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Abstract 

Enrichment analysis, crucial for interpreting genomic, transcriptomic, and proteomic data, is expanding into metabolomics. Furthermore, there 
is a rising demand for integrated enrichment analysis that combines data from different studies and omics platforms, as seen in meta-analysis 
and multi-omics research. To address these gro wing needs, w e ha v e updated WebGestalt to include enrichment analy sis capabilities f or both 
metabolites and multiple input lists of analytes. We ha v e also significantly increased analysis speed, revamped the user interface, and introduced 
ne w pathw a y visualizations to accommodate these updates. Notably, the adoption of a Rust backend reduced gene set enrichment analysis 
time by 95% from 270.64 to 12.41 s and network topology-based analysis by 89% from 159.59 to 17.31 s in our evaluation. This performance 
impro v ement is also accessible in both the R package and a newly introduced Python package. A dditionally, w e ha v e updated the data in the 
WebGest alt dat abase to reflect the current status of each source and ha v e e xpanded our collection of pathw a y s, netw orks, and gene signatures. 
The 2024 WebGestalt update represents a significant leap forward, offering new support for metabolomics, streamlined multi-omics analysis 
capabilities, and remarkable performance enhancements. Discover these updates and more at https://www.webgestalt.org . 
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he rapid advancement of omics technologies has provided
nprecedented opportunities for understanding complex bio-
ogical systems. However, the analysis and integration of di-
erse omics data remain challenging due to differences in data
ypes, standards, and analytical requirements. WebGestalt
WEB-based Gene SeT AnaLysis Toolkit) has been a widely
sed tool in functional enrichment analysis, enabling re-
earchers to interpret omics data through over-representation
nalysis (ORA), gene set enrichment analysis (GSEA), and net-
ork topology-based analysis (NTA) ( 1–4 ). For users who are
ew to these methods, we recommend referring to previous
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publications from our team and other researchers ( 3 ,5 ). These
publications detail the unique utilities, advantages, and dis-
advantages of the three complementary enrichment analysis
methods. In response to the evolving demands of the research
community, the WebGestalt 2024 update not only revitalizes
the underlying database and enhances the platform’s existing
capabilities but also introduces essential new features, includ-
ing support for metabolomics and a new multi-list analysis
functionality. 

Metabolomics, the comprehensive analysis of small
molecule metabolites in biological systems, offers insights
into the metabolic status and biochemical activities ( 6 ).
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Pathway analysis has become a critical tool for the func-
tional interpretation of metabolomics datasets ( 7–9 ). Yet,
this analysis has faced significant challenges, such as the lack
of standardization in metabolite identification, the incom-
plete representation of metabolites in individual pathway
databases, and the complexities of selecting an appropriate
background set for the widely adopted ORA method ( 10 ).
To address these challenges, WebGestalt 2024 introduces
support for a wide array of metabolite ID types, taps into
multiple pathway databases, and employs both ORA and
GSEA methods to enhance the pathway analysis of human
metabolomics data. 

Furthermore, the integration of omics data—whether
across independent studies for meta-analysis or within a sin-
gle study across multiple omics platforms for multi-omics
analysis—offers a distinct opportunity to achieve a more ro-
bust and in-depth understanding of biological systems ( 11 ,12 ).
The introduction of multi-list analysis in WebGestalt 2024
caters to both meta-analysis and multi-omics analysis, ad-
dressing the challenges related to increased data complexity,
computational requirements, and the interpretation of results.
To navigate these intricacies, we have developed user-friendly
input and output interfaces, implemented advanced pathway
visualizations, and leveraged the Rust programming language
for the enrichment analysis algorithms. 

This manuscript details the significant updates introduced
in WebGestalt 2024, highlighting our efforts to address key
challenges in metabolomics analysis, enabling multi-omics
integration and delivering significant performance improve-
ments. These and other updates can be accessed at https:
//www.webgestalt.org . 

Data update and support for metabolomics 

WebGestalt integrates ID mapping information, gene sets, and
networks from various data sources into its database. This in-
tegration enables users to perform enrichment analyses across
a broad spectrum of knowledge, utilizing different types of IDs
as input. In the 2024 update, the existing data in the database
have been updated to reflect the current state of each source.
Moreover, new data has been incorporated to expand the va-
riety of analyte / ID types, pathways, networks, and gene sig-
natures available in the database, leading to a total of 663 247
analyte sets for enrichment analysis ( Supplementary Table S1 ).

This update places a particular emphasis on introducing
support for metabolomics. A major challenge in metabolomic
analysis is the lack of standardization. The ID types used in
metabolomic studies often vary, sometimes even within the
same study, posing a significant barrier to analysis. To address
this challenge and facilitate flexible ID input for metabolites,
WebGestalt has adopted support for 16 metabolite ID types
from the publicly available RaMP-DB ( 7 ) (Figure 1 A). These
IDs are mapped to RaMP-DB IDs, which are further linked to
a standardized set of metabolite names using RefMet ( 13 ) to
allow easy comprehension. For metabolites not in the RefMet
database, the name given by RaMP-DB is used. 

For the pathway analysis of metabolomics data, RaMP-
DB is used as our primary source of pathway data. This
database aggregates human metabolic pathways from sev-
eral well-established repositories, including KEGG, Reactome,
HMDB and WikiPathways ( 7 ). Of note, each database cov-
ers different metabolites, with many being exclusive to a
single database. Specifically, the HMDB contains 49 968
metabolites, of which 48 933 (98%) are unique to this 
database. Although the other databases feature fewer metabo- 
lites, > 44% of the metabolites in Reactome and WikiPath- 
ways are unique to each respective database. Overall, fewer 
than 1% of the metabolites listed in RaMP-DB are present in 

all four databases. Users have the flexibility to choose either 
an individual pathway collection or opt for the full RaMP-DB 

pathway collection for enrichment analysis. Because RaMP- 
DB simply concatenates pathways from individual databases,
there is a significant amount of pathway redundancy. Thus,
when conducting enrichment analysis with the full RaMP-DB 

pathway collection, it is helpful to utilize the redundancy re- 
duction feature in WebGestalt ( 1 ,14 ). This allows the removal 
of redundant pathways from the analysis results using differ- 
ent computational algorithms, as described in detail in the Per- 
formance Improvements and New Software packages section,
thereby facilitating clearer interpretation. 

Pathway enrichment analysis of metabolomics data is con- 
ducted with either the ORA or GSEA algorithms implemented 

in WebGestalt. GSEA is a computationally intensive approach 

that utilizes the statistical outcomes from all metabolites, elim- 
inating the need for selecting specific metabolites based on dif- 
ferential abundance and a background set. This contrasts with 

ORA, which is more time-efficient but necessitates the pre- 
selection of differentially abundant metabolites along with a 
suitable background set for analysis. WebGestalt addresses 
potential annotation bias by restricting the background set to 

metabolites documented in the utilized pathway databases for 
enrichment analysis. To further mitigate experimental bias, it 
is recommended that users refine the background set by pro- 
viding the list of metabolites quantified in their study. The im- 
portance of selecting an appropriate background set for ORA 

is exemplified using an untargeted metabolomics dataset ( 15 ).
This dataset compares HeLa cells treated with ionophore car- 
bonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), 
which disrupts mitochondrial membrane potential, to con- 
trol cells treated with DMSO, with each condition having 
eight replicates. Analysis of this dataset through GSEA in We- 
bGestalt, utilizing the signed negative logarithm of P -values 
calculated by Limma ( 16 ) and employing the WikiPathways 
database, revealed 12 significantly downregulated pathways 
(FDR < 0.01). Analysis of the same dataset through ORA, us- 
ing Limma-identified significantly downregulated metabolites 
(adjusted P < 0.01) and a background set limited to quantified 

metabolites, identified 24 significantly downregulated path- 
ways (FDR < 0.01), and 11 (46%) overlapped with the path- 
ways identified by GSEA (Figure 1 B). Expanding the back- 
ground set to include all metabolites annotated in WikiPath- 
ways led to the identification of an additional 18 downreg- 
ulated pathways (FDR < 0.01), and only 1 of these (5.6%) 
overlapped with the pathways identified by GSEA (Figure 1 B).
These results suggest possible false positives introduced by ex- 
perimental bias. Following the enrichment analysis, users can 

access color-coded pathway maps for the enriched pathways.
These maps effectively highlight the involvement of different 
metabolites within the pathways, providing an intuitive un- 
derstanding of the metabolic interactions and functions impli- 
cated in the input metabolomics data (Figure 1 C). These ex- 
amples are accessible from the front webpage of WebGestalt 
2024. 

For gene-based pathway analysis, gene sets from existing 
pathway databases are well-curated but do not completely en- 
compass the wealth of pathway information available in the 

https://www.webgestalt.org
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae456#supplementary-data
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Figure 1. New data and support for met abolomics. ( A ) WebGest alt 2024 supports 16 ID types for metabolites with automatic ID detection. ( B ) Choosing 
all metabolites in WikiPathw a y s as the reference / background set in ORA results in many enriched pathways not found in GSEA. Limiting the reference 
set to all experimentally quantified metabolites increases the concordance with GSEA. ( C ) WebGestalt provides colored pathway maps for 
WikiPathw a y s and KEGG. For GSEA analysis, identified metabolites are shaded by their input values, as shown in the down-regulated (orange-shade) 
metabolites in the TCA cycle pathway. ( D ) WebGestalt 2024 adds tens of thousands of pathways from Pathway Figure OCR for six organisms. ( E ) 
WebGestalt 2024 adds 11 new cancer networks generated from CPTAC data and a total of 6488 modules. 
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ublished literature. Using a combination of machine learn-
ng, optical character recognition (OCR), and manual cura-
ion, the Pathway Figure OCR (PFOCR) project has success-
ully identified tens of thousands of pathway figures within the
ublished literature and extracted genes from these figures,
roviding a valuable resource for pathway analysis ( 17 ,18 ).
e have incorporated these pathway figure-derived gene sets

nto the WebGestalt gene set database, including 49 361 for
umans, 36 373 for fruit flies, 19 595 for mice, 6796 for ze-
rafish, 1764 for yeast and 1546 for roundworms (Figure 1 D).
his collection includes thousands of genes absent from con-
entional pathway databases, thus presenting new avenues for
iscovery and research. One distinct advantage of using the
athways in PFOCR for enrichment analysis lies in their com-
rehensive coverage of pathways documented in the published
iterature, especially those from recent publications absent in
onventional pathway databases. For example, PFOCR fea-
ures hundreds of pathways related to S AR S-CoV-2, compared
o only one such pathway in KEGG. Indeed, it has been shown
hat the disease coverage by PFOCR significantly exceeds that
f KEGG, Reactome, and WikiPathways in both breadth and
epth, leading to new biological discoveries ( 18 ). Moreover,
FOCR pathways are linked to the original articles, provid-
ng unique contextual insights and specific experimental infor-
ation. However, a significant challenge arises when multiple
ublications describe the same pathway, leading to an accu-
ulation of duplicated pathways in PFOCR. The redundancy

eduction feature in WebGestalt ( 1 ,14 ) is particularly valuable
or addressing this issue. 
For network-based analysis, we have generated protein
co-expression networks for 10 cancer types based on the
recently harmonized pan-cancer proteogenomics data from
the National Cancer Institute’s Clinical Proteomic Tumor
Analysis Consortium (CPTAC) ( 19 ), using a previously de-
scribed method ( 20 ). From these networks, hierarchical net-
work modules were identified using the NetSAM algorithm
( 21 ). These networks and modules have been incorporated
into WebGestalt to enhance network-based analysis through
ORA, GSEA or NTA approaches (Figure 1 E). In addition, we
have constructed an integrated pan-cancer functional associ-
ation network that combines all protein and RNA expression
data from the CPTAC pan-cancer dataset. This comprehen-
sive network, along with its derived dense modules and hier-
archical modules, has also been incorporated into WebGestalt.
Moreover, we have pre-computed the enriched GO terms for
each module, similar to those derived from other networks.
Users can easily explore these GO terms to gain insights into
the function of each module by clicking on the module name
within the HTML report. Together, these new additions signif-
icantly enhance the capabilities of WebGestalt for network-
based analysis, particularly in the field of human cancer
research. 

To facilitate the identification of cell types involved in vari-
ous biological states and processes, we have curated gene sig-
natures for 63 human and 52 mouse cell types, derived from
two landmark cell landscape studies ( 22 ,23 ). These signatures
have been integrated into the WebGestalt gene set database
within a newly established ‘cell type’ category. This integra-
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tion facilitates enrichment analysis against cell type signatures,
offering a deeper understanding of cellular landscape dynam-
ics associated with the input data. One limitation of our en-
richment analysis methods is that they do not apply weighting
to the genes in the signatures. This is particularly significant
when the user’s input gene list is small, as gene-weighting can
be crucial for accurately estimating cell type enrichment in this
scenario. Therefore, for small input gene lists, we recommend
users to verify W ebGestalt’ s outputs with machine learning-
based approaches such as scPred ( 24 ) and SingleCellNet ( 25 ).

Multi-list analysis 

This update introduces new support for enrichment analy-
sis with multi-list inputs in both the WebGestalt web appli-
cation and its software packages. This development aims to
facilitate both meta-analysis and multi-omics analysis. Meta-
analysis combines results from independent studies, typically
within the same omics layer, to increase the statistical power.
In contrast, multi-omics analysis integrates datasets across
various omics layers, such as genomics, transcriptomics, pro-
teomics and metabolomics, to offer a comprehensive under-
standing of molecular mechanisms. 

This new feature requires the input of multiple analyte lists
for both ORA and GSEA. It supports four types of analytes:
genes, proteins, post-translational modifications (PTMs), and
metabolites. To facilitate the use of this new feature, we have
implemented a tab-based interface, which allows users to in-
put, organize, and label multiple lists for one analysis. The for-
mat for input data remains consistent with that used for single
list analysis. Specifically, for ORA, users can input a list of an-
alytes in a single column and may also include an optional ref-
erence list in the same format. For GSEA, users must provide
a single column list of all analytes from the study along with a
corresponding numerical value for each analyte. These values,
which can represent fold changes, signed minus log p-values,
correlation coefficients, or other statistical measurements, are
used to rank the analytes for enrichment analysis. To further
simplify data entry, we have also introduced a new ID detec-
tion and database filtering system. This system automatically
identifies the type of IDs entered into the web interface and fil-
ters out incompatible databases based on the selected analyte
type, thereby streamlining the user experience. 

For multi-list analysis, we implemented a late-stage inte-
gration approach ( 26 ). Specifically, WebGestalt runs the en-
richment analysis for each list separately, then the P values
from each individual input dataset for every pathway are inte-
grated using the Stouffer’s Z -score method, as implemented in
the metaP R-package ( https:// cran.rproject.org/ web/ packages/
metap/index.html ). The resulting meta- P values and corre-
sponding multiple test adjusted P values (meta-FDRs) are re-
ported. 

On the HTML output page, users can review the outcomes
of the integrated analysis, with interactive bar graphs and ta-
bles. Users can also use tabs to view individual results for each
dataset. For KEGG and WikiPathways, multi-colored path-
way maps are created, providing a visual representation of
individual input datasets for easy comparison. 

On the homepage of WebGestalt 2024, we have provided
two examples for users to explore the newly introduced
multi-list analysis feature. The first example demonstrates an
ORA-based meta-analysis aimed at identifying pathways as-
sociated with resistance against pembrolizumab treatment in
melanoma. This analysis incorporates data from three inde- 
pendent clinical trials sourced from ClinicalOmicsDB ( 27 ), us- 
ing the top 500 genes with increased abundance in resistant tu- 
mors from each study as input. The analysis against WikiPath- 
ways identifies enriched pathways for each dataset individu- 
ally ( Supplemental Figure S1 A–C) as well as collectively (Fig- 
ure 2 A). For pathways identified in the meta-analysis, corre- 
sponding multi-colored pathway maps highlight genes from 

individual input gene lists (Figure 2 B). The second exam- 
ple involves a GSEA-based multi-omics analysis against the 
WikiPathways database, and the input includes the differen- 
tial metabolomics data used for Figure 1 B, alongside RNASeq 

and proteomics data from the same study. This analysis iden- 
tifies enriched pathways for each type of omics data individu- 
ally ( Supplemental Figure S1 D–F) and for all three combined 

(Figure 2 C). For pathways identified in the multi-omics anal- 
ysis, corresponding multi-colored pathway maps visualize the 
GSEA rank metrics from different data types for all leading- 
edge genes identified in the analysis (Figure 2 D). 

P erfor mance improvements and new software 

pac kag es 

Enrichment analysis, especially GSEA, is computationally ex- 
pensive. In WebGestalt 2019, running GSEA on a typical 
dataset could take up to three minutes. With the addition 

of multi-list analysis, the amount of computation is further 
increased. To reduce computational time, we have reengi- 
neered the core of the computational backend using Rust.
Rust is a high-performance language that allows finer con- 
trol over computational resources and can be integrated as a 
library with other programming languages. We have recoded 

the ORA, GSEA and NTA algorithms in Rust, and used this 
library as the foundation for the existing R package. This 
new architecture allows users of both the web application and 

the R package to experience improved performance without 
changing their existing workflows. As Rust can be compiled 

for use across multiple programming languages, we further de- 
veloped a new Python package, WebGestaltPy, to expand the 
access to W ebGestalt. W ebGestaltPy provides an API that sup- 
ports ORA and GSEA analysis for both single list and multi- 
list inputs. Additionally, the Rust library has been made pub- 
licly available, allowing developers to integrate its capabilities 
into their own tools. 

To evaluate the improvements in enrichment analysis speed 

within WebGestalt 2024, we conducted a comparative assess- 
ment of computational efficiency relative to WebGestalt 2019.
Differential gene expression data from resistant versus sensi- 
tive breast tumors in the BrighTNess trial’s veliparib treatment 
arm ( 28 ), downloaded from ClinicalOmicsDB ( 27 ), were used 

for enrichment against the KEGG database. The ORA analysis 
used the top 500 most significantly altered genes. The compu- 
tational time for the ORA analysis was reduced from 0.025 

s to 0.014 s, a decrease of 0.011 s or 44% (Figure 3 A). For 
the GSEA analysis, the computational time was dramatically 
shortened from 270.64 s to 12.41 s, equating to a time saving 
of 258.23 s or 95% (Figure 3 B). For the NTA analysis, the 
top 500 most significantly altered genes were used as input 
to identify the top 50 genes in the BioGrid protein-protein 

interaction network using the random walk with restart al- 
gorithm. The new R package reduced the computation time 
from 160 s to 17 s, an 89% reduction (Figure 3 C). Notably,
the enhanced speed has facilitated swift generation of results 

https://cran.rproject.org/web/packages/metap/index.html
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae456#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae456#supplementary-data


Nucleic Acids Research , 2024, Vol. 52, Web Server issue W 419 

A

B

C

D

Figure 2. Examples of multi-list analysis output. ( A ) An ORA-based meta-analysis of three input gene lists reports enriched pathways from the integrated 
analysis. ( B ) A multi-colored pathway map for a pathway enriched in the meta-analysis, highlighting genes from the individual input gene lists. ( C ) A 

GSEA-based multi-omics analysis reports enriched pathways from the integrated analysis of RNA, protein, and metabolite data. ( D ) A multi-colored 
pathw a y map visualizing input values from different data types for all leading-edge genes identified in the analysis. 

Figure 3. Execution time comparison between the 2024 and 2019 implementations. ( A ) Execution times for the ORA implementations. ( B ) Execution 
times for the GSEA implementations. ( C ) Execution times for the NTA implementations. (A), (B) and (C) are based on data from 10 runs. 
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or ORA and GSEA analyses when querying large databases
f analyte sets. As a demonstration, we reanalyzed the FCCP-
esponsive metabolites, used as input for Figure 1 B, against the
ntire RaMP-DB pathway collection, which comprises 52301
athways. Through the new web interface, the ORA analysis
elivered results in just 6 s, and the GSEA analysis completed
n 17 s, both processes including the generation of HTML re-
orts with visualizations. 
To mitigate the issue of functionally similar enriched sets

luttering the output and reducing interpretability, we intro-
uced a redundancy removal feature in WebGestalt 2019
 1 ,14 ). This feature programmatically filters enrichment re-
ults to display the most representative gene sets, using either
the weighted set cover or affinity propagation methods. Build-
ing on this, WebGestalt 2024 incorporates a new k -Medoid
method, which selects up to k gene sets that best represent the
full spectrum of enriched gene sets, based on Jaccard similar-
ity and employing the Partitioning Around Medoids (PAM)
approach. While both affinity propagation and k -Medoid are
based on assessing similarity between gene sets, k -Medoid of-
fers a more straightforward approach for interpretation. To
conserve computational resources, users have the flexibility to
choose which redundancy removal methods to execute. The
results page features tabs for viewing the output of each re-
dundancy removal method, along with an option to view re-
sults without redundancy removal. 
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Discussion 

WebGestalt 2024 marks a significant upgrade to the func-
tional enrichment analysis platform. This update not only
brings the database up to date but also enhances the tool’s ca-
pabilities by incorporating support for metabolomics and in-
troducing new pathways, networks, and gene signatures. We-
bGestalt 2024 provides a unique tool for enrichment anal-
ysis, with support for multiple features within a single tool
( Supplemental Table S2 ). The introduction of multi-list anal-
ysis now supports essential functions for both meta-analysis
and multi-omics analysis. Moreover, enhancements in the im-
plementation and algorithms have enabled the web server
to accommodate a higher volume of requests, process large
datasets with greater efficiency, deliver rapid results for user
queries, and generate concise, non-redundant outputs that fa-
cilitate scientific discovery . Additionally , we also launched new
software packages, providing advanced users with the means
to integrate WebGestalt into their own workflows and tools.
For future developments, we aim to enhance the multi-list
HTML output to more effectively visualize the impact of indi-
vidual lists. Additionally, we plan to expand the functionality
of our multi-list pathway maps by including legends and in-
troducing animations. 

A major challenge encountered during this update was the
analysis of metabolomic data, primarily due to the lack of
standardized ID formats across studies. To mitigate this, we
have implemented support for 16 metabolite ID types, along
with automatic detection of these IDs upon entry. Despite this
advancement, challenges persist with metabolites that lack
standardized IDs. This issue is particularly problematic in
metabolomic studies, which typically identify fewer analytes
of interest compared to other omics studies. As a result, the
loss of analytes due to identification issues can significantly
affect the outcomes of an enrichment analysis. Moreover, We-
bGestalt currently supports only human metabolic pathways.
In future developments, we plan to expand our metabolomics
support to include other organisms. 

WebGestalt 2024 supports meta-analysis and multi-omics
analysis by enabling users to aggregate individual p -values
into a meta- P value for each pathway, exemplifying a late-
stage integration approach ( 26 ). On the other hand, early-
stage integration can be applied at the gene level, where ranks
of a gene across multiple lists are consolidated into a singular
ranked list, serving as the input for a single enrichment analy-
sis. We plan to evaluate the efficacy of early-stage integration
versus late-stage integration. Based on this assessment, we will
consider incorporating early-stage integration as an option in
our future updates, should it prove beneficial. 

The adoption of Rust in WebGestalt has led to significant
performance improvements. In particular, Rust’s efficiency
and speed, combined with its memory safety features, have
contributed to a markedly expedited GSEA and NTA process.
The broader integration of Rust reflects our ongoing commit-
ment to adopting cutting-edge technologies, emphasizing our
dedication to the continuous enhancement of WebGestalt and
our aim to provide users with superior tools and services. 

Data availability 

WebGestalt can be accessed at https://www.webgestalt.org .
This website is free and open to all users and there is no login
requirement. 
WebGestaltR is available online 
(bzhanglab.github.io / webgestaltr) and its source code 
is hosted on Github ( https:// github.com/ bzhanglab/ 
WebGestaltR ) and Zenodo ( https:// doi.org/ 10.5281/ zenodo. 
11186329 ). 

WebGestaltPy is available on PyPI ( https:// pypi.org/ project/ 
webgestaltpy/) with source code on GitHub ( https://github. 
com/ bzhanglab/ webgestaltpy/ ) and Zenodo ( https://doi.org/ 
10.5281/zenodo.11186400 ). 

webgestalt-lib is available on crates.io ( https://crates.io/ 
crates/webgestalt _ lib ) with source code on GiHub ( https:// 
github.com/ bzhanglab/ webgestalt _ rust/ ) and Zenodo ( https: 
// doi.org/ 10.5281/ zenodo.11186377 ). 

Supplementary data 

Supplementary Data are available at NAR Online. 
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