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A novel LGALS1-depended and immune-associated fatty acid
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Leukemia stem cells (LSCs) are recognized as the root cause of leukemia initiation, relapse, and drug resistance. Lipid species are
highly abundant and essential component of human cells, which often changed in tumor microenvironment. LSCs remodel lipid
metabolism to sustain the stemness. However, there is no useful lipid related biomarker has been approved for clinical practice in
AML prediction and treatment. Here, we constructed and verified fatty acid metabolism-related risk score (LFMRS) model based on
TCGA database via a series of bioinformatics analysis, univariate COX regression analysis, and multivariate COX regression analysis,
and found that the LFMRS model could be an independent risk factor and predict the survival time of AML patients combined with
age. Moreover, we revealed that Galectin-1 (LGALS1, the key gene of LFMRS) was highly expressed in LSCs and associated with poor
prognosis of AML patients, and LGALS1 repression inhibited AML cell and LSC proliferation, enhanced cell apoptosis, and decreased
lipid accumulation in vitro. LGALS1 repression curbed AML progression, lipid accumulation, and CD8+ T and NK cell counts in vivo.
Our study sheds light on the roles of LFMRS (especially LGALS1) model in AML, and provides information that may help clinicians
improve patient prognosis and develop personalized treatment regimens for AML.
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INTRODUCTION
Acute myeloid leukemia (AML) is the most common and lethal
adult acute leukemia characterized by the impaired differentiation
of myeloid progenitor cells and clonal expansion of immature
myeloid cells [1]. It has been reported that the mortality rate
caused by leukemia has reached 3–4%, which is one of the main
causes of cancer death [2]. Although many significant break-
throughs have been achieved in AML chemotherapy, targeted
therapy, and immunotherapy, such as cytarabine + anthracycline
(7+ 3) intensive chemotherapy, IDH1/2 inhibitors, and PD-1
blockade, postremission relapses occur frequently [3–5]. Growing
evidences indicate that AML as well as other malignancies are
maintained with a minor subpopulation referred to as leukemia
stem cells (LSCs), which are recognized as the root cause of
leukemia initiation, relapse, and drug resistance [6, 7]. Thus,
exploring the AML features, especially the LSC features, is urgently
needed, so as to exploit novel therapies.
The aberrant metabolisms in tumor microenvironment (TME) for

tumor cells caused by nutrient deficiency and hypoxia facilitates

tumor metastasis, proliferation, and survival [8]. Lipid species are
highly abundant and essential component of human cells, which
often changed in tumor disease [9]. Leukemia cells, especially
LSCs, often show lipid metabolic abnormality, which has been the
novel field and attracting extensive interests in the last several
years [10]. Such as, m6A reader IGF2BP2-mediated lipid transporter
MFSD2A has a critical role in LSCs function [11]. LSCs evade
chemotherapy by absorbing fatty acid in microenvironment [12].
Unfortunately, owing to insufficient prospective and validated
research works, no useful lipid related biomarker has been
approved for clinical practice in AML treatment. Thus, there is
an urgent need to identify efficient and complementary
prognostic parameters and risk classification methods about lipid
metabolism and LSCs.
AML has been considered an immunoresponsive malignancy

[13]. Recent years, increasing of immunotherapy for AML has
appeared, such as antibody therapy [14] (targeting CD33, CD123,
and several other antigens), redirected T cells [14, 15] (anti-CD19
CAR T cells, anti-CD33 CAR T cells, anti-CD123 CAR T cells, et al.),
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checkpoint inhibitors (targeting PD-1/PD-L1) [16]. While impress-
ive progress has been made in the clinical application of
immunomodulatory agents, there are still some problems, such
as CD33 and CD123 also expressed in normal hematopoietic cells,
some AML patients not sensitive to anti-PD-1/PD-L1 [17]. It is
reported that lipids threaten an anti-tumor environment whereby
metabolic adaptation to lipid metabolism is linked to immune
dysfunction [18]. Thus, we also combined lipid metabolism,
immune status, and LSC stemness in our study.
Above all, we aimed to shed more light on the possible

significance of fatty acid metabolism-related risk score (LFMRS)
model in stratifying AML patient prognosis and its feasibility to
guide therapeutic selection. Additionally, we also analyzed the
correlation between LFMRS model and immune statuses. The
prognostic model was constructed based on the Cancer Genome
Atlas (TCGA) database, followed by further validation using
BeatAML database and other GEO databases. Based on this, we
further certificated Galectin-1 (LGALS1, the key gene in LFMRS
model) plays a key role in lipid metabolism reprogramming,
immunosuppressive effect, AML progress in vitro and in vivo. Our
study sheds light on the roles of LFMRS model, especially LGALS1,
in AML and provides information that may help clinicians improve
patient prognosis and develop personalized treatment regimens
for AML.

MATERIALS AND METHODS
Data acquisition and identification of the fatty acid
metabolism-related genes
We collected acute myeloid leukemia (AML) samples and corresponding
clinical data from different databases. Specifically, we obtained RNA-seq
data and matched clinical information of 151 AML samples from The
Cancer Genome Atlas (TCGA) through UCSC Xena (https://
xenabrowser.net/). Additionally, we utilized AML samples from the
Gene Expression Omnibus (GEO) database (GSE12417, GSE71014, and
GSE37642), Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) database, and Beat AML database. The data forms
of TCGA, TARGET, and BeatAML were transformed from fragments per
kilobase of transcript per million fragments mapped (FPKM) to
transcripts per kilobase million (TPM), then which were transformed
using log2(TPM+ 1). Fatty metabolism-related gene sets of Hallmark,

Table 1. Clinical characteristics of newly diagnosed patients.

Characteristics Median(range) All cases

Sex

Female 17

Male 14

Total 31

Median age, y 54(31–80)

Younger than 40 y 7

40–60 y 12

Older than 60 y 12

Median WBC, 109/L 4.16 (0.9–186.53)

Median platelets, 109/L 38 (5–376)

Iron deficiency anemia 13

AML 18

AML FAB subtype

AML without maturation:M1 1

AML with maturation:M2 7

Acute promyelocytic
leukemia:M3

2

Acute myelomonocytic
leukemia:M4

4

Acute monoblastic or
monocytic leukemia:M5

3

unclassified 1

Gene mutations

NPM1 2

FLT3/ITD 4

WT1 7

DNMT3A 2

AML acute myeloid leukemia, y year old, WBC white blood cell, FAB
classification French-American-British classification, a classification of acute
leukemia produced by three-nation joint collaboration.

Table 2. The detailed gene mutations and FAB subtype in patients with AML.

Case NO. Gene mutations FAB subtype Age

AML#1 KRAS/NRAS/FLT3-TKD/FLT3/GATA2/CEBPA/PML-RARA M3 35

AML#2 MLL-AF9/WT1/EP300/TTN M4 65

AML#3 PML-RARA(V) M3 31

AML#4 FLT3-ITD/PTPN11/KMT2A/GATA2/CEBPA M2 43

AML#5 / M5 56

AML#6 TP53/NF1/FBXW7 M4 49

AML#7 WT1 M2 47

AML#8 NORMAL / 51

AML#9 WT1/ZRSR2/NRAS/TET2/ETV6/SH2B3/KMT2A M4 69

AML#10 IDH2/KRAS/DNMT3A/MPL/WT1 M5 74

AML#11 TP53/BCOR/NOTCH2/CYP2C19 M2 53

AML#12 BCOR/KRAS/RUNX1/TET2/ASXL1/BCORL1/SH2B3 M2 70

AML#13 WT1/ZRSR2/NPM1/TET2/GATA2 M1 38

AML#14 FLT3-ITD/DNMT3A/IDH1/WT1/ M5 78

AML#15 WT1/CEBPA/NPM1/IDH1/TET2/SH2B3 M4 32

AML#16 KIT/TET2 M2 71

AML#17 FLT3-ITD/PTPN11 M2 63

AML#18 TET2/ASXL1/BCORL1 M2 77
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KEGG, Reactom and Wikipathway were collected from Molecular
Signatures (MsigDB) database (https://www.gsea-msigdb.org/). The
single cell RNA-seq data was obtained from the GEO database using
accession number GSE116256.

Collection and enrichment Analysis of differentially expressed
genes between HSCs and LSCs
The differentially expressed genes (DEGs) of HSCs and LSCs were
analyzed by “limma” R package in GSE68172, GSE17054, and GSE24395
with a p value < 0.05 and |logFC | > 1 were used to identify the DEGs.
Moreover, Robust Rank Aggregation (RRA) was used to further identify
robust DEGs. The Single Sample GSEA (ssGSEA) analysis was completed
by “GSVA” R package. A total of 211 robust differentially expressed genes
were enriched, which including 109 up-regulated genes and 102
downregulated genes, and pathway enrichment for differentially
expressed genes was performed by Metascape.

Clinical samples
The bone marrow samples of 18 newly diagnosed AML patients and 13
healthy donors were obtained from the First Affiliated Hospital of
Chongqing Medical University. Importantly, healthy samples were acquired
from age-matched donors according to AML patients. All patients were
informed and consented to participate in the study. The patients’ clinical
characteristics are presented in detail in Table 1 and Table 2.
To obtain mononuclear cells from with AML patients and healthy

control, we isolated mononuclear cells from bone marrow aspirates via
density gradient centrifugation with using Ficoll mononuclear cell
separation solution (#P8900, Solarbio, China). Finally, total mRNA and
proteins were isolated for the analysis of LGALS1 expression. To obtain
HSCs from mononuclear cells of healthy control, we isolated
Lin-CD34+CD38- cells [19] via flow cytometric analysis using anti-CD34-
APC (1:100, BioLegend, America), anti-CD38-PE (1:100, BioLegend,
America) after depleting human-lineage-positive cells using EasySepTM

Human Progenitor Cell Enrichment Kit II (#17936, STEMCELLTM TECH-
NOLOGIES, Canada) [20]. To obtain LSCs from mononuclear cells of AML
patients, we isolated CD34+CD38- cells [21] via FCM using anti-CD34-
APC (1:100, BioLegend, America), anti-CD38-PE (1:100, BioLegend,
America).

Cell culture
Human acute myeloid leukemia cell lines K562, HEL, KG-1, THP1, KG-1a,
HL60, NB4, MV4-11, and U937 were obtained from the American Type
Culture Collection (ATCC, America). OCI-AML3 was purchased from
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
(DSMZ, Germany). All cell lines were tested free of mycoplasma
contamination and authenticated by the short tandem repeat (STR)-based
method. The myeloid leukemia cell lines (K562, HEL, KG-1, THP1, KG-1a,
HL60, NB4, MV4-11, and U937) were cultured in RPMI-1640 medium
(#8123172, Gibco, America) supplemented with 10% of fetal bovine serum
(FBS; #C04001-050×10, VivaCell, Israel) and 1% of penicillin/streptomycin
solution (#15140-122, Gibco, America). OCI-AML3 was maintained in alpha-
MEM (#32571101, Thermo Fisher Scientific, Germany) supplemented with
10% FBS and 1% of penicillin/streptomycin solution. LSCs were maintained
in StemSpanTM SFRM II (#09720, STEMCELL Technologies, Canada) plus 350
μm/L UM729 (#72332, STEMCELL Technologies), 1 m/L SR1 (#72354,
STEMCELL Technologies). All cell lines were incubated in a humidity

chamber (Thermo 371, Thermo Fisher Scientific) containing 5% CO2 at
37 °C.

Reverse transcription PCR and quantitative real-time PCR
(qRT-PCR)
Total RNA samples were obtained using TRIzol reagent (#AM91951A,
TaKaRa, Japan) according to the manufacturer’s instructions [22]. cDNA
was reverse transcribed with the use of the Prime-ScriptTM RT Reagent
Kit (#AMG1420A, TaKaRa), and subjected to qRT-PCR analysis in the CFX
Connect Real-Time PCR Detection System (#1855201, BIO-RAD, Amer-
ica). GAPDH was detected as an internal control for the indicated genes.
The sequences of the primers used are shown in Table 3. All
experiments were performed at least three times.

Western blotting
Western blotting was performed as previous described [23]. Briefly, total
cellular proteins were acquired using RIPA lysis buffer (#P0013, Beyotime,
China) and following with electrophoresed by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), then incubated
with primary antibodies against LGALS1 (1:1000, # A5590, Selleck,
America), or GAPDH (1:1000, #ab8245, Abcam, Britain). GAPDH was
detected as a loading control. The proteins were visualized with the
enhanced chemiluminescence system (#01900MF, BIO-OI, China). All
experiments were performed at least three times.

Lentivirus production and transduction
To generate specific shRNA targeting LGALS1, we designed the primers for
PCR of human LGALS1 coding sequences and the oligos for shRNAs. The
shRNAs oligos were cloned into the vector pLKO.1-puro. The shRNA
sequences were as follows: shNC, 5ʹ- CCGGTGCGCGATAGCGCTAATAATTT-
CAAGAGAATTATTAGCGCTATCGCGCTTTTTTG-3ʹ; shLGALS1#1, 5ʹ- CCGGGCT
GCCAGATGGATACGAATTCTCGAGAATTCGTATCCATCTGGCAGCTTTTTG-3ʹ;
shLGALS1#2, 5ʹ- CCGGCGCTAAGAGCTTCGTGCTGAACTCGAGTTCAGCACGA
AGCTCTTAGCGTTTTTG-3ʹ; shLGALS1#3, 5ʹ- CCGGGTGTGTAACACCAAGGAA-
GATCTCGAGATCTTCCTTGGTGTTACACACTTTTTG-3ʹ.
For lentivirus transduction, the cells were infected with a lentivirus in the

presence of 5 μg/mL polybrene (#C0351, Beyotime, China), and selected
with 5 μg/mL puromycin (#ST551, Beyotime, China) for 7 days. The
puromycin-resistant cells were collected for further analysis.

Flow cytometry (FCM)
For Edu assay, Edu was added to HEL, THP1, or LSCs to a final
concentration with 10 μM. After incubation for 2 h, the cells were
washed twice with phosphate buffer saline (PBS), and stained according
to the manufacturer’s instructions using Click-iT Plus EdU Alexa Fluor
647 Flow Cytometry Assay Kit (#C10634, Invitrogen, America). For Ki67
assay, HEL, THP1, or LSCs were stained with anti-ki67-PE antibody
(#350503, Biolegend, America) for 30 min at 4 °C, before being stained
with 4′,6-diamidino-2-phenylindole (DAPI) (10 μg/mL) overnight. For
detecting apoptosis, HEL, THP1, or LSCs were stained with anti-Annexin
V-APC (#640919, Biolegend, America) and DAPI in a binding buffer with
Ca2+.
Flow cytometric analysis was done by gating on single cells and dead

cells were excluded by DAPI staining. Data was analyzed using FlowJo
Version 10 software (TreeStar, Ashland, OR, USA).

Table 3. The primer sequences used for qRT-PCR.

Gene Forward (5ʹ-3ʹ) Reverse (5ʹ-3ʹ)

LGALS1 TCGCCAGCAACCTGAATCTC GCACGAAGCTCTTAGCGTCA

CD36 GGCTGTGACCGGAACTGTG AGGTCTCCAACTGGCATTAGAA

PPAR-γ TTTTCAAGGGTGCCAGTTTC TTATTCATCAGGGAGGCCAG

ELOVL7 GCCTTCAGTGATCTTACATCGAG AGGACATGAGGAGCCAATCTT

ALDH1A1 GCACGCCAGACTTACCTGTC CCTCCTCAGTTGCAGGATTAAAG

ACOX2 GCACCCCGACATAGAGAGC CTGCGGAGTGCAGTGTTCT

ACSM3 AGGAAGATGCTACGTCATGCC ATCCCCAGTTTGAAGTCCTGT

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
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Colony-forming assay
To determine cell proliferation ability, Colony-forming assay was
performed. About 1 × 103 AML cells were plated in a 12 well-plate
containing Methylcellulose Complete Media (R&D Systems). After 7 days of
incubation, colony numbers were scored. The colony-forming units were
counted using an inverted microscope (#8THUNDER13, Leica, Germany).

Oil Red O staining
The AML cells were counted and plated into a six-well plate (1 × 106/ cell
per well). 24 h later, Oil Red O (#C0157S, Beyotime, China) staining was
performed as manufacturer’s instructions. Briefly, after washing with PBS,
the cells were fixed with 4% paraformaldehyde for 10min. Next, adding
appropriate amount of dying washing solution to cover cells for 20 s, then

H. Qin et al.

4

Cell Death and Disease          (2024) 15:482 



adding appropriate amount of oil red O dying solution at room
temperature for 30min. After washing with dying washing solution and
PBS, the cells were observed under a microscope (Ni-U, Nikon, Japan).

Animal experiments
The female NOD-SCID IL2Rgnull (NSG) (6-8 weeks old) and C57BL/6 (6-
8 weeks old) mice were purchased from Shanghai Southern Model
Biotechnology Co., Ltd., and raised in the Experimental Animal Center of
Chongqing Medical University. All mice were raised in accordance with the
Association for Nursing Assessment and Accreditation of Experimental
Animals and NIH standards. Importantly, mice were randomly assigned to
one of groups. The experiment was approved by the Committee for the
Management and use of Experimental Animals of Chongqing Medical
University.
To verify the inhibitory effect of OTX008 on AML in mice, we constructed

MLL-AF9 induced AML mouse model. The bone marrow cells of wild type
mice were taken out after injection of 5-Fu, and then infected with MLL-
AF9-GFP virus. Then the infected cells were transplanted into C57BL/6 J
recipient mice through tail vein (irradiated in advance). The peripheral
blood chimerism rate of mice was detected every week after transplanta-
tion. When the peripheral blood chimerism rate reached 50%-80%, the
mice were killed and GFP+ leukemia cells from bone marrow were sorted
for the second round of transplantation. After AML model mice were
constructed, the peripheral blood chimerism rate of mice was detected
every week after transplantation. When the proportion of GFP+ cells was
about 10%, OTX008 (50mg/kg,) was injected via intraperitoneal injection.
To verify the inhibitory effect of shLGALS1 on AML in mice, HEL-induced

AML mouse model was constructed. HEL cells infected by LGALS1-shNC-
GFP and LGALS1-sh#2-GFP virus were sorted by flow cytometry, and the
same number of GFP+ cells (2 × 106/mouse) were transplanted into NSG
mice through tail vein. The proportion of GFP+ in peripheral blood of mice
was detected by flow cytometry every week after transplantation.
The general appearance of the mice was observed every other day. The

Kaplan-Meier survival analysis was used to evaluate the survival of the
mice. Immature cells from BM were assessed by Wright’s staining. The
infiltration of leukemic cells in liver and spleen was analyzed through
hematoxylin and eosin (H&E) staining.

Statistical analysis
R project 4.2.1, SPSS29.0 and GraphPadPrism8.0 statistical software were
used to analyze the data and draw the graph. Unsupervised clustering of
the patient samples at the different molecule levels were performed with
the R package “ConsensusClusterPlus”. LASSO regression algorithm was
used to screen genes related to fatty acid metabolism in differentially
expressed genes in HSCs and LSCs by R package “glmnet”, and univariate
COX regression analysis and multivariate COX regression analysis were
used to determine independent prognostic factors. To better predict the
prognosis, a nomogram analysis based on independent prognostic factors
was established. The prognostic value was verified by Kaplan-Meier
survival analysis using R package “survival”. Chi-square test was used to
compare the clinical features of the two groups, and double-tailed t-test
was used to analyze the quantitative difference between the two groups.
ROC curve and survival curve were plotted by GraphPadPrism8.0 statistical
software, and p < 0.05 was taken as statistical significance. For experiments,
data from three independent experiments are shown as the mean ±
standard deviation (SD). One-way analysis of variance was utilized to
assess the differences between three or more groups. Unpaired Student’s

t-test was used to compare the differences between the two groups. To
compare survival differences, both the Kaplan-Meier estimator and log-
rank test were utilized. Statistical analyses were performed using GraphPad
Prism 8.0. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns
indicates no significant difference). The sample sizes were determined
by referring recent papers. The in vitro sample size was completed
according to enable statistical analyses.

RESULT
Identification of subtypes and construction of the LFMRS in
AML
To explore whether lipid metabolism is related to the progress and
prognosis of AML, we first performed the survival analyses of four
fatty acid metabolism-related gene sets (KEGG, Hallmark, Reactom
and WikiPathway) quantified by single sample gene set enrich-
ment analysis (ssGSEA), and found that the prognosis of AML
patients with high fatty acid metabolism is worse (Fig. 1A–D).
Afterwards, all the genes related to fatty acid metabolism in the
four fatty acid metabolism-related gene sets were collected as
shown in Fig. S1A. As LSCs control the recurrence and refractory of
AML patients, the fatty acid metabolism-related genes which
highly expressed in LSCs may be a potential therapeutic target.
Thus, we urge to seek the differentially expressed genes between
LSCs and HSCs, and the three datasets of GSE68172 (5 HSC
samples and 19 LSC samples), GSE17054 (4 HSC samples and 9
LSC samples), and GSE24395 (5 HSC samples and 12 LSC samples)
were utilized to dig up the potential effectors by robust rank
aggregation method. (Fig. S1B). As shown, a total of 211
differentially expressed genes in LSCs were enriched, including
109 up-regulated genes and 102 down-regulated genes (Fig. 1E).
Consistently, we performed function analysis to investigate the
biological processes and the corresponding pathways of differen-
tially expressed genes in LSCs by Metascape, and found some lipid
metabolism-related biological processes, such as “glyceropho-
spholipid metabolic process” in up-regulated differentially
expressed genes (Fig. 1F) and “lipid homeostasis process” in
down-regulated differentially expressed genes (Fig. 1G). Thus, we
screened the potential regulators of fatty acid metabolism in LSCs
by intersecting the differentially expressed genes in LSCs (Fig. 1E)
with the genes related to fatty acid metabolism (Fig. S1A), and 9
potential genes were founded (Fig. 1H). The prognostic signifi-
cance of 9 potential genes in TCGA-LAML were analyzed by
univariate COX regression, and six genes (LGALS1, ALDH1A1,
AADAT, ELOVL7, ACOX2, and ACSM3) were significantly correlated
with the prognosis of AML patients. LGALS1, ALDH1A1, AADAT,
ELOVL7, and ACOX2 were the risk factors for the prognosis of AML
patients, while ACSM3 was the protective factor (Fig. 1I).
Next, we performed the consensus clustering analysis using R

package “ConsensusClusterPlus” with cluster variable range sited
from 2 to 10 based on these six potential effectors to identify the
potential fatty acid metabolism-related subtypes in AML patients.
First, we performed cumulative distribution function (CDF) plots,

Fig. 1 Identification of subtypes and construction of the LFMRs in AML. The survival analyses of ssGSEA score of fatty acid metabolism-
related gene sets from KEGG (A), Hallmark (B), Reactom (C) and Wp (D) in the TCGA-LAML cohort. E The differential expression genes between
LSCs and HSCs in the three databases (GSE17054, GSE68172, GSE24395) were shown in a heatmap. Red represents the significantly
upregulated genes in LSCs compared with HSCs. Blue represents the significantly downregulated genes in LSCs compared with HSCs.
Function and pathway enrichment analysis of the significantly upregulated genes (F) and downregulated genes (G) in LSCs versus HSCs by
Metascape. The image shows the histogram of the top 20 enriched pathway. H The Venn diagrams were used to screen the differential
expression related with fatty acid metabolism in LSCs. I Univariate COX regression analysis of the 9 potential genes in TCGA-LAML.
J Consensus matrix when k= 4. K Kaplan-Meier OS curves for AML patients among C1, C2, C3, and C4 in TCGA-LAML. This table under Kaplan-
Meier OS curves shows that the remaining patients who do not have the end point event (death) under the indicated time in this subgroup.
They are at risk of an endpoint event, which is called number at risk. L The expression of LFMGs among C1, C2, C3, and C4. M Heatmap of
correlation between lipid metabolism-associated genes in LSCs with clinicopathological characteristics of AML patients in the TCGA-LAML
cohort. N Lasso COX regression analysis of five OS-related genes. O The overall survival (OS) in the TCGA-LAML cohort database was analyzed
by the univariate COX regression with the 5 potential genes and summarized in Forest plots. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001;
ns, not significant.
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and found that when k= 4, the descending slope of CDF is smaller
compared with k= 2, k= 3, and k= 5, and CDF reached an
approximate maximum (Fig. S1C). Also, delta area plot was made.
As shown in Fig. S1D, when k= 5, the change of area under curve
was slighter than k= 4. In brief, 4 clusters are suitable for the
highest intragroup correlations and the lowest intergroup
correlations, which can be observed in Fig. S1E. These data
indicated that k= 4 showed distinguished clustering stability with
the highest intragroup correlations and the lowest intergroup
correlations. Thus, we acquired four clusters (C1, C2, C3, and C4)
(Fig. 1J). In addition, the clusters were validated by PCA analysis
(Fig. S1F). Furthermore, we analyzed the survival of C1, C2, C3, and
C4 clusters, and found that C1 had the worst prognosis and C4
had the best prognosis (C1 < C3 < C2 < C4) (Fig. 1K). Together, the
relative expression of the six potential effectors were detected,
and found most risk factors (LGALS1, ALDH1A1, ELOVL7 and
ACOX2) were high expressed in C1 and C3 clusters, and the
protective factor (ACSM3) were high expressed in C2 and C4
clusters (Fig. 1L). Next, we investigated the association of LSCs and
fatty acid metabolism-related clusters with classical clinical
features of AML in the TCGA-LAML cohort, LSCs and fatty acid
metabolism related-clusters, survival status, overall survival, age,
sex, FAB typing, WAB number, cytogenetic risk, CD34, proportion
of progenitor cells, proportion of precursor cells in bone marrow,
FLT3 gene mutation, NPM1 mutation, and expression profile of
each gene were used as annotations (Fig. 1M). The results showed
that the survival status was poorer (Fig. S1G), the percentage in
M5 (the worst prognosis subtype) [24] (Fig. S1H), WBC counts (Fig.
S1I), and poor cytogenetics risk (Fig. S1J) were higher in C1 and C3
clusters (worst prognosis) compared with C2 and C4 clusters,
which indicated that the four clusters were successfully identified
based on the potential six genes of AML.
To better assist clinicians in accurately predicting the prognosis

of AML patients, we try to construct the LSCs and fatty acid
metabolism-related risk score (LFMRS) based on the six potential
genes. The Least Absolute Shrinkage and Selection Operator
(LASSO) regression algorithm determined five OS-related genes
based on the optimum λ value and the minimum partial likelihood
of deviance (Fig. 1N, S1K). LASSO coefficients of the five potential
genes showed that LGALS1 (0.260), ELOVL7 (0.215), ALDH1A1
(0.045), and ACOX2 (0.013) were risk factors and ACSM3 (-0.138)
was a protective factor (Fig. 1O).

Verification of prognostic model (LFMRS) in AML
According to the median risk score of LFMRS in training cohort of
TCGA, AML patients were divided into low-risk group and high-risk
group (Fig. S2A). Not surprisingly, patients in high-risk group had
shorter survival time and worse prognosis than those in low-risk
group (Fig. 2A). Moreover, the sensitivity and specificity of LFMRS
were estimated through time-dependent receiver operating
characteristic (ROC) analysis, and the areas under the curve
(AUCs) for one-year, two-year, and three-year overall survival were
0.800, 0.789, and 0.710, respectively with significant p values
(Fig. 2B). For verifying the reliability of LFMRS, the same analysis is
carried out in the four databases of BeatAML (Fig. 2C, S2B),
GSE71014 (Fig. 2D, S2C), GSE12417 (Fig. 2E, S2D), and GSE37642
(Fig. 2F, S2E), and the results show that the constructed LFMRS has
a high prognostic reliability.
Next, we stratified the AML patients into high-risk and low-risk

groups according to their LFMRS scores and assessed their clinical
parameters, and found that the distribution of the clusters,
survival status, age, FAB typing, WBC counts, and cytogenetic risk-
based risk groups were different between the LFMRS high- and
low-risk groups, while other clinical features showed no signifi-
cance (Fig. 2G). We also analyzed the LFMRS risk values among the
clusters, survival status, age, FAB classification, WBC counts, and
cytogenetic risk, and found that LFMRS were higher in patients
with C1 and C3 clusters (Fig. 2H), poor survival status (Fig. 2I), older

than 60 years old (Fig. 2J), M5 type in FAB classification (Fig. 2K),
and poor cytogenetic risk (Fig. 2L). LFMRS risk values was
positively correlated with WBC counts (Fig. 2M). Moreover, we
detected the correlation between LFMRS and estimated drug IC50
quantified by pRRophetic method (Fig. S2F), and found that
LFMRS was the most sensitive to parthenolide and least sensitive
to ATRA in AML (Fig. S2G). The same result was also found through
the analysis of the correlation between clinical applied drugs in
AML and LFMRS, which indicating that LFMRS may be the key
factor of drug resistance, especially in retinoic acid treatment of
AML (Fig. 2N). Meanwhile, we also assessed the correlation
between LFMRS and immune cells using CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms, and
found that macrophage, CD8+ T cells, NK cell, et. al. were closely
related to LFMRS (Fig. 2O). Thus, these data indicated that LFMRS
risk classification were consistent with current risk factors.
To determine whether the LFMRS is independently correlated

with the OS of AML patients, we first performed univariate COX
regression analysis. Through analyzing the prognostic value of
LFMRS together with other common prognostic factors (age,
gender, WBC counter, cytogenetics risk, CD34 expression, the
percentage of blast cell and BM blast cell, FLT3 mutation, and
NPM1 mutation), we found that age, cytogenetic risk and LFMRS
were associated with prognosis of patients with AML (Fig. S3A).
Furthermore, we also performed multivariate COX regression
analysis, and the results also showed that age and LFMRS were
independent prognostic factors (Fig. S3B). Next, we established a
prognostic nomogram integrating age and LFMRS (Fig. S3C), and
the calibration curve of nomogram showed high concordance
between the predicted and actual probabilities of 1-, 2- and 3-year
survival (Fig. S3D). The reliability of the predictive effect of the
nomogram on prognosis were further verified in 1-, 2-, and 3-year
prognosis by ROC curves (Fig. S3E). Overall, these results indicated
that LFMRS is an independent risk factor, can be combined with
age for better precisely predicting the survival time of AML
patients.

LGALS1 is highly expressed in LSCs and associated with poor
prognosis of AML patients
LGALS1 is the only member of LFMRS model which is highly
expressed in LSCs compared with HSCs (Fig. 1E), has the most
significant prognostic effect with the highest HR and the lowest p
value (Fig. 1I). and is the molecule with the highest prognosis risk
(Fig. 1O). Additionally, LGALS1 is highly expressed in worst-
prognosis cluster C1 in AML (Fig. 1L) and is positively correlated
with LFMRS score (Fig. S4A). Thus, LGALS1 caught our attention to
further explore the function and mechanism AML to verify LFMRS
model. To validated whether LGALS1 is highly expressed in LSCs,
we first analyzed LGALS1 expression through TNMplot database
(Fig. 3A) and TARGET database (Fig. S4B), and found that LGALS1
was high expressed in AML patients than healthy individuals.
Meanwhile, we collected bone marrow samples from AML
patients, also found that LGALS1 was aberrantly overexpressed
in AML samples relative to healthy controls at both the mRNA
level (Fig. 3B) and protein level (Fig. 3C). Next, we analyzed the
single cell sequencing data from GSE116256, and found that
LGALS1 expression was higher in LSC-like (HSC-like and GMP-like)
compared with HSC-like (HSC and GMP) (Fig. 3D). Also, we sorted
LSCs from AML patients and HSCs in individual of healthy, and
found that LGALS1 expression was higher in LSCs than HSCs
(Fig. 3E). Moreover, the elevated expression of LGALS1 correlated
with poor survival of AML patients (Fig. 3F). Thus, LGALS1 is highly
expressed in LSCs and associated with poor prognosis of AML
patients.
In addition, we also assessed the expression and prognosis of

others members of LFMRS model. As shown in Fig. S4C, ACSM3
was high expressed in AML than health individual, while
ELOVL7 and ALDH1A1, and ACOX2 were low expressed through
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Fig. 2 Verification of prognostic model (LFMRS) in AML. A Kaplan-Meier analysis of OS between high- and low-LFMRS groups in the TCGA
cohort. B The 1-, 2- and 3-year ROC curves of the LFMRS in the TCGA cohort. Kaplan-Meier analyses of OS between high- and low-LFMRS
groups in the BeatAML database (C), GSE71014 (D), GSE12417 (E) and GSE37642 (F) cohorts. G Overview of the correspondence between
LFMRS and other clinical features of AML patients. LFMRS expression among distinct clusters (H), between alive and dead patients (I), between
<60 and ≥60 patients (J), among distinct FAB subtypes (K), among different cytogenetic risks (L) of AML.M The correlation of LFMRS with WBC
counts. N The correlation of LFMRS with IC50 values of first-line drugs from GDSC database quantified by pRRophetic. O Correlation of LFMRS
with immune cells quantified by CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL and EPIC in AML. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns not significant.
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TARGET database. Moreover, there were no significant differ-
ence of ACSM3 and ACOX2 expressions between AML samples
relative to healthy controls, while ELOVL7 and ALDH1A1 were
aberrantly low-expressed in our collecting samples (Fig. S4D).
We also revealed that ELOVL7 and ACOX2 were lower in LSCs
compared with HSCs, and there were no significant difference
of ALDH1A1 and ACSM3 expressions between two groups (Fig.
S4E). The high expression of ELOVL7, ALDH1A1, and ACOX2
correlated with poor survival of AML patients, while high
expression of ACSM3 related with good survival of AML patients
(Fig. S4F). These results are mostly consistent with LFMRS
model.

LGALS1 promotes cell proliferation and inhibits cell apoptosis
To explore the function of LGALS1 in LSCs, we sorted LSCs
(CD34+CD38−) from two AML patients. As shown in Fig. 4A–H,
depletion of LGALS1 expression by shRNA (Figs. 4A, E) or
inhibiting LGALS1 expression (Figs. 4A, E) using OTX008 (a specific

inhibitor of LGALS1) [25] impaired cell proliferation via colony
formation assay (Figs. 4B, F), enhanced cell apoptosis via flow
cytometric analysis (Figs. 4C, G), and led to a decrease in the
fraction of cells in S phase (presented the rate of proliferation) and
increase in that in G0 phase (Figs. 4D, H). We also determined
LGALS1 expression in a set of leukemia cells, and found a relative
stronger endogenous LGALS1 was seen in HEL, THP1, MV411, and
NB4 cells (Fig. S5A, S5B). Therefore, we explored the function in
AML using HEL and THP1 cells, and found that suppression of
LGALS1 (Fig. S5C, S6A) in THP1 and HEL cells also impaired cell
proliferation (Fig. S5D, S6B), enhanced cell apoptosis (Fig. S5E,
S6C), and led to a decrease in the fraction of cells in S phase
(Fig. 5F, S6D). Thus, LGALS1 promotes cell proliferation and
inhibits cell apoptosis in LSCs and leukemia cells in vitro.

LGALS1 contributes to lipid metabolism reprogramming
Lipid metabolism is regulated by a combination of the uptake
and export of fatty acids, de novo lipogenesis, and fat utilization

Fig. 3 LGALS1 is highly expressed in LSCs and associated with poor prognosis of AML patients. A The transcript levels of LGALS1 in AML
samples compared with that in healthy individuals were identified from TNMplot database. B The mRNA levels of LGALS1 in primary AML
cases (n= 13, AML#1-AML#13) and healthy control cases (n= 13). C The protein levels of LGALS1 in indicated primary AML cases and healthy
control cases. D The relative mRNA expression of LAGLS1 from the single cell sequencing data of GSE116256. E The mRNA levels of LGALS1 in
HSCs and LSCs from healthy control cases and AML cases, respectively (LSCs from AML#1-AML#16). F Kaplan-Meier plots of overall survival in
TCGA cohorts for AML patients, stratified on the basis of LGALS1 expression above (LGALS1high) or below (LGALS1low) the median. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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Fig. 4 LGALS1 promotes cell proliferation and inhibits cell apoptosis of LSCs. A–D LSCs were sorted from AML#17. A Efficiencies of
LGALS1 silence in LSCs were determined by qRT-PCR. B Cell growth was determined by colony formation assay under a light microscope, and
the percentage of colony formation units were shown. C Cell apoptosis was determined by flow cytometric analysis. D Cell cycle distribution
was detected by flow cytometric analysis via Ki67 staining (upper) and EdU staining (lower), respectively, and the bar graph showed the
percentage of G0/G1, S, and G2/M phase cells. E–H LSCs were sorted from AML#18. E Efficiencies of LGALS1 silence in LSCs were determined
by qRT-PCR. F Cell growth was determined by colony formation assay under a light microscope, and the percentage of colony formation units
were shown. G Cell apoptosis was determined by flow cytometric analysis. H Cell cycle distribution was detected by flow cytometric analysis
via Ki67 staining (upper) and EdU staining (lower), respectively, and the bar graph showed the percentage of G0/G1, S, and G2/M phase cells.
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns not significant.
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by β-oxidation [26]. It is reported that LGALS1 is associated with
lipid synthesis in adipocyte by activation of peroxisome
proliferator-activated receptor gamma (PPARγ) in adipose cell
[26]. Galectin-1 has also been proposed to regulate adipogen-
esis and adipose inflammation by binding to CD146 [27]. While,
whether LGALS1 regulates lipid metabolism in leukemia cells
remains unknown. Therefore, we refine the effect of LGALS1 on
the lipid uptake and de novo lipogenesis in LSCs and leukemia
cells. First, we detected the expression of gene-related to lipid
uptake (CD36) and de novo lipogenesis (PPAR-γ, FASN, ACC),
and found that depletion of LGALS1 expression by shRNA or
inhibiting LGALS1 expression using OTX008 decreased CD36
and PPAR-γ expression (Fig. 5A–C, S7A–S7C), which indicated
that LGALS1 may enhance lipid accumulation in LSCs, HEL, and
THP1 cells. Not surprisingly, Oil Red O staining showed that
restrained LGALS1 significantly reduced the accumulation of
lipid droplets in LSCs and leukemia cells (Fig. 5D, S7D). The
above data indicate that LGALS1 enhances the accumulation of
fatty acids in LSCs and leukemia cells.

LGALS1 enhances lipid metabolism reprogramming, an
immunosuppressive microenvironment, and AML progression
in vivo
To examine the mitogenic effect of LGALS1 in vivo, engineered
HEL cells were injected into NOD/SCID mice, as expected, we
found that the mice injected with shLGALS1 cells showed longer
survival time than those injected with shNC cells (Fig. 6A). LGALS1
knockdown inhibited leukemogenesis (Fig. 6B). Next, leukemia cell
infiltration was assessed. As shown in Fig. 6C, LGALS1 knockdown
reduced leukemic cells in the bone marrow, and curbed liver and
splenic infiltration as detected by H&E staining (Fig. 6C). Not
surprisingly, the levels of CD36, PPAR-γ, and lipid droplet were
reduced in xenografts from mice receiving LGALS1 knockdown
cells (Fig. 6D, E). These results suggest that LGALS1 regulates
expansion and lipid metabolism reprogramming of leukemic cells.
As LFMRS was closely related to the immunosuppressive state

of AML (Fig. 2O), we further explore whether LGALS1 regulates the
immune effect of immune cells (macrophage, CD8+ T cells, and NK
cells) in vivo by using the MLL-AF9 retroviral transduction system

Fig. 5 LGALS1 plays a key role in lipid metabolism reprogramming of LSCs. A–D LSCs transfected with shRNA against GALS1, or treated
with DMSO or OTX008 were cultured. A, B The mRNA levels of CD36 and PPAR-γ were detected by qRT-PCR. C The protein levels of CD36 were
determined by FCM using anti-CD36-APC (1:100, BioLegend, America). D Representative images of Oil Red O staining. Differentiated 3T3-L1
cell was used as a positive control. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns not significant.
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Fig. 6 LGALS1 enhances lipid metabolism reprogramming, an immunosuppressive microenvironment, and AML progression in vivo.
A Kaplan-Meier analysis of the survival curves of the mice in each group (n= 5). B The percentage of GFP+ leukemia cell in bone marrow were
detected through flow cytometric analysis (n= 3). C Immature cells from the bone marrow were checked using Wright’s stain (Left), and
spleen and liver infiltration were analyzed by H&E staining (Right). The representative pictures were shown. D The relative expression of CD36
and PPAR-γ in GFP+ leukemia cells were determined by qRT-PCR (n= 3). E Representative images of Oil Red O staining. F The schema chart of
MLL-AF9-induced leukemia was shown (n= 3). G The percentage of GFP+ leukemia cell in peripheral blood were detected through flow
cytometric analysis (n= 3). H Kaplan-Meier analysis of the survival curves of the mice in each group (n= 7). I Immature cells from the bone
marrow were checked using Wright’s stain (Left), and spleen and liver infiltration were analyzed by H&E staining (Right). The representative
pictures were shown. J The proportion of LSCs in bone marrow was detected by flow cytometric analysis (n= 3). K The relative expression of
CD36 and PPAR-γ in GFP+ leukemia cells were determined by qRT-PCR (n= 3). L Representative images of Oil Red O staining. M The
proportion of CD8+ T cells and NK cells in bone marrow were determined by flow cytometric analysis (n= 3). *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001; ns, not significant.
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(Fig. 6F). LSK cells transduced with MLL-AF9 virus from wildtype
C57/B6L mice, then injected into unirradiated mice via tail vein. As
shown in Fig. 6G–L, treatment with OTX008 inhibited leukemo-
genesis (Fig. 6G), promoted survival time (Fig. 6H), reduced
leukemic cells in the bone marrow (Fig. 6I), curbed liver and
splenic infiltration (Fig. 6I), and decreased LSC frequency in the
bone marrow via flow analysis (Fig. 6J), and reduced CD36, PPAR-γ,
and lipid droplet levels (Fig. 6K, L). Meanwhile, we detected the
immune cell counts, and found that treatment with OTX008 lead
to a decrease in the counts of CD8+ T cells, and NK cells (Fig. 6M).
In general, LGALS1 enhances lipid metabolism reprogramming, an
immunosuppressive microenvironment, and AML progression
in vivo.

DISCUSSION
Increasing evidences have indicated that the remolding of tumor
lipid metabolism could lead to tumor progression and local
immunosuppression in the tumor microenvironment [28]. Due to
the limited efficacy of diverse therapeutic methods of AML, like
chemotherapy and hematopoietic stem cell transplantation,
exploring novel biomarkers is urgently needed, which could not
only predict the OS of AML patients, but also be utilized to guide
anti-leukemia therapy. Consequently, recent studies have shed
more light on the aberrant lipid metabolism and its effect on the
immune microenvironment in the context of AML.
In this work, we successfully identified five lipid metabolism-

related genes which were associated with AML prognosis,
including LGALS1, ELOVL7, ALDH1A1, ACOX2, and ACSM3, and
construct LFMRS model via a series of bioinformatics analysis.
Notably, this LFMRS model can discriminate high-risk from low-risk
population, and the patients in low-risk group were proved to
have longer OS than those in high-risk groups in five databases
(TCGA, BeatAML, GSE71014, GSE12417, and GSE37642). Addition-
ally, LFMRS model can potentially estimate the different prognosis
for low- and high- groups based on clinical parameters, such as
clusters, survival status, age, FAB typing, WBC counts, cytogenetic
risk-based risk groups. We also found that LFMRS can assess drug
resistance and immune function in microenvironment. Further-
more, LFMRS can be an independent risk factor and predict the
survival time of AML patients combined with age through
univariate COX regression analysis and multivariate COX regres-
sion analysis. Consequently, the lipid metabolism-related signa-
ture identified may be involved in the occurrence and
development of AML, rendering its potential as the valuable
clinical biomarker.
LGALS1, a beta-galactoside-binding protein, is associated with

lipid metabolism, such as enhancing adipogenesis and adipose
inflammation [27]. Recently, the carcinogenesis of LGALS1 has
been gradually revealed, such as in non-small cell lung cancer
cells [29], head and neck cancer [30]. Peter P, et. al found
LGALS1 acted as a pro-survival molecule in AML [31]. Kening
et al. revealed that LGALS1 was upregulated in refractory AML
patients and its inhibition could enhance the chemotherapy in
AML patients [25]. While, the enhancement of LGALS1 on AML
progression lacks of sufficient evidence, and whether LGALS1
regulates lipid metabolism in leukemia remains unknown. Here,
we first found that LGALS1 was highly expressed in LSCs and
associated with poor prognosis of AML patients via analyzing
RNA-seq data in BeatAML database, single cell sequencing data
in TCGA database, and detecting the expression in collected
AML samples. LGALS1 promoted cell proliferation and inhibited
cell apoptosis via shRNA of LGALS1 and a specific inhibitor of
LGALS1 in leukemia cells (HEL and THP1) and LSCs in vitro, and
enhanced AML progression in vivo. By detecting the genes
related to fatty acid metabolism, we discovered that LGALS1
enhanced CD36 (related with lipid uptake) and PPAR-γ (related
with de novo lipogenesis) expression, and lipid accumulation,

which was consistent with the discovery that lipid plays vital role
in AML survival. Matthew et. al, reported that very long chain
fatty acid metabolism is required in acute myeloid leukemia [32].
Fatty acid oxidation upregulation has importance role in ven/aza
resistance of LSCs [33].
LGALS1 acts as the immune heterogeneity and immunosup-

pression in plenty of cancer, such as glioblastoma [34], clear cell
renal carcinoma [35], non-small cell lung cancer [36]. Here, we first
revealed that treatment with OTX008 (a specific inhibitor of
LGALS1) lead to a decrease in the counts of CD8+ T cells and NK
cells. As reported that lipid is vital to T cell and macrophage
function [37, 38], also tumor immune escape [39]. As leukemia
cells absorb lipid from microenvironment through LGALS1, which
may lead to less uptake of fatty acids for immune cells to maintain
their function. However, Currently, we still cannot address how
LGALS1 regulated CD8+ T cells and NK cells, and thus further
exploration is warranted.
The members of LFMRS may coordinate with each other to

regulate lipid metabolism and AML progress. ELOVL7, as a
lipogenic gene, enhances fatty acid synthesis via coding a long-
chain fatty acid elongase [40]. It was reported that ELOVL7 was
involved in prostate cancer growth [40, 41]. While, the specific
mechanism of ELOVL7 on fatty acid metabolism in AML is not
revealed. ALDH1A1, aldehyde dehydrogenase 1A1, is the rate-
limiting enzymes that convert retinaldehyde to retinoic acid, and
ALDH1A1 deficiency significantly attenuated triacylglycerol synth-
esis [42]. Moreover, ALDH1A1 is a marker of cancer stem cells, and
is involved in LSC property maintenance [43]. ACOX2, as a
β-oxidation gene, participated in lipid degradation [44], and could
be used as both tumor suppressor gene and tumor promoter gene
[45, 46]. The function of ACOX2 in leukemia needs further
exploration. ACSM3, acyl-CoA synthetase medium-chain family
member 3, perform the initial reaction for fatty acid metabolism
by trapping fatty acid within a cell and activating it for metabolism
[47]. Decreased ACSM3 expression is indicative of deregulated
fatty acid oxidation and a poor survival in liver cancer [48].
Moreover, ACSM3 could repress the cell proliferative activity and
facilitated induction of apoptosis and cell cycle arrest in AML cells
[49]. Here, we found that high expression of ELOVL7, ALDH1A1,
and ACOX2 were correlated with poor survival of AML patients
(Fig. S4F). While, ACSM3 was a protective factor for AML (Fig. S4F).
Moreover, we also performed the correlation analysis of LGALS1
and other members of LFMRS, and revealed that LGALS1 is
positively correlated with ACOX2 expression, and negatively
correlated with ELOVL7 and ACSM3 (Fig. S8A, S8C-S8D). While,
there is no significant difference between LGALS1 and ALDH1A1
(Fig. S8B). LGALS1 and other members of LFMRS model may
regulate the homeostasis of lipid metabolism and the progress of
leukemia cells.
We performed a systematic analysis of the regulatory functions

of LFMRS in AML and their effect on prognosis, and revealed that
LFMRS as independent prognostic factors for AML. Furthermore,
we explore the function of LGALS1 in AML in vitro and in vivo. We
found that LGALS1 was highly expressed in LSCs and associated
with poor prognosis of AML patients, and regulated AML
progression, lipid metabolism reprogramming, and immune cell
counts. Our findings may provide a new prediction and
therapeutic target to AML.
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