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Abstract 
Variants in cis-regulatory elements link the noncoding genome to human pathology; however, detailed analytic tools for understanding 
the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for 
category-wide association testing (CWAS), enhances noncoding variant analysis by integrating both whole-genome sequencing (WGS) 
and user-provided functional data. With simplified parameter settings and an efficient multiple testing correction method, CWAS-Plus 
conducts the CWAS workflow 50 times faster than CWAS, making it more accessible and user-friendly for researchers. Here, we used 
a single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at 
cell-type-specific enhancers and promoters. Examining autism spectrum disorder WGS data (n = 7280), CWAS-Plus identified noncoding
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de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer’s disease WGS data 
(n = 1087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight 
CWAS-Plus’s utility in genomic disorders and scalability for processing large-scale WGS data and in multiple-testing corrections. 
CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, 
respectively.

Graphical Abstract 

Keywords: genetic association; whole-genome sequencing; regulatory noncoding variant; rare variant; noncoding genome 

Introduction 
The noncoding regions of the genome contain key regulatory ele-
ments, including promoters and enhancers, which are essential 
for tissue-specific gene expression and play a vital role in cellular 
and organ development during early human development [1, 2]. 
Recent large-scale single-cell assays for transposase-accessible 
chromatin with sequencing (ATAC-Seq) studies have identified 
cell type-specific noncoding elements at critical developmental 
milestones and profiled key regulatory enhancers of gene expres-
sion dynamics [3, 4]. Disruption of these elements by genetic 
variants may alter gene expression in biological pathways and 
consequently lead to human disorders [5–7]. Notably, most of the 
associations from genome-wide association studies (GWAS) are in 
noncoding regions enriched for regulatory elements [8, 9], high-
lighting the importance of identifying variants within these key 
regulatory elements in the noncoding sequences to gain critical 
insights into genetic disorders. 

Recent advances in whole-genome sequencing (WGS) have 
enabled the identification and risk evaluation of rare noncoding 
variants for disorders [10, 11]. Several methods prioritize high-
risk noncoding variants (RNVs) using scoring systems based on 
functional annotations but lack statistical evaluation for genome-
wide associations [12–19]. With the growing volume of WGS data, 
new methods have emerged for genome-wide genetic association 
studies of noncoding variants, focusing on functional regions [20] 
or predefined genomic windows [21]. Phenotype–genotype asso-
ciation studies with functional regions have also been introduced 
[22]. Recently, we developed the category-wide association study 
(CWAS), a novel statistical framework to identify noncoding asso-
ciations from WGS data [23]. This method utilizes variant groups, 
called categories, for genetic association testing and creates mul-
tiple categories based on genomic and functional annotations 

related to noncoding variants. Traditional GWAS assess associa-
tions at the locus level, which can result in insufficient statistical 
significance for rare variants. CWAS addresses this limitation by 
conducting association tests on categorized variants, making it 
applicable for rare variants. With CWAS, we have successfully 
identified that noncoding variants in conserved regions of pro-
moters are significantly enriched for autism spectrum disorder 
(ASD) [24]. 

Herein, we introduce CWAS-Plus, a Python package that 
enhances CWAS for identifying genetic associations among 
noncoding variants. CWAS-Plus significantly reduces run time 
and computational requirements, resulting in faster and more 
efficient execution of the entire CWAS workflow. CWAS-Plus 
integrates multiple datasets to define functional regions or 
genes of interest provided by the users as bed files or gene sets. 
Additionally, it introduces a novel approach for multiple-testing 
corrections, further enhancing the reliability of the results. We 
applied CWAS-Plus to large-scale WGS datasets and, through the 
integration of single-cell datasets, found that ASD noncoding 
association disrupts transcriptional regulation. Furthermore, 
applying CWAS-Plus to rare variants identified microglia-specific 
noncoding associations with Alzheimer’s disease (AD). Taken 
together, we highlight the potential of CWAS-Plus for discovering 
noncoding risks from WGS data across various disorders. 

Methods 
Input requirement 
CWAS-Plus requires a list of variants and samples for association 
testing. For the variant list, Variant Call Format (VCF) is used to 
include genomic position, reference allele, alternate allele, and
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sample identification (ID). A sample list should contain sample 
IDs and phenotypic labels (e.g. case or control). These inputs 
are subject to variant annotation for genomic regions using the 
Variant Effect Predictor (VEP) [25]. 

Users can provide adjustment factors to correct for confound-
ing factors in the analysis. CWAS-Plus uses these adjustment 
factors by multiplying them by the number of variants for each 
sample. In our analyses, since the number of de novo variants 
increases with paternal age [26, 27], we adjusted for paternal ages 
and sample cohorts to remove biases (see ‘Adjustment factors for 
de novo variants’ section in Supplementary Materials for detailed 
methods). 

Annotation 
The variant annotation process involves two steps: the VEP 
annotation and the customized annotation. VEP annotates the 
most severe consequence using Sequence Ontology (SO) terms, 
which are then employed for categorizing genomic regions. In 
this study, VEP version 110 was used. Customized annotation 
was conducted for user-provided datasets, including functional 
annotation and functional score. Functional annotation refers 
to specific genomic regions associated with particular functions, 
such as epigenetic status. Functional scores indicate regions with 
score metrics related to genomic features, such as conservation. 

Categorization 
To assess the noncoding association, CWAS-Plus creates cate-
gories for variants using genomic and functional annotations. A 
single category is built by combining five features: (i) variant type, 
(ii) genomic region, (iii) gene set, (iv) functional annotation, and (v) 
functional score (see ‘Annotation datasets used in CWAS analysis’ 
section in Supplementary Materials for datasets used in each 
feature). Among the five features, gene set, functional annotation, 
and functional score features are user-provided datasets. 

(1) Variant type: variants are classified into either single 
nucleotide variant (SNV) or insertion–deletion (indel) based 
on the length of the alleles. 

(2) Genomic region: genomic region based on the location of 
the variant relative to genes. Genomic region is defined by 
utilizing SO terms from the most severe consequence and 
the annotated gene from VEP annotation. Genomic regions 
include coding domains [e.g. protein-truncating variants 
(PTVs), frameshift indels, missense, damaging missense, in 
frame indels, and silent variants] and noncoding domains 
(e.g. those composed of 5′ UTR, 3′ UTR, promoter, splice site, 
intron, intergenic, long noncoding RNA, and others), with the 
order corresponding to the order of variant annotation. PTVs 
(nonsense and frameshift) must have a high confidence level 
(‘HC’) using the LOFTEE plugin and be annotated with either 
‘SINGLE_EXON’ or no LOFTEE flags. Damaging missense 
variants are required to have an MPC score of ≥2. Promoter 
variants are annotated as 2000 base pairs upstream of 
transcription start sites. 

(3) Gene set: disease-relevant gene sets. Datasets should be in 
text format. 

(4) Functional annotation: functional regions associated with 
epigenetic modifications or regulatory elements. Datasets 
should be in bed format. 

(5) Functional score: score metrics related to specific genomic 
features, such as conservation or pathogenicity. Datasets 
should be in bed format. 

Categories are constructed by grouping variants according 
to their respective annotations. Specifically, variants sharing 

annotations across five distinct features are consolidated into 
a single category. For instance, a category can be established con-
taining intergenic SNVs near CHD8 target genes, located within 
excitatory neuron-specific cis-regulatory elements (CREs), and 
conserved genomic loci. Genetic variants exhibiting overlapping 
annotations across all these features are then assigned to this 
category. 

Burden test 
CWAS-Plus assesses the association within a single category by 
conducting burden tests through two approaches: variant-level 
and sample-level tests. 

In the variant-level test, the case–control association is esti-
mated by comparing the number of variants in each category. The 
relative risk (RR) is calculated using the following equation: 

Case ratioi = 
Number of variants in cases within ith category 

Number of total cases 

Control ratioi = 

Number of variants in controls within ith category 
Number of total controls 

Relative Risk = 
Case ratioi 

Control ratioi 
. 

The binomial P-value is calculated by comparing two propor-
tions: variants in cases from total variants within a category and 
cases from total samples. 

Xi = Number of variants in cases within ith category 

Ni = Number of variants within ith category 

p = 
Number of cases 

Number of total samples 

Binomial test
(
Xi, Ni, p

)
Xi ∼ b

(
Ni, p

)
. 

In the sample-level test, the case–control association is esti-
mated by comparing the number of samples carrying variants in 
each category. The RR is calculated using the following equation: 

Case ratioi = 
Number of cases within ith category 

Number of total cases 

Control ratioi = 
Number of controls within ith category 

Number of total controls 

Relative Risk = 
Case ratioi 

Control ratioi 
. 

The binomial P-value is calculated by comparing two propor-
tions: cases from total samples within a category and cases from 
total samples 

Xi = Number of cases within ith category 

Ni = Number of total samples within ith category 

p = 
Number of cases 

Number of total samples 

Binomial test
(
Xi, Ni, p

)
Xi ∼ b

(
Ni, p

)
. 
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Case–control label-swapping permutations generate P-values 
in both tests. 

During burden tests, CWAS-Plus can correct confounding fac-
tors by adjusting the number of variants per sample. In this study, 
de novo variant counts were corrected for paternal age at birth and 
sample cohorts. 

Risk score analysis 
Risk score analysis generates risk scores for each category to 
identify effective phenotype predictors. CWAS-Plus employed a 
Lasso regression model, focusing on rare categories (<2 variants 
in controls), and incorporated the number of variants in each 
category across samples as a metric. This metric served as train-
ing data for Lasso regression, with categories as features and 
disease phenotypes as labels. Through Lasso regression, CWAS-
Plus identifies the categories that best predict case status and 
assigns coefficients, defined as risk scores, to each category. 

In the analyses, 80% of samples (n = 5824 for variant-level anal-
ysis; n = 869 for sample-level analysis) constituted the training set. 
The optimal model was determined by testing 100 lambda values 
from five-fold cross-validation, repeated 10 times. The lambda 
yielding the minimum mean cross-validated error was selected 
to ensure generalizability and prevent overfitting. Model perfor-
mance was evaluated using the R-squared (R2) values, and sig-
nificance was assessed by label-swapping 1000 times, randomly 
assigning phenotypes to samples. 

The Lasso regression model formula can be defined as follows: 

minβ

{
1 
2n 

n∑
i=1

(
yi − xT 

i β
)2 + λ

∑p 

j=1
|βj|

}

where yi is the observed phenotype, indicating case or control. xi 

is the number of variants (or samples) in each category for each 
sample. β are the regression coefficients, and λ is the regulariza-
tion parameter. 

For feature selection, risk score analysis was applied to noncod-
ing categories from each annotation dataset (i.e. gene set, func-
tional annotation, and functional score). Datasets with positive 
R2 values were further analyzed (see ‘Risk score analysis’ section 
in Supplementary Materials for detailed methods). 

Burden shift analysis 
CWAS-Plus identifies overrepresented annotations from category-
level burdens. In each permutation (n = 10 000), phenotypes are 
randomly assigned to samples while maintaining the original 
ratio. Subsequently, CWAS-Plus compares the number of signif-
icant categories of interest with those from each permutation, 
obtaining P-values for each phenotype. 

Clustering of categories 
CWAS-Plus clusters categories by calculating correlation values 
between two categories. The correlation is calculated based on 
the principle that, under the null hypothesis, the covariance is 
equivalent to the variance of shared variants [28]. Because a 
binomial random variable can be expressed as the sum of inde-
pendent Bernoulli variables, the variance can be computed using 
the equation: 

n × p × (
1 − p

)
where n represents the number of tests and p denotes the bino-
mial probability, which is determined by the proportion of case 
samples among all samples. 

Each variant is treated as an independent test, replacing the 
total number of tests (n) with the number of variants. Conse-
quently, the covariance between two categories is determined by 
the number of shared variants. We obtained a correlation matrix 
of size c×c by calculating the standardized covariance for all pairs 
of categories among the total. 

Finding the number of effective tests for burden 
test 
To estimate the threshold for genome-wide significance, we con-
verted the correlation matrix into a negative Laplacian metric. 
Initially, we transformed the correlation matrix into absolute 
values. Subsequently, we established a degree matrix by aggre-
gating all correlation values for each category. Then, we divided 
the absolute correlation values by the squared values of the 
corresponding entries in the degree matrix, deriving the Laplacian 
matrix. Utilizing this matrix, eigen decomposition identified the 
number of eigenvalues explaining at least 99% of the variance, 
which determined the effective number of tests. 

Detecting Association With Networks (DAWN) 
analysis 
To investigate subnetworks within noncoding risk categories, we 
utilized the DAWN algorithm [29]. Metrics from risk-associated 
categories were converted into two-dimensional coordinates 
using t-distributed stochastic neighbor embedding (t-SNE), 
selecting the top 50 eigenvalues (excluding the first). These 
coordinates were clustered with k-means or Leiden methods, 
and disease associations were determined using a hidden Markov 
random field model. Permutation P-values were transformed into 
z-scores, and Sparse Principal Component Analysis identified key 
variants within each cluster. Clusters were considered significant 
(false discovery rate (FDR) < 5.0×10−2) if their z-scores indicated a 
non-random association with ASD. Variants from these significant 
clusters were classified as RNVs (see ‘Detecting Association With 
Networks (DAWN) analysis’ section in Supplementary Materials 
for detailed methods). 

WGS datasets used in CWAS-Plus 
For benchmarking CWAS-Plus, we used 255 106 de novo variants 
identified in 1902 ASD families from our previous WGS study [24]. 

For variant-level CWAS analyses, we obtained project VCF with 
joint genotyping in 4270 ASD families from the Simons Simplex 
Collection (SSC) [30] and Simons Foundation Powering Autism 
Research for Knowledge (SPARK) [31]. ASD families include 4354 
ASD cases and 2926 unaffected control siblings. Data access and 
analyses were approved by the Institutional Review Board of Korea 
University (approval number: KUIRB-2022-0409-03). After quality 
control, 474 788 de novo variants identified from 7280 samples 
were utilized (see ‘High quality variants for variant-level analyses’ 
section in Supplementary Materials for detailed methods). 

For sample-level CWAS analyses, we obtained 63 667 178 vari-
ants from 1196 individuals in the Religious Orders Study and the 
Memory and Aging Project (ROSMAP) study [32, 33]. After qual-
ity control, 25 052 701 variants from 1087 samples were utilized 
(see ‘High quality variants for sample-level analyses’ section in 
Supplementary Materials for detailed methods). 

Downstream analysis 
Transcription factor enrichment 
We investigated the enrichment of human transcription factors 
(n = 1622) [34] in genes affected by RNVs, PTVs, and noncoding 
variants (excluding RNVs). The fisher’s exact test, followed by
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FDR correction, determined significance with an adjusted P-value 
threshold of <5.0 × 10−2. Background gene sets included all genes 
from GENCODEv44 and genes annotated to variants. 

Correlation between DAWN clusters and single annotation 
datasets 
To assess the correlation between DAWN clusters and single 
annotation datasets, we extracted variants from each cluster 
and annotation dataset. The correlation was calculated using the 
same method as in CWAS-Plus, where we determined the number 
of shared variants between two sets (either from clusters or single 
annotations), considering the number of variants in each set. 

Comparison of CWAS-Plus with Sei, Enformer, 
and STAARpipeline 
We compared CWAS-Plus, Sei [35], Enformer [36], and STAARpipeline 
[22] by analyzing 474 788 de novo variants from CWAS analyses. For 
Sei and Enformer, pretrained models were used. STAARpipeline 
was applied using the functional datasets from the variant-level 
CWAS analyses and the Functional Annotation of Variant–Online 
Resource (FAVOR) database [37], which STAARpipeline requires. 

We evaluated the ability to prioritize ASD-specific risk variants 
by defining risk variant carriers and assessing their case-
enrichment. In CWAS-Plus, risk variant carriers were samples 
with at least three RNVs identified in CWAS analyses. Among 
40 sequence classes predicted by Sei, we focused on brain-
and transcription-associated features, including TN, TF, P, CTCF 
groups, and brain-related E groups. For Enformer, we selected 
brain- and embryo-related features from the 5313 genomic tracks. 
For both Sei and Enformer, risk variant carriers were defined as 
samples with variants that exceeded absolute scores of 1.1 and 
200, respectively, for each predicted feature. In STAARpipeline, 
carriers were defined as samples with variants from gene-centric 
noncoding analysis in protein-coding and noncoding RNA genes, 
respectively, with P < 5.0 × 10−2. Using these defined risk variant 
carriers from each tool, we calculated the odds ratio (OR) for cases 
and controls. 

Results 
Overview of the CWAS-Plus pipeline 
The CWAS-Plus package includes several steps to explore the 
noncoding associations of genetic disorders (Fig. 1A). CWAS-Plus 
utilizes various datasets to annotate variants and extract relevant 
genomic information (Fig. 1B). The annotated information is 
employed for variant categorization, in which categories are 
defined by the combination of five features: variant type, genomic 
region, gene set, functional annotation, and functional score 
(Fig. 1B). Subsequently, association tests are conducted for each 
category (Fig. 1C). CWAS-Plus utilizes these associations from 
single categories to provide more comprehensive measurements 
with multiple categories, enhancing noncoding associations to 
identify variants contributing to disease risk more effectively. 

With categorized variants, risk score analysis identifies cat-
egories that predict disease phenotypes (Fig. 1D). The predic-
tive contribution of each category is assessed by a Lasso regres-
sion model using the category patterns of each sample. In risk 
score analysis, feature selection is conducted to select phenotype-
relevant datasets with positive model performance (R2) for further 
analyses. Subsequently, burden shift analysis identifies overrep-
resented annotations in category-level association tests (Fig. 1E). 

Table 1. Comparison of CWAS-Plus and CWAS. 

CWAS CWAS-Plus 

RAM ≥16 GB ≥16 GB 
Total execution time 142 h 170 min 
Programming language R, Python2 Python3 
Packaging No Yes 
Multiprocessing Yes Yes 
Batching No Yes 
Setting environment n/a Pip 
Annotation harmonization support No Yes 

Both tests were conducted using 36 cores and 256 GB of memory. n/a, not 
applicable. 

The significant excess of association compared to the null distri-
bution suggests disease risk. Comparing results from both anal-
yses assesses signal concordance, yielding candidate categories 
for disease association and subsequent Detecting Association 
With Networks (DAWN) analysis. Furthermore, CWAS-Plus pro-
vides a reliable method ( Fig. 1F) to determine the number of 
effective tests. By treating highly correlated categories as a single 
effective test, it facilitates an accurate estimation of the study’s 
wide significance. In DAWN analysis, categories are clustered and 
investigated for associations with disease risk (Fig. 1G). Based on 
the DAWN algorithm [29], CWAS-Plus constructs a network of 
clusters and evaluates disease risk considering nearby clusters, 
enhancing the identification of variants with risk. Significant 
clusters yield RNVs, potential pathogenic variants with noncoding 
associations. To illustrate the overall workflow, we present a toy 
example showing a simple schematic view and the order of major 
computation steps in CWAS-Plus (Supplementary Fig. 1). 

The CWAS-Plus pipeline, described above, receives a list of vari-
ants as input and comprises seven steps to assess the noncoding 
association. We performed variant-level analysis using de novo 
variants from 7280 samples in ASD families. Additionally, sample-
level analyses utilized rare variants from 1087 WGS samples in the 
ROSMAP [32]. 

Performance improvements in CWAS-Plus 
CWAS-Plus offers several advantages over CWAS [24] (Table 1), 
owing to its transformation into a user-friendly Python pack-
age with simplified source code. Researchers can easily employ 
its capabilities through straightforward parameter settings. The 
reorganization of the source code improves comprehensibility as 
well as enables streamlined multiprocessing, resulting in shorter 
processing times. 

We benchmarked the performance of CWAS-Plus and com-
pared a run time between CWAS-Plus and CWAS [24]. We per-
formed the CWAS analysis for de novo variants of ASD families 
using the CWAS-Plus package and our previous CWAS scripts 
(https://github.com/sanderslab/cwas). For this, we obtained the 
annotation (total 27 462 categories) and sample dataset (1902 
ASD cases and 1902 unaffected controls) from the previous study 
[24] and evaluated the comparison using the same computing 
resource (36 CPU threads and 256 GB of memory). CWAS-Plus was 
50 times faster than CWAS, highlighting its superior computa-
tional speed (Fig. 2A, Supplementary Table 1). 

We further assessed the computational efficiency of CWAS-
Plus by examining its CPU and memory usage. We observed 
that CWAS-Plus operates efficiently with a single CPU, leading 
to reasonable execution times. For datasets with <27 000 
categories, CWAS-Plus was sufficient with <16 GB of RAM,
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Figure 1. Overview of CWAS-Plus. (A) Overview of the CWAS-Plus workflow. (B) An example of annotation and categorization. (C) Burden test for a 
variant- and sample-level test: the number in the boxes indicates the number of variants in each category across samples. The volcano plot contains 
the burden test result for single categories. The x-axis indicates the RR in the log2 scale, whereas the y-axis indicates two-sided binomial P-values 
in the log10 scale. The dashed line indicates the study-wide significance threshold for the number of effective tests. (D) Risk score analysis: through 
feature selection, annotation datasets with high phenotype association are selected for further analyses. Label-swapping randomly assigns phenotypes 
to samples. The density plot displays the R2 distribution of label-swapped samples (n = 1000). The line represents observed R2 from the original samples. 
(E) Burden shift analysis: label-swapping assigns phenotypes randomly to samples. Circles represent samples. The density plot shows the distribution 
of significant category counts for label-swapped samples, with observed significant category counts depicted as lines. (F) Find the number of effective 
tests: Categories are clustered based on pairwise correlations to determine the number of effective tests. Each dot represents a category, with circles 
indicating clusters. The arrow highlights a network subset. (G) DAWN analysis: The network illustrates the relationship of clusters, with node indicating 
the degree of disease association (z-score scale) and node size reflecting cluster size (number of categories). 

highlighting efficient memory usage. The scalability of the CWAS-
Plus package was tested for run with an increasing number of 
samples ( Fig. 2B, Supplementary Table 2) and datasets (Fig. 2C, 
Supplementary Table 3). The results revealed a linear increase 
in execution time with each additional 400 samples, requiring 
15 min. Similarly, adding a new functional annotation increased 
the time by  ∼6 min. Additionally, we examined the memory 
usage of CWAS-Plus with an increasing number of samples and 
found an approximately linear increase (Supplementary Fig. 2). 
Collectively, these results demonstrated that CWAS-Plus exhibits 
linear scalability with data size. Notably, CWAS-Plus can handle 
over 27 000 comparisons with ∼4000 samples in 3 h, highlighting 
its efficiency. 

CWAS-Plus also provides an efficient approach to finding the 
number of effective tests for multiple testing corrections. To 
accomplish this, CWAS [24] utilized 10 000 sets of random vari-
ants. The P-values of the association tests, calculated from each 
variant set, were then used to measure the correlation between 
tests (categories). Considering that each variant set requires the 
same amount of time and memory resources for a single CWAS-
Plus execution, this analysis incurs substantial computational 
costs. Regarding this issue, CWAS-Plus offers a correlation-based 
method, saving substantial time compared to the former. Both 
methods cluster categories based on correlation values, yet 
the correlation-based method calculates the correlation using 
the number of variants (or samples, in sample-level analysis) 
shared between two categories. Therefore, the method is fast and 
effective. 

For validation, we compared the outcomes from both methods 
(Fig. 2D). We observed that the number of clusters in random 
variant clustering (n = 2477) was greater than that in correlation 
clustering (n = 1477). Additionally, we found a higher prevalence 
of larger clusters (more categories per cluster) in correlation 
clustering than in random variant clustering (Fig. 2E). These 

observations collectively suggest that small clusters in random 
variant clustering may merge into a single cluster within the 
correlation clustering approach. 

Subsequently, we examined whether multiple clusters from 
random variant clustering (random variant cluster) converged to a 
larger cluster in correlation clustering (correlation cluster). Quan-
tifying cluster similarities identified three scenarios: converged, 
diverged, and concordant. The converged clusters, wherein mul-
tiple random variant clusters merged into a single correlation 
cluster, constituted 67.1% of all random variant clusters (Fig. 2F). 
Conversely, the diverged clusters, in which a random variant clus-
ter split into multiple correlation clusters, accounted for 18.4%. 
This observation implies that, in most instances, random variant 
clusters converged toward a single correlation cluster. 

Taken together, these results indicate that the number of cor-
relation clusters is smaller than that of random clusters because 
random clusters merge into correlation clusters. However, the 
composition of categories within each cluster remains fairly sim-
ilar, as correlation clusters absorb small random clusters. Overall, 
our results demonstrate that the correlation-based method effec-
tively replaces the utilization of random variant sets, considerably 
reducing computational time and memory usage. 

Application of CWAS-Plus to regulatory 
association in cell-type-specific functional data 
Ongoing efforts have been made to generate various annota-
tion datasets for functional regions in the noncoding genome or 
regulatory enhancers of various cell types and tissues. CWAS-
Plus facilitates CWAS analysis by incorporating a new annotation 
dataset and seeking an appropriate multiple comparison level. 
Here, we performed the CWAS analyses for de novo variants in ASD 
cases (n = 4354) and their unaffected siblings (n = 2926) and exam-
ined noncoding associations of ASD in cell-type-specific regula-
tory elements. For this, we obtained various functional datasets,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
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Figure 2. Benchmarking of CWAS-Plus. (A) Comparison of run time between CWAS [24] and CWAS-Plus. Run time was measured using identical 
annotation datasets and computing resources (3804 samples, 27 462 categories). The y-axis shows each CWAS-Plus step, the x-axis shows run time (h), 
and numbers next to bars indicate run time per step. (B) Regression line showing execution time with increasing sample size. Dots are observed times, 
colors represent CWAS-Plus processes, and the gray shade is the confidence interval. (C) Regression line showing execution time with increasing category 
number. Dots are observed times, colors represent CWAS-Plus processes, and the gray shade is the confidence interval. (D) t-SNE plots displaying the 
clustered features from random variant clustering and correlation clustering methods. (E) Distribution of the number of categories within each cluster 
using random variant and correlation clustering methods. The y-axis shows the number of categories per cluster. (F) Comparison of clusters from random 
variant clustering to correlation clustering. The y-axis shows random variant clusters, the x-axis shows types of differentiation (convergence, divergence, 
concordant). Convergence/divergence indicates merging/splitting of clusters; concordant indicates alignment of clusters. (A–C) Overall application of 
CWAS and CWAS-Plus was performed with 36 CPUs and 256 GB RAM. 

including single-nucleus ATAC-seq (snATAC-seq) datasets [ 3, 38– 
40] from early developmental stages of the human brain (a total 
of 111 annotation datasets) (Fig. 3A). 

Our CWAS analysis generated 142 498 categories for burden 
testing. As none of the noncoding categories exhibited study-
wide significance (P < 1.4 × 10−5), we applied risk score analysis to 
measure noncoding associations from multiple categories of each 
genomic region. The results showed that noncoding, including 
intergenic (R2 = 0.20%, P = 1.3 × 10−2; Supplementary Tables 4 
and 5) and 5’ UTR (R2 = 0.15%, P = 1.1 × 10−2), categories were 
significantly enriched (Fig. 3B). The performances were prominent 
after feature selection, indicating its necessity for enhancing 
model performance. We also performed burden shift analysis and 
found case-enrichment in intergenic categories (P = 1.0 × 10−4), 
supporting the association found from risk score analysis (Fig. 3C). 

We further explored intergenic variants through DAWN anal-
ysis, aiming to identify subnetworks within categories and find 
risk variants. Leveraging the correlations between categories, a 
network of intergenic categories was constructed (Fig. 3D). We 
identified eight clusters associated with ASD (FDR < 5.0 × 10−2). 
Clusters of constrained loci, conserved loci, and ASD-associated 
transcriptional regulator binding sites were densely connected, 
offering insights into the potential regulatory connections govern-
ing these loci. 

To examine cluster characteristics, we identified annotation 
datasets correlated with the clusters. The results revealed cell-
type-specificity in clusters 50, 60, and 42, where the former two 

clusters were highly correlated with medial ganglionic eminence-
derived cells and the latter correlated with astrocytes (Fig. 3E). By 
contrast, cluster 19 was specific to binding sites targeted by ASD-
associated transcriptional regulators [41]. As shown in clusters 
19 and 42, ASD associations were also found in evolutionarily 
conserved elements and regulatory elements specific to fetal 
brains, consistent with previous findings [42–44]. The results also 
provided shared features among datasets at the variant level. 
Specifically, excitatory neuron-CREs (CREs) in early stages were 
grouped, suggesting more specificity compared to late stages. 

We defined variants within significant clusters as RNVs. To 
validate our results, we utilized a deep-learning prediction tool, 
Sei [35], to assess the regulatory activities of RNVs. Our obser-
vations revealed that variants from most clusters exhibited a 
higher percentage of variants in higher score bins than non-
RNVs (Supplementary Fig. 3), indicating that CWAS-Plus priori-
tized more pathogenic variants within the broader pool of non-
coding variants. 

While investigating the role of RNVs in ASD, we hypothesized 
that RNVs may not only affect the binding sites of transcrip-
tion factors but also affect transcription factors themselves, 
thereby disrupting transcriptional regulation. We utilized a list 
of human transcription factors [34] to conduct enrichment 
analysis on both RNV-affected and non-RNV-affected genes. 
The results demonstrated significant enrichment in RNV-
affected genes across most clusters compared to that in other 
noncoding variants (Fig. 3F). Additionally, the transcription

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
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Figure 3. Noncoding association with ASD in cell-type-specific regulatory elements. (A) Summary of annotations for the CWAS analysis for ASD. Created 
with BioRender.com. (B) Risk score analysis noncoding genomic regions using Lasso regression model. The x-axis shows model performance (R2). 
Asterisks indicate permuted P-values (∗, P < 5.0 × 10−2; ∗∗, P < 1.0 × 10−2). Bars indicate whether feature selection was applied. (C) Burden shift analysis 
results for intergenic and 5′ UTR categories. Density plots represent the null distribution. Vertical lines show observed significant tests for cases and 
controls. (D) DAWN analysis results for intergenic categories. Each dot represents a cluster, with disease association shown by normalized z-scores. 
Node size indicates the number of categories in a cluster. Edges represent P-value correlation between clusters. Thick borders indicate clusters with 
FDR < 5.0 × 10−2. (E) Correlations between clusters and single annotations. Degree of correlation between clusters and single annotations is shown. 
Thick boxes highlight highly correlated annotations. (F) Enrichment analysis results with transcription factors. Significance indicated by asterisks 
(FDR < 5.0 × 10−2). Boxes show odds ratio. (G) Comparison of the percentage of transcription factors in genes affected by RNVs and non-RNVs. Portions 
of transcription factors and others are shown. (H) Protein–protein interaction network of genes in transcription regulation pathway and also carry 
RNV or PTV. Node shapes indicate transcription factors (triangles) or others (circles). Node sizes show odds ratio, and the type of variants carried by 
the gene are represented. 

BioRender.com
BioRender.com
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factors [34] showed five-fold enrichment in RNVs compared 
to non-RNVs (Fig. 3G), indicating the disruptive influence on 
gene expression through interference with transcription factor 
activity. 

To understand the regulatory network affected by RNVs, we 
constructed a protein–protein interaction network involving 
genes affected by both RNVs and PTVs (Fig. 3H). This network 
specifically focused on genes involved in transcription regulation. 
Genes with a high OR for carrying de novo variants in ASD 
cases (OR > 2) showed associations with neurodevelopmental 
risk. For example, NCKAP1, crucial for neuronal differentiation, 
is implicated in ASD and neurodevelopmental delay [45, 46]. 
Additionally, CDKN1C, exclusively pinpointed by RNVs, was 
previously reported as a neurodevelopmental risk gene [46]. These 
findings support the reliability of our analyses, providing insights 
into potential associations of risk genes regulated by noncoding 
variants. 

Furthermore, we evaluated the advancements of CWAS-Plus 
in prioritizing disease-specific risk variants by comparing it 
with other noncoding analysis tools: Sei [35], Enformer [36], 
and STAARpipeline [22]. Using the same de novo variants as in 
Fig. 3, we compared the OR of variant carriers in case–control 
samples. CWAS-Plus demonstrated significant case enrichment 
(OR = 1.3; P = 5.7 × 10−3, 95% CI: 1.1–1.6), while Sei, Enformer, 
and STAARpipeline showed no significant case enrichment 
(Supplementary Fig. 4, Supplementary Table 6). These results 
suggest that CWAS-Plus excels in identifying phenotype-specific 
variants compared to other tools, highlighting its advantages in 
analyzing disease associations in noncoding variants. 

Application of CWAS-Plus to sample-level 
analysis of rare variants associated with 
Alzheimer’s disease 
While the CWAS framework was mainly developed to test non-
coding associations for de novo variants, it can be applied to 
rare variants [23]. For burden tests, the CWAS-Plus package pro-
vides a ‘sample-level test’, estimating case–control association 
by comparing the number of samples carrying rare variants in 
each category (Fig. 1C). Unlike de novo variants, the number of 
rare variants is highly variable across individuals due to differ-
ent genetic backgrounds, potentially leading to spurious genetic 
associations with the variant-level test. Thus, the CWAS analysis 
for rare variants should be performed using the sample-level test 
to yield robust signals. 

We evaluated the performance and reproducibility of the 
sample-level test results against the variant-level test using de 
novo variants. CWAS analyses for de novo variants showed highly 
consistent estimates between the variant-level and sample-
level tests (Supplementary Fig. 5, Supplementary Table 7). Given 
these results, we infer that sample-level tests similarly capture 
associations as variant-level tests. 

With the objective of demonstrating the ability of CWAS-
Plus to assess noncoding risk in other genomic disorders, we 
applied the sample-level test to rare variants in 734 AD cases 
and 353 controls from ROSMAP WGS data. Annotation datasets 
included AD-specific CREs [47] and differentially expressed 
genes from single-cell data [48]. Among 56 728 categories, none 
reached study-wide significance (P < 4.9 × 10−5). Since no single 
category fully explained AD risk associated with rare noncoding 
variants, we conducted a risk score analysis to identify predictors 
among diverse categories (Fig. 4A, Supplementary Tables 8 
and 9). Noncoding categories, including intergenic (R2 = 1.26%, 
P = 4.3 × 10−2), intron (R2 = 1.67%, P = 3.8 × 10−2), and 3’ UTR 

(R2 = 1.51%, P = 7.0 × 10−3), were significant, suggesting potential 
AD risk in these categories. 

Focusing on 3′ UTR variants, we applied DAWN analysis and 
found six significant clusters (FDR < 5.0×10−2), defining variants 
in the cluster as RNVs for AD (Fig. 4B). To delineate the distinctive 
features of this cluster, we identified single annotations highly 
correlated with the clusters (Fig. 4C). The clusters showed enrich-
ment with microglia-specific CREs and constrained loci, indicat-
ing the regulatory roles of RNVs in microglia-specific pathways. 
The microglia signals underscore the robustness of CWAS anal-
ysis, given the well-established disruption of neuroinflammatory 
pathways in AD pathology [49]. 

We evaluated gene recurrence in 705 cases with RNVs, identi-
fying 82 genes in more than five AD cases (OR > 1) and providing 
a candidate list for AD risk genes regulated by RNVs (Fig. 4D). 
Among these, SMPD3 emerged as a significant recurrent risk gene 
[OR = Inf; P = 2.0 × 10−2, 95% confidence interval (95% CI): 1.2–Inf]. 
SMPD3 encodes the enzyme neutral sphingomyelinase-2, which 
is significantly reduced in AD cases [50]. Deficiency of SMPD3 
disrupts Golgi lipid remodeling, leading to the accumulation of 
neurotoxic proteins (APP, Aβ, and pTau), dysproteostasis, and cog-
nitive impairment [51]. Furthermore, SMPD3 regulates exosome 
production, which is essential for tau propagation [52]. Inhibiting 
SMPD3 reduces tau spread, highlighting its potential as a thera-
peutic target for AD. 

Additionally, we identified SCD as a significant recurrent gene 
in AD (OR = Inf; P = 2.0 × 10−2, 95% CI: 1.2–Inf). SCD encodes 
stearoyl-CoA desaturase, a key enzyme in fatty acid metabolism. 
SCD is pivotal in AD pathogenesis by regulating lipid metabolism, 
immune responses, and synaptic functions [53]. Inhibition of SCD 
has demonstrated restoration of synaptic density and structure, 
reduction of microglial activation, and improvement in cognitive 
outcomes in AD models, positioning it as a promising therapeutic 
target for AD. These findings validate CWAS-Plus in capturing reli-
able signals from rare variants and provide insights into potential 
therapeutic targets. 

Utilizing large annotation datasets improves 
model performance in risk score analysis 
One of the key questions in risk score analysis is whether adding 
more annotation datasets enhances the model’s performance. 
We compared three sets of annotation datasets: set 1, set 2, 
and set 3 (Fig. 5A). Set 3 corresponds to the initial annotation 
dataset from Fig. 3A (286 functional annotations and scores; 
142 498 categories). Sets 1 and 2 share the same datasets as 
set 3 but differ in functional annotations. Set 1 includes CREs 
from Herring et al. [3] (20 functional annotations and scores; 
48 680 categories), while set 2 expands from set 1 by adding 
regulatory elements from the Roadmap Epigenomics project [54] 
and VISTA [55], and binding sites for ASD-associated transcription 
regulators [41] (274 functional annotations and scores; 69 702 
categories). 

The introduction of additional regulatory elements improved 
the model’s performance within noncoding categories. Set 3 
showed the highest performance, outperforming set 1, fol-
lowed by set 2 (R2 = 0.08%, P = 5.5 × 10−1 for set 1; R2 = 0.17%, 
P = 4.3 × 10−1 for set 2; R2 = 0.33%, P = 3.7 × 10−1 for set 3; Fig. 5B, 
Supplementary Table 10). While certain genomic regions, such 
as 5′ UTRs, exhibited improved model performance compared 
to set 1, others, like 3′ UTRs, demonstrated a decrease. These 
observations emphasize the importance of not only increasing 
the quantity of annotations but also the composition of the added 
features to enhance the performance.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae323#supplementary-data
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Figure 4. Application of CWAS-Plus to rare variants in Alzheimer’s disease. (A) Risk score analysis results of noncoding genomic regions. The x-axis 
indicates the model performance (R2) obtained from the lasso regression model. The asterisks indicate permutated p-values (∗, P < 5.0 × 10−2; ∗∗, 
P < 1.0 × 10−2). (B) DAWN analysis results with 3′ UTR categories. Each dot represents a single cluster. The degree of disease association is shown by 
the color of clusters scaled with normalized z-scores. The node size indicates the number of categories within a cluster. The edge refers to the P-value 
correlation between clusters. The thick borderline indicates clusters with FDR < 5.0 × 10−2. (C) Correlations between clusters and single annotations. 
The degree of correlation is shown by color. (D) Genes recurrent in RNVs. The x-axis indicates the odds ratio in a log2 scale. The circle size shows the 
number of AD cases. 

Figure 5. Improved model performance with expanded annotation datasets. (A) A schematic view of three annotation datasets with increasing size. The 
number of categories is denoted in each set. (B) Model performance of categories from each genomic region in each set from (A). The colors correspond 
to genomic regions, and the size of data points reflects the number of categories. 

Discussion and conclusion 
In this study, we introduce CWAS-Plus, a tool for efficient CWAS 
analysis to identify noncoding associations from WGS data. The 
package supports user-friendly functions for categorization and 
burden enrichment tests for various functional datasets. Our 
tool facilitates the identification of the number of effective tests 
across multiple tested categories for multiple testing corrections. 

Consequently, it is applicable to WGS studies of various human 
disorders. 

Here, we integrated multiple functional datasets, includ-
ing snATAC-seq datasets from the human cortex, for CWAS 
analysis of de novo variants in ASD families, demonstrating 
cell-type-specific context for noncoding association. Significant 
associations were observed in intergenic categories enriched
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with regulatory regions of fetal brains and binding sites of 
ASD-associated transcription regulators. These results suggested 
that RNVs may contribute to ASD neurobiology by disrupting 
transcription factors during fetal brain development. Moreover, 
consistent with our previous finding [24], RNVs were highly 
correlated with sequence conservation, indicating ASD noncoding 
association for regulatory elements with evolutionary conserva-
tion. Overall, CWAS-Plus enables the integration of accumulated 
functional datasets with WGS data, thereby facilitating the 
identification of novel associations between regulatory elements 
and noncoding variants. 

Our extended analysis comparing the ability to identify risk 
variants revealed that only CWAS-Plus demonstrated significant 
case enrichment in risk variant carriers, whereas Sei, Enformer, 
and STAARpipeline did not (Supplementary Fig. 4). This discrep-
ancy may be due to the lack of phenotype consideration, and 
the limited scope of single-cell and disease-relevant datasets in 
pretrained models of deep learning tools. While retraining models 
with custom datasets could enhance accuracy, it is computation-
ally intensive. CWAS-Plus addresses these limitations by integrat-
ing multiple functional datasets, including single-cell regulatory 
datasets, in a time-efficient manner. 

STAARpipeline, which also considers phenotype information 
and utilizes multiple functional datasets, focuses on narrowly 
defined regions with gene-centric testing and sliding window 
analysis. The sparse de novo variants and extensive multiple 
testing burden in the STAARpipeline led to no significant asso-
ciations, as the tests did not meet genome-wide significance. In 
contrast, CWAS-Plus’s comprehensive approach allows it to iden-
tify risk variants with smaller effects by aggregating associations 
across diverse categories and regulatory elements throughout the 
genome. 

CWAS-Plus provides a novel approach to assessing the genome-
wide significance of rare noncoding variants. Unlike GWAS, which 
estimates effective association tests based on locus correlation, 
CWAS-Plus addresses the absence of standardized criteria for 
closely related association tests in rare variants by introducing a 
method to calculate associations between tests (categories). This 
unique methodology enables CWAS-Plus to conduct correction 
for multiple hypothesis testing, providing a tailored significance 
threshold for rare variants. 

CWAS-Plus offers a comprehensive approach to perform anal-
yses at both the variant-level and sample-level. De novo variants 
occur at a relatively consistent rate across individuals. By con-
trast, rare variants show higher variability in occurrence rates 
due to genetic ancestry. CWAS-Plus considers these characteris-
tics and provides both variant- and sample-level tests, allowing 
its application to de novo and rare variants effectively. Applying 
CWAS-Plus to rare variants of the AD cohort, despite the lim-
ited sample size, revealed potential risks associated with 3′ UTR 
variants in microglia-specific CREs. These results are consistent 
with previous findings where microglia-expressed genes were 
enriched with candidate causal genes found in GWAS [56–58]. 
Taken together, our findings emphasize the reliability of CWAS-
Plus and support the applicability to rare variants and complex 
genomic disorders, such as AD. 

Despite various advantages, our package has a few limita-
tions. CWAS-Plus enables users to customize annotation datasets 
for their phenotype of interest. However, the degree of freedom 
may pose challenges for diseases for which there is no access 
to relevant datasets or clear hypotheses for constructing cus-
tomized categories. To address this issue, we provide datasets, 
such as putative promoter and enhancer regions, as a baseline to 

facilitate a more accessible starting point. Moreover, CWAS-Plus 
offers feature selection to select phenotype-relevant datasets, 
refining annotation dataset composition. Furthermore, CWAS-
Plus has significantly improved computational speed; however, 
computation testing at a cohort level with hundreds of thousands 
of samples has not yet been carried out. Continuous develop-
ment efforts will be undertaken to overcome these limitations of 
CWAS-Plus. 

In summary, we present CWAS-Plus, a Python package for 
performing genome-wide assessments of noncoding associations. 
CWAS-Plus offers an efficient and user-friendly approach for 
integrating functional datasets with large-scale WGS data 
and empowers multiple testing comparisons. Our package is 
applicable to both de novo and rare variants. In future studies, 
we aim to optimize resource usage for efficient execution, 
especially in environments with limited memory and computing 
power. We also plan to utilize additional functional datasets 
to enhance the identification of regulatory signals, such as 
topologically associating domains and 3D chromatin interaction 
datasets. Additionally, we will extend the applicability of CWAS-
Plus to various fields, facilitating the exploration of noncoding 
associations in diverse diseases such as cancers. With CWAS-
Plus, we expect to uncover novel noncoding associations 
and enhance our understanding of genetic contributions to 
pathologies. 

Key Points 
• CWAS-Plus efficiently identifies noncoding associations 

in WGS data, supporting user-friendly categorization 
and burden enrichment tests. 

• CWAS-Plus integrates various functional datasets, 
emphasizing cell-type-specific noncoding associations. 

• CWAS-Plus provides a novel approach for multiple test-
ing correction, enhancing the reliability of the results. 

• Autism spectrum disorder risk noncoding variants are 
identified as enriched with transcription factors, sug-
gesting their role in the pathology. 

• Rare variant analysis with Alzheimer’s disease samples 
reveals strong a association with microglia, supporting 
the reliability of the results produced by CWAS-Plus. 
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