
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15407  | https://doi.org/10.1038/s41598-024-64484-9

www.nature.com/scientificreports

Renal autocrine neuropeptide FF 
(NPFF) signaling regulates blood 
pressure
Hewang Lee 1,2,6*, Bibhas Amatya 1,6, Van Anthony M. Villar 1,2,7, Laureano D. Asico 1,2,8, 
Jin Kwon Jeong 3, Jun Feranil 1,2, Shaun C. Moore 1, Xiaoxu Zheng 1, Michael Bishop 1, 
Jerald P. Gomes 2, Jacob Polzin 1, Noah Smeriglio 4, Pedro A. S. Vaz de Castro 1, 
Ines Armando 1,2, Robin A. Felder 5, Ling Hao 4 & Pedro A. Jose 1,2,3

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), 
originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of 
hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation 
of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and 
proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human 
renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 
(RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-
dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated 
with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs 
caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic 
interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 
mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase 
in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our 
findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the 
mechanisms remain to be determined.
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Hypertension is caused by the complex interplay among environment, lifestyle, and  genetics1,2, in which 
gene–gene interactions play critical roles in its  development1,2. However, genome-wide association studies in 
hypertension have only revealed a small fraction of genetically regulated blood pressure  variability3. The specific 
genes involved in kidney-mediated hypertension remain to be fully understood.

Dopamine, a neurotransmitter first identified in the brain, is an important regulator of systemic blood pres-
sure by its actions on fluid and electrolyte balance, mediated by the  kidney4–7. The kidney synthesizes dopamine 
from circulating and filtered L-3,4-dihydroxyphenyl-alanine, independently of its  innervation4. Dopamine 
accounts for ≥ 50% of renal sodium excretion under conditions of moderate sodium  excess4–6. Renal dopamine 
exerts its actions via two subfamilies of G protein-coupled receptors, D1-like  (D1R and  D5R) and D2-like  (D2R, 
 D3R, and  D4R)  receptors4–6. The D1-like receptors couple to the stimulatory G protein, Gαs, and activate adenylate 
cyclase whereas the D2-like receptors couple to the inhibitory G protein, Gαi, and inhibit adenylate  cyclase4–6. 
The impairment of D1-like receptor function underlies, in part, the increased blood pressure observed in several 
mouse models of hypertension and some humans with  hypertension4–8. Studies have shown that the germline 
deletion of either Drd17 or Drd58 gene in mice also results in hypertension. Furthermore, D1-like receptors 
regulate blood pressure, in part, by counteracting the effects of pro-hypertensive factors, such as angiotensin II 
and  catecholamines4–8.
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Neuropeptide FF (NPFF, FLFQPQRF-NH2), a mammalian-amidated neuropeptide originally isolated from 
bovine brain, is a pain-modulating peptide, with anti-opioid activity in the  rat9. NPFF, which shares the same 
NPFF gene with neuropeptide AF, participates in cardiovascular regulation, energy metabolism, food consump-
tion, immunity, nerve injury repair, and pain  modulation10. NPFF exerts its effects through its two receptors, 
NPFF-R1 (GPR147) and NPFF-R2 (GPR74)11,12. The ability of guanine nucleotides to inhibit NPFF binding to 
its receptors suggests that both NPFF-R1 and NPFF-R2 receptors are coupled to G  proteins10. Both NPFF-R1 
and NPFF-R2 preferentially couple to Gαi/o protein and inhibit adenylate cyclase  activity13. However, NPFF-R2 
can also couple to Gαs and stimulate adenylate cyclase activity in mouse cerebellum, olfactory bulb, and spinal 
 cord14. In addition to the central nervous system (CNS), NPFF and its receptors, NPFF-R1 and NPFF-R2, are 
also present in peripheral tissues, including the  kidney10–12.

NPFF may participate in the regulation of blood pressure because it is present in the cardiovascular regula-
tory center in the  hypothalamus15. The  intracerebroventricular16, intranuclear tractus  solitarius17, or  intrathecal18 
administration of NPFF increases blood pressure, indicating that NPFF in the central nervous system increases 
blood pressure. The intravenous administration of NPFF also increases blood  pressure19 although it cannot cross 
the blood-brain  barrier20. Therefore, both central and peripheral mechanisms contribute to the NPFF-mediated 
increase in blood  pressure15–22.

The NPFF network in the hypothalamus is impaired in hypertensive  patients23 suggesting that the interaction 
of the NPFF system with other neurotransmitter system (s) could play an important role in the regulation of 
blood pressure. The dopaminergic system in the kidney is known to regulate blood  pressure4–8,24,25, however, it 
is not known whether NPFF can regulate blood pressure in the kidney, and whether or not there is a functional 
interaction between NPFF and the dopaminergic system in the kidney.

The main objective of this study is to determine the presence of the NPFF system in the kidney, the physical 
and functional interaction between the NPFF system in renal proximal tubule cells (RPTCs) by determining 
their cAMP production, a known signaling pathway mediated by dopamine receptors, and the renal-mediated 
blood pressure regulation by NPFF and its receptors, NPFF-R1 and NPFF-R2.

Results
Autocrine NPFF and its receptors in the kidney
Previous studies have shown that Npff and its receptors are expressed in the central nervous system and periph-
eral  tissues10–12,26–28. We found that in the brain (Supplementary Fig. S1), NPFF-R1 was expressed in multiple 
hypothalamic nuclei, including the organum vasculosum of the lamina terminalis (OVLT), supraoptic nucleus 
(SON), paraventricular nucleus (PVN), arcuate nucleus (ARC), and ventromedial hypothalamus (VMH), and 
in non-hypothalamic regions, such as the hippocampus (HP) and cerebral cortex (CTX), but absent in the 
dorsomedial hypothalamus (DMH) and piriform cortex (Pir). By contrast, NPFF-R2 was widely and strongly 
expressed in hypothalamic nuclei, including the OVLT, SON, PVN, ARC, and VMH, and in non-hypothalamic 
regions such as the HP, Pir, and CTX. In the kidney, we specifically examined their expression in human RPTCs 
(hRPTCs) and mouse RPTCs (mRPTCs). As determined by RT-PCR (Fig. 1a), the transcripts of NPFF and its 
receptors NPFF-R1 and NPFF-R2 were expressed in hRPTCs. The mouse mRNAs of Npff and its receptors Npff-r1 
and Npff-r2, determined by RNA in situ hybridization (RNAscope), were positively stained when hybridized with 
their specific probes in the proximal tubule of C57BL/6 mouse kidney (Fig. 1b), while a negative control probe 
displayed no staining (Fig. 1c). NPFF, NPFF-R1, and NPFF-R2 proteins were also expressed in mRPTCs (Fig. 1d) 
and hRPTCs (Supplementary Fig. S2); Overall, the staining of NPFF-R1 was weaker than that of NPFF-R2.

The presence of NPFF in the mouse serum and kidney was confirmed by liquid chromatography-tandem 
mass spectrometry (LC–MS/MS) (Fig. 2); the NPFF concentrations were 0.936 ± 0.22 pmol/g of tissue (n = 3) 
in the kidney and 541 ± 32 pmol/L (n = 3) in the serum of C57BL/6 mice. Next, we determined whether NPFF 
produced in mRPTCs is functional. As shown in Fig. 3, NPFF inhibited the forskolin-induced increase in cAMP 
production in mRPTCs in a concentration- (Fig. 3a) and time- (Fig. 3b) dependent manner. By contrast, RFRP-2, 
an RF-amide-related peptide with low affinity to NPFF  receptors28, had no effect on forskolin-induced cAMP 
production (Fig. 3c,d). The ability of NPFF, but not RFRP-2, to decrease the forskolin-induced increase in cAMP 
level measured in cell culture supernatants (Fig. 3) was also observed in mRPTC lysates (Supplementary Fig. S3).

NPFF binds to both NPFF-R1 and NPFF-R211. To determine further the role of NPFF in the inhibition of 
cAMP production, we used RF-9, a dual NPFF-R1 and NPFF-R2  antagonist29, RFRP-3, an NPFF-R1  agonist30, 
and AC-263093, an NPFF-R2  agonist31. RFRP-3  (10−7 M) inhibited the forskolin-stimulated cAMP production 
(Fig. 3e), which was reversed by pretreatment with RF-9  (10−5 M). Similarly, AC-263093  (10−6 M) inhibited the 
forskolin-stimulated cAMP production (Fig. 3f), which was also reversed by pretreatment with RF-9  (10−5 M). 
Of note, RF-9, by itself, had no effect. This highlights that, unlike in GnRH  neurons32, in mRPTCs, RF-9 has no 
effect on the kisspeptin receptor, indicating receptor specificity at least in RPTCs.

Interaction between NPFF and dopaminergic system in the kidney
Dopamine, initially found in the brain, stimulates adenylyl cyclase through D1-like receptors in hRPTCs or 
 mRPTCs4–6. Therefore, we investigated whether there is an interaction between the NPFF and D1-like dopamin-
ergic systems in the kidney. In hRPTCs, both NPFF-R1 and NPFF-R2 co-localized with  D1R (Supplementary 
Fig. S4a). NPFF-R1 also co-localized with  D5R, but NPFF-R2 had minimal co-localization with  D5R (Supple-
mentary Fig. S4b). Consistent with the hRPTC studies, in human kidney sections both NPFF-R1 and NPFF-R2 
also co-localized with  D1R (Fig. 4a); NPFF-R1 also co-localized with  D5R while NPFF-R2 minimally co-localized 
with  D5R (Fig. 4b). Furthermore, we found that both  D1R (Fig. 5a, left panel) and  D5R (Fig. 5b, left panel) co-
immunoprecipitated with anti-NPFF-R1 antibody in hRPTC lysates. However, NPFF-R2 co-immunoprecipitated 
with the  D1R (Fig. 5a, right panel) but not the  D5R (Fig. 5b, right panel) in hRPTC lysates. These results suggested 
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Figure 1.  Gene expression of NPFF(Npff) and its receptors in human and mouse kidneys. (a) Agarose gel 
electrophoresis of RT-PCR products of NPFF, NPFF-R1, and NPFF-R2 in human renal proximal tubule 
cells (hRPTCs). (b) Gene expressions of Npff, Npff-r1, and Npff-r2 in the RPTs of C57BL/6 mice analyzed 
by RNAScope. The mouse kidney sections were hybridized using specific Npff, Npff-r1, and Npff-r2 probes 
(Advanced Cell Diagnostics); Npff, Npff-r1, and Npff-r2 RNA appear as deep brown dots, some of them 
indicated by arrows (right panel). (c) Negative control images: no visible signals can be seen in kidney sections 
hybridized using a non-specific probe, dapB, a bacterial gene (Advanced Cell Diagnostics). Bar scale, 20 μm. 
(d) mRPTCs were prepared and stained as described in the Materials and Methods section. The mRPTCs were 
incubated with anti-FMRF (for NPFF), anti-NPFF-R1, and anti-NPFF-R2 antibodies, as indicated (left panel), 
and counterstained for DNA with DAPI (4′,6-diamidino-2-phenylindole, middle panel). The merged images 
(right panel) show possible nuclear staining of NPFF and its receptors. Bar scale, 10 μm.
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the potential interaction between NPFF receptors and D1-like receptors, specifically NPFF-R1 with both  D1R 
and  D5R but NPFF-R2 only with  D1R, in the hRPTCs.

Antagonism between NPFF and dopaminergic systems in the kidney
We next investigated the potential physiological/pathophysiological effect of the interaction between the NPFF 
and the D1-like dopaminergic systems in the kidney. As expected, the D1-like receptor agonist,  FEN4–6, increased 
intracellular cAMP production in hRPTCs; NPFF  (10−11 M) impaired the stimulatory effect of FEN at a concen-
tration which, by itself, did not affect cAMP concentration (Fig. 6a). Similarly, the NPFF-R1 agonist, RFRP-3 
(Fig. 6b) and NPFF-R2 agonist, AC-263093 (Fig. 6c), by themselves, did not induce changes in the cAMP con-
centration but they attenuated the stimulatory effect of FEN on intracellular cAMP concentration, indicating 
that both NPFF-R1 and NPFF-R2 can antagonize the stimulatory effect of FEN on cAMP production.

NPFF and the protein expression of renal sodium transporters
As determined by immunoblotting, the renal protein expression of the  Na+/H+ exchanger type 3 (NHE3), was 
slightly decreased by the renal subcapsular infusion of Npff-r1 siRNA (Fig. 7a). By contrast, the NHE3 protein 
expression was markedly increased by the renal subcapsular infusion of Npff-r2 siRNA in C57BL/6 mice fed a 
normal salt diet (Mock: 100.0 ± 7.2%, Npff-r1 siRNA: 75.4 ± 9.4%, Npff-r2 siRNA: 128.7 ± 13.5%, n = 3; P < 0.05) 
(Fig. 7a). There was no effect on NHE3 phosphorylation (Fig. 7a). The protein expression of  Na+/K+-ATPase 
tended to be decreased by the renal subcapsular infusion of Npff-r1 siRNA and tended to be increased by the renal 
subcapsular infusion of Npff-r2 siRNA in C57BL/6 mice fed a normal salt diet (Mock: 100 ± 2.3%, Npff-r1 siRNA: 
92.1 ± 5.0%, Npff-r2 siRNA: 105.8 ± 13.9%, n = 3; P = 0.229) (Fig. 7b). These results indicate that in mouse kidneys, 
NPFF-R1 stimulates while NPFF-R2 inhibits NHE3 expression. These findings suggest that  NPFF may not 
affect overall renal sodium handling via NHE3 and  Na+/K+-ATPase, in mice that are fed a normal sodium diet.

Effect of NPFF on sodium excretion and blood pressure
Previous studies have shown that renal subcapsular infusion is a practical and reproducible method to study local 
kidney  function33–35. To determine the effect of NPFF in the kidney, NPFF was acutely and chronically infused 
underneath the renal capsule. In vivo, NPFF, chronically infused underneath the renal capsule, decreased renal 
sodium excretion (from 0.68 ± 0.07 mEq/day, n = 5 to 0.43 ± 0.06 mEq/day, n = 6) in conscious C57BL/6 mice fed 
a normal salt diet (Fig. 8a). In C57BL/6 mice, a single dose (10 µg in 100 µL) of NPFF, which was rapidly injected 
underneath the renal capsule, increased blood pressure after 15 min that was sustained for about 1 h (Fig. 8b). 
The chronic renal subcapsular infusion (as in Fig. 8a) of NPFF (9.25 μmol, 0.5 μL/h) for 7 days also increased 

Figure 2.  Analysis of NPFF peptide by targeted LC–MS/MS. (a) Extracted LC–MS ion chromatograms (m/z 
541.3010) of NPFF peptide standard and NPFF extracted from the mouse kidney and serum. (b) MS spectrum 
of NPFF peptide. (c) MS/MS peptide fragmentation spectrum of NPFF peptide detected in mouse serum (red) 
versus standard (blue). (d) NPFF calibration curves using a2, b2, y4, and y6 fragment ions based on the targeted 
parallel reaction monitoring (PRM) assay.
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Figure 3.  Inhibition of cAMP production by NPFF in mRPTCs. (a) mRPTCs were exposed to the indicated 
concentrations of NPFF for 15 min, followed by 10 µM forskolin for 30 min. (b) mRPTCs were exposed to 
 10−7 M NPFF at the indicated time points, followed by 10 µM forskolin for 30 min. n = 4. * p < 0.05 versus 0 M 
or 0 min, one-way ANOVA, Newman-Keuls test. (c) mRPTCs were treated with RFRP-2, an RF-amide with 
no known function, at the indicated concentrations for 15 min, n = 4. (d) mRPTCs were treated with RFRP-2 
 (10−7 M) at the indicated time points, followed by 10 µM forskolin for 30 min (right). n = 4. * p < 0.05 versus 0 M 
or 0 min, one-way ANOVA, Newman-Keuls test. (e) mRPTCs were exposed to RFRP-3, an NPFF-R1 agonist, 
in the absence or presence of RF-9, a dual NPFF-R1 and NPFF-R2 antagonist, as indicated, for 15 min, followed 
by 10 µM forskolin (Forsk) for 30 min. (f) mRPTCs were exposed to AC-263093, an NPFF-R2 agonist, in the 
absence or presence of RF9, as indicated, for 15 min, followed by 10 µM forskolin (Forsk) for 30 min. n = 6, * 
p < 0.05 versus Forsk alone, # p < 0.05 versus Forsk plus NPFF, one-way ANOVA, Newman-Keuls test. NPFF, an 
agonist for both NPFF-R1 and NPFF-R2, served as positive control to inhibit Forsk-induced increase in cAMP 
production in (a) and (b).
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the blood pressure (114.5 ± 5.0 mmHg, n = 4); the infusion of vehicle (saline) did not affect the blood pressure 
(96.4 ± 3.0 mmHg, n = 4) (Fig. 8c).

To study further whether the NPFF-mediated increase in blood pressure was through its receptors, blood pres-
sure was measured by tail cuff with the acute administration of RF-9 in conscious mice (Fig. 8d). Consistent with 
the carotid artery measurement of blood pressure under anesthesia (Fig. 8b), subcapsular injection of a single 
dose (10 µg in 100 µL) of NPFF significantly increased systolic BP within 15–35 min after injection compared 
with that of the vehicle, saline (0.9% NaCl, 100 µL) (NPFF: 105.5 ± 3.44 mmHg, Vehicle: 82.6 ± 5.65 mmHg). 
RF-9 (10 µg in 100 µL) prevented the NPFF-mediated increase in BP (88.5 ± 5.90 mmHg), whereas RF-9 alone 
had no effect (90.9 ± 4.70 mmHg) (Fig. 8d). Of note, scrambled peptide (10 µg in 100 µL) also had no effect on 
BP (86.1 ± 1.83 mmHg) (Fig. 8d).

Discussion
NPFF, like dopamine, was originally found in the brain, but subsequent studies showed its synthesis in periph-
eral  organs9–12,26–28. The current study demonstrated that NPFF and its receptors are expressed in the brain and 
the kidney. NPFF is an endogenous neuropeptide that is predominantly present in the mammalian CNS and is 
implicated in pain modulation by regulating opioid signaling; other physiological functions are also affected, 
including the regulation of blood  pressure15. The distribution and expression of NPFF and its receptors in the 
CNS have been studied in rats, mice, and  humans10–12,26–28,36–39. Our data also revealed extensive distribution of 

Figure 4.  Colocalization of NPFF receptors with D1-like receptors  (D1R and  D5R) in human kidney 
sections. (a) Strong co-localization of NPFF-R1 and NPFF-R2 with  D1R in human kidney sections. (b) Strong 
co-localization of NPFF-R1 with  D5R but minimal colocalization of NPFF-R2 with  D5R in human kidney 
sections. NPFF-R1 or NPFF-R2, green;  D1R or  D5R, red; wheat germ agglutinin (WGA, plasma membrane 
marker), magenta; DAPI (4′,6-diamidino-2-phenylindole), blue. Merge 1, NPFF-R1 (or NPFF-R2) with  D1R (or 
 D5R), the colocalization of NPFF receptors with  D1R or  D5R is denoted in yellow; Merge 2, WGA with DAPI. 
Bar scale, 20 µm.
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NPFF-R1 and NPFF-R2 in the brain, particularly in the hypothalamus, including OVLT, SON, ARC, PVN, and 
HP. NPFF-R1 had relatively greater expression in ARC than PVN, while NPFF-R2 had similar strong expression 
in both ARC and PVN and other hypothalamic areas. The distribution of NPFF receptors in the brain is consist-
ent with previous reports in  mice10. In rats, strong Npff-r1 expression is observed in the lateral septum, PVN, 
VMH, DMH, HP, thalamus, amygdala, olfactory bulb, and medulla oblongata; low to moderate expression is 
observed in the dorsal motor nucleus of the vagus, substantia nigra, and locus  coeruleus11,28,36,39. Npff-r2 is highly 
expressed in the hypothalamus, medulla oblongata, piriform cortex, lateral parabrachial nucleus, thalamus, lateral 
lemniscus, and trigeminal  nucleus11,28,36,39. The expression of Npff receptors in dopaminergic, NPY, and other 
neuroendocrine-related neurons in PVN and ARC of hypothalamus  areas15,38–40 may explain the involvement 
of Npff receptors in central blood pressure regulation, which warrants further investigation.

The expression and distribution of NPFF-R1 and NPFF-R2 in peripheral tissues, especially in the kidney, 
are not fully known. Limited mRNA expression of Npff is observed in the pancreas, lung, spleen, heart, adrenal 
gland, and  skin11,12,26,39. The pancreas and adipose tissues have a considerable Npff expression in  mice41, con-
sistent with its role in the regulation of glucose and lipid  metabolism41,42. Detectable levels of Npff -r1 mRNA 
expression are also evident in the adrenal gland, eye, intestine, kidney, lung, ovary, and  spleen11,12,28. By contrast, 
Npff -r2 mRNA is highly expressed in adipose tissue, heart, kidney, retina, salivary gland, stomach, and urinary 
 bladder11,12,39. Recent single-cell RNA sequencing showed considerable NPFF-R1 and detectable NPFF-R2 expres-
sion in hRPTCs (www. prote inatl as. org). However, considerable discrepancies in NPFF receptor expression exist 
in studies in CNS and peripheral tissues that may be due to the use of different methods and species 9,11,12,26,28,37,39.

Figure 5.  Co-immunoprecipitation of NPFF receptors with D1-like receptors  (D1R and  D5R) in hRPTCs. 
(a) Co-immunoprecipitation of NPFF-R1 and NPFF-R2 with  D1R in hRPTCs. (b) Co-immunoprecipitation 
of NPFF-R1 but not NPFF-R2 with  D5R in hRPTCs. hRPTC lysates were immunoprecipitated (IP) with 
anti-NPFF-R1 or anti-NPFF-R2 antibodies coupled to Dynabeads for 4 h at 4 °C. The protein complexes 
bound to the beads were eluted and separated by SDS-PAGE, transferred onto nitrocellulose membranes, and 
immunoblotted (IB) with anti-D1R (a) or anti-D5R (b) antibodies, as indicated. The expected bands for  D1R and 
 D5R are at 70 kDa and 55 kDa, respectively. Normal IgG was used for negative control and immunoblotting of 
 D1R or  D5R in cell lysates for positive control.

http://www.proteinatlas.org
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Figure 6.  Antagonism between NPFF receptors and D1-like receptors on cAMP production. hRPTCs were 
treated with fenoldopam (FEN,  10−7 M), a D1-like receptor agonist, without or with NPFF  (10−11 M) (a), RFRP-3 
 (10−10 M) (b), or AC-263093  (10−7 M) (c) for 30 min. VEH, vehicle. n = 6/group, * p < 0.05 versus VEH, # p < 0.05 
versus FEN, One-way ANOVA, Newman-Keuls test.

Figure 7.  Renal protein expression of  Na+/H+ exchanger type 3 (a) and  Na+/K+-ATPase (b) after the renal 
subcapsular infusion of mock, Npff-r1 siRNA, or Npff-r2 siRNA in C57BL/6 mice fed a normal salt diet. Left 
panels, representative immunoblots of the protein expressions of NHE3 (upper panel in a), phospho-NHE3 
(middle panel in a), and  Na+/K+-ATPase (upper panel in b) as indicated. Immunoblots of GAPDH served as 
loading control. Densitometric analysis of immunoblots. n = 3/group, * p < 0.05 versus Mock, # p < 0.05 versus 
Npff-r1 siRNA, one-way ANOVA, Newman-Keuls test.
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NPFF receptors are speculated to be expressed highly on the plasma membrane because they are G protein-
coupled receptors. However, we found that NPFF-R1 and NPFF-R2 were distributed in both plasma membrane 
and cytoplasm in human and mouse RPTCs. The predominant cytoplasmic distribution of NPFF-R1 and NPFF-
R2 is consistent with that observed in gonadotropin-releasing hormone  neurons43 and epididymal white adipose 
 cells42. Of note, the few NPFF receptors that overlapped with DAPI in our immunofluorescence study could 
indicate their potential nuclear localization, which needs further investigation.

The transcripts and proteins of NPFF and its receptors are expressed in human and mouse RPTCs, enabling 
NPFF to function as an autocrine system in the kidney, similar to the renal dopaminergic  system4–6. The NPFF 
serum concentration in this study is similar to the NPFF plasma levels in mice and nonobese  humans41 but higher 
than that found in an earlier study in healthy  humans44. The lower plasma NPFF concentrations could be caused 
by the use of frozen pooled  plasma44, because NPFF is extremely sensitive to freeze–thaw  cycles41. The circulating 
NPFF contains NPFF released from the spinal cord, the pancreas, and possibly the kidney or other unknown 
 tissues10,11,15,39,41,44. Our study is the first report on kidney NPFF concentrations and renal NPFF signaling regu-
lates blood pressure in mice. NPFF primarily exerts its functions via the Gαi/o protein which inhibits adenylate 
 cyclase13, while NPFF-R2 can also couple to Gαs protein which leads to the stimulation of adenylate cyclase 
 activity14. In mRPTCs, the observation that NPFF, RFRP-3, and AC-263093 attenuated forskolin-stimulated 
cAMP production corroborates the preferential linkage of these two NPFF receptors to Gαi/o. The time- and 
concentration-dependent inhibition of forskolin-induced cAMP production by NPFF further confirms a func-
tional autocrine model of the NPFF system in RPTCs.

Figure 8.  Effect of the renal subcapsular infusion of NPFF on urinary sodium excretion and systolic blood 
pressure in C57BL/6 mice. (a) NPFF (9.25 μmol, 0.5 μL/h), chronically infused underneath the renal capsule, 
decreased renal sodium excretion in conscious C57BL/6 mice fed a normal salt diet. UNaV, urinary sodium 
excretion. n = 5–6, * p < 0.05, Student’s t test. (b) Acute effect of NPFF on systolic blood pressure, measured from 
the aorta, via the carotid artery, caused by a single-dose injection (10 µg in 100 µL) of NPFF underneath the 
renal capsule. n = 4, * p < 0.05 versus basal, one-way ANOVA, Holm-Sidak post-hoc test. (c) Chronic effect of 
NPFF on systolic blood pressure, measured by carotid artery in conscious mice with chronic renal subcapsular 
infusion of NPFF (9.25 μmol, 0.5 μL/h) for seven days. n = 4, * p < 0.05 versus vehicle (0 day), one-way ANOVA, 
Holm-Sidak post-hoc test. (d) Acute effect of NPFF on systolic blood pressure (measured by tail cuff) caused 
by a single renal subcapsular injection of vehicle (100 µL saline), NPFF (10 µg/100 µL), RF9 (10 µg/100 µL), 
RF9 + NPFF (10 µg each/100 µL), or scrambled peptide (Scrm-pep, 10 µg/100 µL) in pentobarbital-anesthetized 
mice. n = 4–7, * p < 0.05 versus vehicle (saline, 0.9% NaCl), RF9, NPFF-R1 and NPFF-R2 antagonist; Scrm-pep, 
NPFF scrambled peptide; one-way ANOVA, Student–Newman–Keuls test.
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In hypertension, sympathetic activity is increased whereas parasympathetic activity is decreased within the 
autonomic nervous centers in the hypothalamus and the  brainstem15. Inhibition of adrenergic activity attenu-
ates the increase in blood pressure caused by NPFF injection in the  brainstem16, indicating a role of NPFF in the 
increase in sympathetic activity. NPFF levels are decreased in the DMV of human hypertensive  subjects23 and 
spontaneously hypertensive  rats45, leading to a decrease in vagal activity and baroreflex dysfunction. The renal 
NPFF system could regulate blood pressure in the physiological state because physiological concentrations of 
NPFF (pM) decreased forskolin-stimulated cAMP production, and RF-9, the NPFF-R1 and NPFF-R2 antago-
nist, reversed both RFRP3- (NPFF-R1 agonist) and AC263093- (NPFF-R2 agonist)-mediated decrease in cAMP 
production in RPTCs. Moreover, the renal subcapsular infusion of physiological concentrations of NPFF also 
decreased urinary sodium excretion and increased the blood pressure. Whereas scrambled peptide had no effect 
on the increase in blood pressure, RF-9 prevented the acute NPFF-mediated increase in blood pressure. The 
current observations are consistent with previous observations of  others18,29,46. The intravenous administration 
of NPFF in anesthetized rats increased blood pressure that was attenuated by daY8Fa, an NPFF-R1 and NPFF-
R2  antagonist46. In anesthetized rats, RF-9 almost completely abrogated the increase in blood pressure caused 
by the lateral cerebral ventricular injection of  NPFF29 or the intrathecal administration of  NPFF18. These results 
indicate that the effects of NPFF on cAMP production and blood pressure were exerted through its own receptors.

However, the sodium transporters related to the involved NPFF receptors in the regulation of blood pressure 
in the kidney are not clear at this time. The protein expression of either NHE3 or  Na+/K+-ATPase in Npff-r1 or 
Npff-r2 deficient kidney cortices in C57BL/6 mice fed with a normal salt diet cannot explain the NPFF-mediated 
increase in blood pressure. The RPT is the site where two-thirds of filtered sodium is reabsorbed; NHE3 is rec-
ognized to be the most important mediator of sodium transport across the luminal membrane of this nephron 
 segment47. Dopamine has been shown to inhibit NHE3 activity by decreasing its expression and increasing its 
 phosphorylation48,49. NPFF and the D1-like receptor agonist, fenoldopam, exerted a counter regulatory effect on 
cAMP production; NPFF-R1 and NPFF-R2, colocalized and physically interacted with  D1R in the RPT. NPFF-
R1, unlike NPFF-R2, also colocalized and interacted with the  D5R in the RPT.

The renal dopaminergic system maintains normal blood pressure by increasing sodium excretion, especially 
in states of moderate sodium  excess4–6,50. It is possible that the decrease in renal sodium excretion and increase 
in blood pressure due to the intrarenal administration of NPFF is related, in part, to its counter regulation of the 
renal dopaminergic system. In the kidney, the dopaminergic system also counter regulates the renin–angioten-
sin–aldosterone  system4–6,51. We have also found that the angiotensin type I receptor co-immunoprecipitated 
with NPFF-R1 and NPFF-R2 in hRPTCs and infusion of NPFF and angiotensin II synergistically increased 
blood pressure in C57BL/6 mice (Asico LD and Jose PA, unpublished observation). In rats, the peripheral NPFF-
induced increase in blood pressure was attenuated by blocking α1-adrenergic  receptors19, indicating a potential 
interaction of the NPFF system with the adrenergic system. Therefore, the effect of NPFF on sodium excretion 
and blood pressure is probably related to the counter-regulation of a renal natriuretic system (dopamine) and/
or positive interaction with angiotensin II and  the adrenergic system. NPFF weakly activates the MAS receptor 
in HEK293  cells52 and promotes macrophage M2 polarization and prevents inflammation in adipose  tissues41. 
Inflammation participates in the regulation of renal function and blood  pressure1,2,4–6,8. Similar to Ang II, NPFF 
has a major effect on the increase in blood pressure, however, NPFF could also activate the MAS receptor and 
protect against an increase in blood  pressure52. However, the role of NPFF in these interactions in the regulation 
of sodium excretion and blood pressure remains to be determined.

In addition to NPFF, a total of five groups of RF-amide peptides have been identified in mammals, including 
RF-amide related peptides (RFRP), prolactin-releasing peptides, kisspeptin, and pyroglutamylated RF-amide 
 peptides53. Each peptide group has specific cognate receptors with considerable cross-reactivity with the recep-
tors of the other  groups11,39,54. NPFF has an affinity to both NPFF-R1 and NPFF-R211,17,39. RF-9, a dual NPFF-R1 
and NPFF-R2 antagonist, has been reported as a Kiss1 receptor agonist in the gonadotropin  system32, while 
reduced circulating kisspeptin levels are observed in pre-eclampsia compared with normotensive  pregnancy55. 
The acute intrarenal administration of RF-9, alone, had no effect on blood pressure but as aforementioned, its 
chronic renal subcapsular infusion slightly decreased the blood pressure. In RPTCs, both RFRP-3, an NPFF-R1 
agonist, and AC-263093, an NPFF-R2 agonist, were able to inhibit the forskolin-stimulated cAMP production, 
suggesting that both NPFF-R1 and NPFF-R2 are involved in NPFF’s inhibition of cAMP production. By contrast, 
RFRP-2, which, by itself, has a low affinity to NPFF receptors, did not affect the cAMP production, highlighting 
the specificity of NPFF action on NPFF-R1 and NPFF-R2. In the nucleus tractus solitarius, NPFF can bind to 
the RFRP receptor, which is co-expressed with neuropeptide Y (NPY)54. NPY and at least one of its receptors are 
present in  RPTs53, whose activation can mediate the increase in blood  pressure56. The intravenous administration 
of neuropeptide 26RFa, an agonist of GPR103, increases blood pressure, which can be attenuated by pretreatment 
with an antagonist of NPY  receptor57. D1-like receptors can inhibit the vascular smooth muscle proliferation 
caused by  NPY58. Therefore, it is important to determine whether NPY contributes to the NPFF-induced cAMP 
signaling and subsequent blood pressure regulation.

Despite efforts to obtain the most specific commercially available antibodies for the staining of NPFF recep-
tors in both cells and kidney sections, the specificity of their staining still needs further confirmation. This is a 
particular concern with NPFF-R1 which has a weak staining in RPTCs and brain. Whether or not NPFF may 
function in the kidney through NPFF-R2 needs to be evaluated in a future study. It should be noted, however, 
that RNAscope and RT-PCR showed the expressions of Npff (NPFF), Npff-r1(NPFF-R1), and Npff-r2(NPFF-R2) 
mRNA in the RPT.

Recent genome-wide association studies demonstrated that a single nucleotide polymorphism (SNP) of NPFF, 
rs11170566, is associated with migraine, inflammation, and cardiovascular  disorders59. SNPs of Npff-r1 may be 
related to glucose metabolism and growth-related traits of the common  carp60. SNPs of Npff-r2 are associated with 
impaired lipid metabolism, obesity, and  inflammation61,62. Moreover, epidemiological studies show an association 
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of blood pressure with polymorphisms in the GPR10  receptor63, the cognate receptor for prolactin-releasing 
peptide, which may regulate blood pressure via NPFF-R264. The association of SNPs of NPFF and its receptors 
with inflammation and aberrant metabolism of glucose and lipid is consistent with the notion that hypertension 
is a chronic inflammatory  disorder65. Henceforth, studies are needed to determine if the gene variants of NPFF 
and its receptors can directly influence renal sodium transport and blood pressure.

Methods
Antibodies and reagents
Primary antibodies used in this study are listed in the Supplementary Table S1. The  D1R and  D5R antibodies 
have been thoroughly  validated66–69, using the methods advocated by the ad hoc International Working Group 
for Antibody  Validation70. The commercial NPFF-R1 and NPFF-R2 antibodies were characterized by immuno-
blotting the kidney cortices from mice infused with specific Npff-r1 and Npff-r2 siRNA underneath the kidney 
capsule (Supplementary Fig. S5). Normal mouse (Cat. No. sc-2025), rabbit IgG (Cat. No. 2729), and chicken IgY 
(Cat. No. AC146) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA), Cell Signaling 
Technology (Danvers, MA) and Sigma-Aldrich (St. Louis, MO), respectively. Appropriate secondary Alexa Fluor 
antibodies were purchased from Thermo Fisher Scientific (Gaithersburg, MD). Fenoldopam (Cat. No. 1659), 
NPFF (Cat. No. 3137), and RF-9 (Cat. No. 3672) were purchased from Tocris (Minneapolis, MN). RFRP-2 (Cat. 
No. 048-44) and RFRP-3 (Cat. No. 048-46) were purchased from Phoenix Pharmaceuticals (Burlingame, CA). 
The scrambled peptide was synthesized by GenScript (Piscataway, NJ). AC-263093 (Cat. No. orb611290) was 
purchased from Biorbyt (St. Louis, MO). Forskolin (Cat. No. F3917) and other reagents were purchased from 
Sigma (St. Louis, MO).

Cell culture
hRPTCs67–69,71 were verified of their RPTC origin by the expression of γ-glutamyl transpeptidase and NHE3, as 
previously  reported67,68. mRPTCs, kindly supplied by Dr. Ulrich Hopfer (Case Western Reserve University School 
of Medicine), were isolated from C57BL/6 mice and characterized, as previously  described72. Immortalized 
RPTCs with low passages were cultured in a 1:1 mixture of DMEM and Ham’s F-12 medium, supplemented with 
5% fetal bovine serum, selenium (5 ng/mL), insulin (5 μg/mL), transferrin (5 μg/mL), hydrocortisone (36 ng/
mL), triiodothyronine (4 pg/mL), and epidermal growth factor (10 ng/mL).

RT-PCR
Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed, as previously  described72. Briefly, 
RNA of hRPTCs was extracted with Trizol (Invitrogen, Carlsbad, CA) and further purified, using the RNeasy 
RNA Extraction Mini kit (Qiagen). RNA samples were converted into first-strand cDNA using an RT2 First 
Strand kit (SABiosciences-Qiagen). The transgenes were amplified (Taq DNA polymerase, Invitrogen) with 
specific NPFF, NPFF-R1, and NPFF-R2 primer pairs (Supplementary Table S2) at 95 °C for 3 min, followed 
by 35 cycles at 94 °C for 30 s, 53 °C for 30 s, 72 °C for 45 s, and 60 °C for 10 min. The PCR products of NPFF, 
NPFF-R1, and NPFF-R2 were resolved in 1.5% agarose gel in Tris/Borate/EDTA buffer, containing 0.5 µg/mL 
ethidium bromide and subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). 
The gels were photographed under ultraviolet light.

Western blot
Western blotting was performed as previously  described69,71. Briefly, kidney cortices were lysed in 1 × RIPA lysis 
buffer (Millipore, Billerica, MA), containing protease and phosphatase inhibitor cocktail (Thermo Fisher Sci-
entific, Rockford, IL), and the samples were adjusted to have the same protein concentration. The proteins were 
separated by SDS-PAGE, transferred onto nitrocellulose membranes, and then probed with primary antibodies 
and appropriately conjugated secondary antibodies. The images were visualized by a LiCor Odyssey Imaging 
system.

Immunofluorescence imaging
Immunofluorescence imaging was performed, as previously  described69,71,74. HRPTCs or mRPTCs were grown 
on poly-d-lysine-coated coverslips and fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 
20 min at room temperature. After washing with PBS, the cells, fixed on coverslips, were incubated with primary 
anti-NPFF, anti-NPFF-R1, anti-NPFF-R2, anti-D1R, or anti-D5R antibodies overnight at 4 °C. The coverslips were 
then incubated with the proper Alexa Fluor-488 and -555 secondary antibodies for 2 h at 4 °C. The coverslips 
were mounted in a proper antifade mounting medium and sealed onto glass slides.

Human kidney sections (Imgenex, San Diego, CA, USA) were prepared for antigen retrieval, using heat and 
pressure and immunostained for NPFF-R1, NPFF-R2,  D1R, and  D5R antibodies. Wheat germ agglutinin, con-
jugated with Alexa Fluor 647, was used to target the lectin-rich brush border and plasma membranes of RPTs. 
DAPI was used to visualize nuclei. For negative controls, the primary antibodies were replaced with normal 
rabbit serum at the appropriate dilutions.

Mouse brains were coronally sectioned at 10 μm thickness using a cryostat, and the sections, including the 
entire forebrain regions underwent standard immunohistochemistry, as previously  reported73 to study brain 
distribution of NPFF-R1 and NPFF-R2. For NPFF-R1 and NPFF-R2 immunostaining, the primary antibodies 
were diluted 1:100 in blocking buffer (3% BSA and 0.3% Triton X-100 in PBS) and the slides were incubated for 
2 days in a cold room. Alexa Fluor 488-conjugated secondary antibody was diluted 1:1000 in blocking buffer 
and the slides were incubated for 2 h at room temperature to visualize both immunoreactive signals. The slides 
were cover-slipped and subjected to microscopy, using a BX43F Olympus fluorescent microscope (Center Valley, 
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PA) with a DP80 camera. Preliminary experiments to determine the appropriate working concentration and 
incubation time for each antibody were performed. For negative controls, the primary antibodies were removed, 
and the slides were only incubated with the blocking buffer followed by Alexa Fluor 488-conjugated secondary 
antibody for the appropriate time period.

Cyclic AMP assay
Cyclic AMP (cAMP) was assayed using a direct immunoassay kit (Arbor Assays, Ann Arbor, MI), as previously 
 described69,71. Briefly, hRPTCs and mRPTCs were grown in 12-well plates. The RPTCs at ~ 75% confluence were 
pretreated with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX; 1 M; Sigma-Aldrich, St. 
Louis, MO, USA), before the addition of a D1-like receptor agonist, fenoldopam (1 µM/30 min), NPFF, RFRP-2, 
RFRP-3, and/or AC-263093, at the indicated concentrations and time, and re-challenged with forskolin (10 µM) 
or PBS for 30 min. The cell lysates were prepared to determine the protein concentration, using the BCA protein 
assay kit (Thermo Scientific, Rockford, IL, USA). After quantification, the same amount of cell lysates (Sup-
plementary Fig. S3) or culture supernatants (Figs. 3 and 6) were used to determine cAMP concentrations with 
reading the optical density at 450 nm by an ELISA plate reader.

Co-immunoprecipitation assay
Co-immunoprecipitation was performed using a Dynabeads kit (Thermo Fisher Scientific), as previously 
 described74. Briefly, ~ 90% confluent hRPTCs were harvested, and the cell pellets were lysed in a lysis buffer 
(20 mM Tris·HCl, pH 8.0/1 mM EDTA/1 mM NaN3 /2 mM DTT/0.25 M sucrose), with 0.2 mM phenylmethyl-
sulfonyl fluoride, and protease and phosphatase inhibitor cocktail. Five µg of anti-D1R, anti-D5R, anti-NPFF-R1, 
or anti-NPFF-R2 antibodies were conjugated with Dynabeads in 0.5 mL of slurry. The cell lysates were then 
incubated with the conjugated antibodies at 4 °C for 4 h, followed by proper washing. The controls were nor-
mal rabbit IgG and chicken IgY. Proteins bound to the beads were eluted in 60 µL of loading buffer at 65 °C for 
15 min, separated by 10% SDS-PAGE, and transferred onto a nitrocellulose membrane for incubation with the 
detecting antibody, followed by the appropriate secondary antibody, before visualization with a LiCor Odyssey 
Imaging system.

Targeted quantification of NPFF with Liquid chromatography- tandem mass spectrometry 
(LC–MS/MS)
Targeted LC–MS/MS method was used to measure NPFF in the mouse serum and kidney as previously 
 described75,76. Briefly, C57BL/6 mouse serum and kidney samples were homogenized and sonicated in ice-cold 
acidified 90% methanol buffer to precipitate large proteins and extract NPFF in the supernatant. Supernatant 
samples were collected after centrifugation at 18,000×g for 30 min at 4 °C. Molecular weight cutoff (MWCO, 
10 K) ultra-centrifugal filter (Sigma) was used to enrich molecules lower than 10 K MW, which were then dried 
down and desalted by Waters HLB solid phase extraction plate. 13C5, 15N folic acid was spiked into the sample as 
the internal standard (I.S.). LC–MS–MS analysis was conducted using a Dionex Ultimate 3000 RSLCnano system 
coupled with a Thermo Scientific Q-Exactive HFX mass spectrometer as described  previously75. An Easy-spray 
PepMap C18 LC column (2 μM, 100 Å, 75 μM × 15 cm) was used to separate peptide samples with a 1 h LC gra-
dient. Serial concentrations of NPFF standards (Cayman) were spiked into a highly diluted sample matrix (no 
detectable NPFF signal) with I.S. to generate calibration curves. A parallel reaction monitoring (PRM) method 
was established by using the a2, b2, y4, y6 fragment ions from NPFF peptide, normalized to the fragment ion 
from the I.S. Data analysis was conducted with Skyline  software76 and R studio.

In situ RNA hybridization by RNAScope
In situ RNA hybridization was performed using RNAscope technology (Advanced Cell Diagnostics, Newark, 
CA), as previously  described72. Briefly, thin sections (5 µm) of formalin-fixed, paraffin-embedded mouse kidneys 
were deparaffinized in xylene and rehydrated with step-down concentrations of ethanol. The tissues were then 
treated serially with the following: 10-min immersion in pretreatment 1 solution (endogenous  H2O2 blocker); 
100 °C, 15-min immersion in pretreatment 2 solution; and protease digestion, 40 °C for 10 min. The tissues 
were rinsed with water after each pretreatment step and then hybridized with specific Npff, Npff-r1, and Npff-r2 
RNAscope probes at 40 °C for 2 h (Advanced Cell Diagnostics). The specific probes were targeted for mice: Npff 
mRNA, Mm-Npff1 (NM_018787.1., Cat. No. 479901) with region designed against 117–313 nt; Npff-r1 mRNA, 
Mm-Npff1 (NM_001177511.1., Cat. No. 410161) with region designed against 14–1298 nt; Npff-r2 mRNA, and 
Mm-Npff2 (NM_133192.3., Cat. No. 410171) with region designed against 233–1342 nt. Mm‐PPIB, Mus mus-
culus peptidylprolyl isomerase B (Ppib, Cat. No. 313911) was the positive control. Bacillus subtilis dihydrodipi-
colinate reductase (dapB, Cat. No. 310043) was the negative control. After the wash and buffer steps, the signal 
was amplified, using a multistep process (Each RNAscope 2.5 HD Reagent Kit—BROWN, Cat. No. 322300; 
HybEZ Hybridization System, Cat. No. 310010). Horseradish peroxidase (HRP)-labeled probes were visualized 
by the application of 3, 3′-diaminobenzidine (DAB). The sections were then counterstained with hematoxylin.

Urinary sodium excretion and blood pressure measurement
Adult C57BL/6 mice (male, 8-week-old), purchased from Jackson Laboratory (Bar Harbor, ME), were housed 
in a temperature-controlled facility with a 12:12-h light–dark cycle and fed with regular mouse chow and water 
ad libitum for at least 2 weeks before any studies were performed. Renal Npff-r1 and Npff-r2 were silenced 
by the chronic renal subcapsular infusion of specific Npff-r1 and Npff-r2 siRNA (Cat. No. SI01037379 and 
SI04925039 respectively, Qiagen, Germantown, MD), via an osmotic minipump, as previously  described69,71,72. 
Briefly, the mice were uninephrectomized 1 week prior to the implantation of the minipump. For the minipump 
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implantation, the mice were anesthetized with pentobarbital (50 mg/kg body weight, intraperitoneally). The 
osmotic minipumps (100 µL; flow rate: 0.5 µl/h) were filled with validated Npff-r1-specific siRNA, Npff-r2-specific 
siRNA (Cat. No. SI01037379, Cat. No. SI04925039, Qiagen), or non-silencing mock siRNA (Cat. No. 03650318, 
Qiagen), as control. The siRNAs were dissolved in an in vivo transfection reagent (TransIT In Vivo Gene Deliv-
ery System, Mirus), under sterile conditions. The minipumps were fitted with a polyethylene delivery tubing 
(Alzet #0,007,701) and the tip of the tubing was inserted within the subcapsular space of the remaining kidney. 
The efficiency of siRNA infusion was analyzed by real-time PCR, performed on an Applied Biosystems® ViiA™ 
7 Real-Time PCR System (Foster City, CA). The primers (SABiosciences-Qiagen) used for qRT-PCR are in 
Supplementary Table S3. The data were analyzed using the ΔCt  method68,72, the gene and protein expressions of 
Npff-r1 or Npff-r2 after the 7-days siRNA infusion are shown in Supplementary Figure S6 and Supplementary 
Figure S5, respectively.

Twenty-four urine samples were collected from mice individually housed in metabolic cages. The mice were 
acclimatized in the metabolic cages for 24 h before the collection of urine. Urine sodium concentration was 
measured using Easylyte Analyzer (Medica Corporation, Bedford, MA). Urinary sodium excretion (UNaV) was 
calculated as urine volume × sodium (mEq/liter).

Blood pressures of mice with acute renal subcapsular infusion of NPFF were measured (Cardiomax II; Colum-
bus Instruments, Columbus OH) from the aorta via the carotid artery under pentobarbital sodium anesthesia 
(50 mg/kg)71,72 and by tail  cuff69 with a CODA system (Kent scientific corporation, Torrington, CT, USA) in 
conscious mice as described previously.

Blood pressure of chronic NPFF (9.25 μmol, 0.5 μL/h, 0.05 nmol/day) and saline (0.9%NaCl) infusion groups 
was recorded by telemetry in conscious mice, as previously  described35,72.

The studies were conducted by following the guidelines set by the US National Institutes of Health for the 
ethical treatment and handling of animals in research and approved by the Institutional Animal Care and Use 
Committee (IACUC) of The George Washington University. All experiments were performed in accordance with 
relevant guidelines and regulations and the recommendations in the ARRIVE guidelines.

Statistical analysis
Data are presented as mean ± standard deviation (SD). All the cell experiments were performed using a minimum 
of triplicate wells and repeated at least twice, which is our laboratory routine for cAMP assays. However, the 
inter- and intra-assay variability was not assessed in the LC–MS/MS NPFF quantification.

Differences between two groups were assessed by Student’s t-test and differences among three or more groups 
were assessed by one-way ANOVA with the Newman-Keuls or Holm-Sidak test. P values < 0.05 were considered 
statistically significant (SigmaPlot, San Jose, CA).

Ethics approval and consent to participate
The mouse experiments were performed according to a protocol (A353) approved on December 8, 2017, and 
protocol A2022-014 that is good until March 23, 2025) by the George Washington University Institutional Animal 
Care and Use Committee. The use of hRPTCs followed a protocol, HSR#13310, approved by the University of 
Virginia Institutional Review Board, which is renewed annually.

Data availability
The data are available from the corresponding author upon reasonable request.
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