondary structure were measured by NetSurfP 3.0
 42 ). Besides the basic statistics, the knowledge of 35 public
esources was integrated ( Supplementary Table S4 ). 
Web server implementation 

Up to 6 predictors were developed for the online service of
GPS-SUMO 2.0: (i) PLR + GSEA, prediction based on PLR
training and GSEA finetuning with the GPS feature; (ii) trans-
former, prediction based on transformer with the contextual
information of sequences; (iii) all, prediction based on all
models with all features; (iv) species-specific, species-specific
prediction based on all models with all features; (v) compre-
hensive, prediction based on all models with all features and
additional annotations of secondary structure and surface ac-
cessibility; (vi) stress conditions, prediction based on PLR, us-
ing 39 938 nonredundant SUMOylation sites identified under
various stress conditions for training ( Supplementary Figure 
S1 B). 

For each predictor, we defined high, medium and low
thresholds using Sp values of 95%, 90% and 85%, respec-
tively. The high threshold was selected as the default value.
The web frontend was built with PHP 5.4 and JQuery 1.4.4,
and the backend was built using Python 3.8. For visualiza-
tion, charts were generated using JavaScript libraries. The on-
line service GPS-SUMO 2.0 can be used on multiple platforms
and browsers, including Google Chrome 107.0.5304.107,
Mozilla Firefox 107.0.1, Safari 13.1.2 and Microsoft Edge
108.0.1462.46. 

Results 

Performance evaluation and comparison 

Computational prediction of SUMOylation sites and SIMs in
proteins provides a helpful means for studying the molecular
mechanisms and regulatory roles of SUMOylation and SUMO
interactions. Of note, the prediction performance heavily re-
lies on the quantity and quality of experimentally identified
SUMOylation sites or SIMs. Recent progresses in SUMO pro-
teomic profiling have produced tens of thousands of SUMOy-
lation sites, using the high-resolution tandem mass spectrom-
etry (MS / MS) ( 5–7 ). For example, Hendriks et al . quantita-
tively identified up to 40 765 SUMOylation sites of 6747 pro-
teins in human cell lines under standard or stress conditions
( 6 ). These newly identified SUMOylation sites will be highly
valuable for improving the prediction performance. In GPS-
SUMO, we only took 912 nonredundant SUMOylation sites
for model training ( 3 ). For development of GPS-SUMO 2.0,
we in total obtained 59069 nonredundant SUMOylation sites,
with a 64.8-fold increase in the benchmark data set. A detailed
comparison of GPS-SUMO 2.0 and our previous releases was
shown in Supplementary Table S5 . 

In this study, three machine learning methods, including
transformer, DNN and PLR, were employed for model train-
ing, and integrating the contextual information of sequences,
seven types of sequence features and three types of struc-
tural features. To evaluate the prediction accuracy, the 10-
fold cross-validation was individually conducted for each fea-
ture. The AUC values for the prediction of SUMOylation
sites ranged from 0.5220 (ACFs) to 0.7621 (DNN) (Figure
2 A), and the AUC values for predicting SIMs ranged from
0.5299 (ASA) to 0.9287 (Transformer) (Figure 2 B). More-
over, n -fold cross-validations were adopted for the evalua-
tion of the final prediction models. Using 4-, 6-, 8- and 10-
fold cross-validations, AUC values for predicting SUMOyla-
tion sites ranged from 0.8933 to 0.8988 (Figure 2 C), and AUC
values for predicting SIMs ranged from 0.9563 to 0.9583

https://pypi.org/project/gseapy/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
http://iomics.ugent.be/icelogoserver/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
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Figure 2. Performance evaluation and comparison of GPS-SUMO 2.0. ( A ) The performance evaluation of the predictors of SUMOylation sites using 
various algorithms and features. The ROC curves and AUC values were separately presented for 13 predictive models. The GPS-SUMO 2.0 predictor 
was trained using 3 machine learning methods and 11 features. The PLR + GSEA model was constructed by PLR training and GSEA finetuning with the 
GPS feature. The other 11 models was individually trained by using DNN algorithm and single feature. ( B ) The performance measurement of SIM 

predictors utilizing different machine learning methods and features. The ROC curves were illustrated and AUC values were calculated for each 
predictive model. ( C ) The performance evaluation of SUMOylation predictor using n -fold cross-validations. For the evaluation of predictive models, 4-, 6-, 
8-, 10-fold cross-validations were used, and the ROC curves and AUC values were presented. ( D ) The 4-, 6-, 8-, 10-fold cross-validations were utilized to 
e v aluate the perf ormance of constructed model f or the prediction of SIMs. ( E ) The performance comparison between GPS-SUMO 2.0 and other existing 
predictors, including ResSUMO, MusiteDeep, SUMOplot, SUMOsp 2.0, GPS-SUMO and JASSA. ( F ) The evaluation of 11 types of features contributing 
to GPS-SUMO 2.0 by measuring the SHAP score for each feature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 2 D). To further explore the performance of GPS-
SUMO 2.0, a comparison was performed unbiasedly with
other publicly available SUMOylation site predictors, in-
cluding GPS-SUMO ( 3 ), MusiteDeep ( 16 ), ResSUMO ( 17 ),
SUMOplot, SUMOsp 2.0 ( 15 ) and JASSA ( 18 ), using the in-
dependent dataset curated in this study. For JASSA, Sn and Sp
values were calculated separately when high or low cut-off
thresholds were selected (Figure 2 E). Our analyses demon-
strated that GPS-SUMO 2.0 exhibited better performance
than did the other predictive tools (Figure 2 E). 

Next, to investigate the differential contributions of the 11
features in GPS-SUMO 2.0, a well-characterized approach,
namely, the SHapley Additive exPlanation (SHAP) approach
( 43 ,44 ), was adopted for the interpretation of the prediction
model. The analysis revealed that all 11 features contributed
to our developed predictors (Figure 2 F). In particular, we ob-
served that the feature encoded by the GPS algorithm had
the highest SHAP score, indicating that obtaining information
on sequence similarities is essential for in silico identification
of modified sites. Notably, the transformer-encoded feature
also had an important contribution to GPS-SUMO 2.0, sug-
gesting that contextual information is useful for understand-
ing the underlying mechanism of SUMOylation and SUMO 

interactions. 

Usage of the GPS-SUMO 2.0 web server 

In GPS-SUMO 2.0, we implemented 6 predictors that could 

be accessed at the advance page ( https://sumo.biocuckoo.cn/ 
advanced.php ) ( Supplementary Figure S1 B). For convenience,
the predictor based on PLR + GSEA with the GPS feature 
was provided at the home page, for its high speed and a 
still promising accuracy ( Supplementary Figure S1 C). For in- 
putting, one or multiple protein sequences in FASTA format,
or one or multiple UniProt accession numbers are acceptable.
For all the predictive interfaces, there are two threshold panels 
for SUMOylation site and SIM prediction at the bottom of the 
web interface. The prediction results and additional annota- 
tions can be accessed after clicking the ‘Submit’ button (Figure 
3 A). After the predictions are generated, the results are illus- 
trated in tabular form with 20 rows per page. Users are able to 

select the number of pages below the table when searching or 
browsing specific prediction results. The results table contains 
9 types of informative resources, namely, ‘Name’, ‘Position’,

https://sumo.biocuckoo.cn/advanced.php
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
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Figure 3. The usage of the GPS-SUMO 2.0 web server. ( A ) The interface of sequence submission. The users can input the protein sequence in FASTA 

format or enter UniProt accession number, and select 3 different thresholds for the prediction of modification sites and SIMs. ( B ) The presentation of 
prediction results of the example. In tabular list, the predictive results contain the position of SUMOylation site or SIMs, the prediction score, cut-off 
value, identification by experimental or computational method, and PPI information. ( C ) The comprehensive annotations of the prediction results. The 
number of SUMO modification sites and SIMs predicted by GPS-SUMO 2.0 were presented, the location of SUMOylation sites were illustrated in 3D 

str uct ure derived from PDB database, the A S A score and disorder score of SUMOylation sites were calculated. 
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’Peptides’, ‘Score’, ‘Cut-off’, ‘Type’, ‘Source’, ‘PPI’ and ‘Logo’.
The results presented in the table can be sorted by clicking on
each of the column names (Figure 3 B). 

In the ‘Source’ column, ‘Exp’ denotes that experimentally
validated evidence of SUMOylation sites can be obtained by
linking to the CPLM 4.0 database ( 19 ). Similarly, by inte-
grating 13 public protein −protein interaction (PPI) databases
( 28 , 33 , 45–55 ), we provided detailed information on the pre-
dicted PPI network. For the prediction of SUMOylation sites,
information regarding the interaction between a specific sub-
strate and the SUMO E3 ligase was presented. If a reader
protein contains a SIM pattern, we annotated it with SUMO
proteins in the ‘PPI’ column. In default mode, the distribu-
tion of predictive results in the statistical chart is shown, and
3D structural information for potential modification sites of
the substrate is visualized by 3Dmol.js if available ( 40 ). The
disorder propensity scores of residues determined by IUPred
( 41 ) are also displayed in the form of a line chart. When se-
lecting the comprehensive mode, the surface accessibility and
secondary structures, including the α-helix, β-strand, and coil,
are evaluated (Figure 3 C). All the prediction results can be
downloaded in .txt or .xlsx format. The ‘Export’ button be-
side the images allows the user to obtain a .png file. We also
provided detailed descriptions on the ‘USER GUIDE’ page for
all users to learn how to utilize the online services and inter-
pret all the results. 

An example of using GPS-SUMO 2.0 

To demonstrate the usage of GPS-SUMO 2.0, the canoni-
cal sequence of human PTEN protein (UniProt ID: P60484)
was selected as an example. PTEN has been characterized
as a tumour suppressor gene and is involved in orchestrat-
ing various cellular physiological processes, including prolif-
eration, survival, and energy metabolism. Previous studies re-
vealed that post-translational modifications (PTMs), such as
SUMOylation and ubiquitination, are essential for the struc-
tural and functional integrity of the PTEN protein ( 56 ,57 ),
and crosstalk between PTEN SUMOylation and ubiquitina-
tion was discovered ( 58 ). 

Here, we utilized the predictor based on all models with all
features (The third option ‘All’ in the advanced page) to pre-
dict 12 potential SUMOylation sites in the PTEN protein, in-
cluding 4 reported SUMOylation sites, K164, K254, K266 and
K289 ( Supplementary Table S2 ). The SUMOylation at K164
was identified from a SUMO proteomic profiling ( 6 ), whereas
K266, K254 and K289 were identified as SUMOylation sites
to regulate the nuclear localization and function of PTEN
( 58 ,59 ). In the results, 6 predicted SUMOylation sites had
prediction scores greater than 0.9, including 3 reported sites,
K266, K254 and K289 (Figure 4 A, Supplementary Table S6 ).
We retrieved the modification information regarding K66,
K102 and K322 of PTEN from CPLM 4.0 ( 19 ), and found that
only K66 was previously identified as a lysine modification
site. Thus, our predictions indicated that this lysine residue
might also be SUMOylated. 

Next, we annotated the K66 residue, including the ASA
score, disorder score, and zoomed 3D structure (Figure 4 B,
C). Additionally, experimental data from CPLM 4.0 were inte-
grated (Figure 4 D). According to the annotations, in compar-
ison with K254 and K289, K66 exhibited a higher surface ac-
cessibility, suggesting that this residue might be easier to con-
jugate to SUMO modifiers. In particular, previous studies have
revealed that K66 is ubiquitinated ( 60 ,61 ), and this ubiquiti- 
nation event reduces the protein stability of PTEN in cancers 
( 61 ,62 ). Thus, covalent conjugation of SUMO to K66 might 
dynamically compete with ubiquitination at the same residue,
and regulate the PTEN stability at the protein level. Taken to- 
gether, GPS-SUMO 2.0 predicts a highly potential SUMOyla- 
tion site, K66, on PTEN, and provides useful clues for further 
experimental consideration. 

To further demonstrate the usage of GPS-SUMO 2.0, 6 ad- 
ditionally reported SUMOylated substrates were scored us- 
ing PLR + GSEA, transformer, and comprehensive models,
respectively ( Supplementary Table S6 ). Experimentally iden- 
tified SUMOylation sites and / or SIMs were indicated for 
comparison. 

Discussion 

SUMO proteins are members of ubiquitin-like proteins that 
regulate cellular processes either by SUMOylation or SUMO 

interactions ( 1–4 ). Besides experimental identification, a va- 
riety of computational predictors have been developed for 
prioritization of potential SUMOylation sites and SIMs 
( Supplementary Table S1 ). Advances in both machine learning 
and SUMO proteomic profiling provided powerful methods 
and high-quality data sets for improving the prediction accu- 
racy, and the predictions could provide helpful candidates for 
further experimental consideration. 

In this study, we applied a pipeline of pretraining followed 

by transfer learning to develop 6 predictors for computa- 
tionally identifying SUMOylation sites and SIMs, by com- 
bining much larger datasets with 3 machine learning algo- 
rithms and 11 features. We compiled a nonredundant bench- 
mark data set containing 59069 SUMOylation sites and 163 

SIMs ( Supplementary Table S2 ). For training SUMOylation 

models, 52 404 SUMOylation sites were taken as the training 
data, while the remaining 6665 SUMOylation sites were taken 

as an independent test set. For each data set, lysine residues 
not reported to be SUMOylated in the same proteins were 
taken as negative data. It should be noted that a consider- 
able proportion of the negative sites might be truly SUMOy- 
lated and yet to be identified in experiments. Thus, the predic- 
tion performance of predictive models might be considerably 
underestimated. 

From previous studies ( 5–7 ), we collected 39938 nonre- 
dundant sites exclusively SUMOylated under stress con- 
ditions, occupying 67.6% of the 59 069 collected sites 
( Supplementary Figure S2 A). To test whether the character- 
istics are different for SUMOylation sites under stress con- 
ditions and other conditions, we used the remaining 19 131 

sites to train a model, and used the 39 938 stress-induced 

sites for testing. By comparison, the 10-fold cross-validation 

using the 19 131 sites achieved an AUC value of 0.7409,
whereas the AUC value on the 39 938 stress-induced sites re- 
duced to 0.6026 ( Supplementary Figure S2 B). We also trained 

a model using the 39938 stress-induced sites, and adopted the 
remaining 19 131 sites for testing. Again, the AUC value was 
decreased from 0.7294 (10-fold cross-validation) to 0.6692 

(Independent testing) ( Supplementary Figure S2 C). Thus, our 
results demonstrated that stress-induced SUMOylation sites 
might be considerably different from SUMOylation sites un- 
der other conditions (usually the standard condition). In the 
advanced page, we implemented an additional predictor for 
identifying potentially stress-induced SUMOylation sites. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
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Figure 4. The computational prediction of human PTEN protein. ( A ) The illustration of SUMOylation sites on PTEN predicted by using comprehensive 
predictors with all features. ( B ) The annotation of PTEN SUMOylation sites. The A S A score and disorder score were measured for the modification sites, 
including K66, K254, K266 and K289. ( C ) The calculated disorder score, A S A score and zoomed 3D str uct ure of K66. ( D ) The database source information 
for annotating K66. The K66 site of human PTEN protein was identified to be modified by ubiquitination, according to the annotations in CPLM 4.0 
database. 
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Previously, Hendriks et al . provided the information about
he relative abundance of SUMOylation site usage per pro-
ein ( 6 ,7 ). It could be expected that the SUMOylation sites
hat are highly used might get a much higher score com-
ared to the sites that are poorly used. To test this hy-
othesis, the 34 950 SUMOylation sites were equally sepa-
ated into a high relative abundance group and a low rela-
ive abundance group, based on the median of SUMO site
cores. These sites were scored using PLR + GSEA, trans-
ormer, and comprehensive models, and statistical analyses
emonstrated that highly used SUMOylation sites got higher
cores than poorly used sites ( Supplementary Figure S3 A–C,
 < 0.001). In addition, we separated the 59069 SUMOy-

ation sites into a consensus group with 7702 sites that fol-
ow the ψ –K–X–E motif, and a non-consensus group with
1 367 sites ( Supplementary Table S2 ). Again, PLR + GSEA,
ransformer, and comprehensive models of GPS-SUMO 2.0
ere used for scoring, respectively. The statistical results
emonstrated that consensus sites generally achieved higher
cores than non-consensus sites ( Supplementary Figure S3 D–
, P < 0.001). Taken together, GPS-SUMO 2.0 and follow-
ng analyses might be helpful for biologists to further investi-
ate the underlying mechanisms of SUMOylation and SUMO
nteractions. 

In this study, although we have used three machine learn-
ng methods and large-scale datasets to train models for pre-
iction of SUMOylation sites, it should be noted that there
s still a partial mismatch between experimentally identified
UMOylation sites and SUMOylation sites predicted by GPS-
SUMO 2.0, owing to the complexity of SUMO regulation.
Thus, considering the limitation of our predictors, great ef-
forts will be made to maintain and improve GPS-SUMO 2.0
for further increasing the accuracy of predicting SUMOyla-
tion sites as well as SIMs in the future. Currently, technologies
for high-throughput identification of SUMOylation sites and
SUMO interactions are being developed. Thus, we will expand
and curate the training dataset as new SUMOylation sites and
SIMs are discovered. In addition, more encoded features will
be incorporated to improve the prediction performance. With
the rapid development of cutting-edge AI algorithms, vari-
ous novel state-of-the-art techniques will be adopted to test
whether these approaches facilitate improvements in predic-
tion accuracy. Moreover, the relative abundance of SUMOy-
lation site usage per protein is an informative feature and or-
thogonal to sequence and structural features around SUMOy-
lation sites ( 6 ,7 ). Indeed, incorporating this feature for model
finetuning markedly increased the weight on experimentally
validated sites with higher relative abundance values, as well
as the weight to distinguish consensus SUMOylation sites fol-
lowing the ψ –K–X–E motif from non-consensus sites. In addi-
tion, given that the interplay between SUMOylation and other
PTMs, especially ubiquitinated modifications, has been shown
to play a role in regulating numerous cellular processes, the
relationship between SUMOylation and other types of PTMs
will be considered in the development of an updated version of
the GPS-SUMO. In summary, we anticipate that GPS-SUMO
2.0 will be helpful for studying SUMOylation and SUMO in-
teractions in signal transduction and cellular processes. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae346#supplementary-data
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Data availability 

The data underlying this article are available in the article and
in its online supplementary material. GPS-SUMO 2.0 is freely
available for all users at https:// sumo.biocuckoo.cn/ , and the
related sources used in this study are available in Zenodo at
https:// dx.doi.org/ 10.5281/ zenodo.10987312 . 
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Supplementary Data are available at NAR Online. 
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