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Artificial intelligence (AI) is transforming spinal imaging and patient care through auto-
mated analysis and enhanced decision-making. This review presents a clinical task-based 
evaluation, highlighting the specific impact of AI techniques on different aspects of spinal 
imaging and patient care. We first discuss how AI can potentially improve image quality 
through techniques like denoising or artifact reduction. We then explore how AI enables ef-
ficient quantification of anatomical measurements, spinal curvature parameters, vertebral 
segmentation, and disc grading. This facilitates objective, accurate interpretation and diag-
nosis. AI models now reliably detect key spinal pathologies, achieving expert-level perfor-
mance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagno-
sis, AI also assists surgical planning via synthetic computed tomography generation, aug-
mented reality systems, and robotic guidance. Furthermore, AI image analysis combined 
with clinical data enables personalized predictions to guide treatment decisions, such as 
forecasting spine surgery outcomes. However, challenges still need to be addressed in im-
plementing AI clinically, including model interpretability, generalizability, and data limita-
tions. Multicenter collaboration using large, diverse datasets is critical to advance the field 
further. While adoption barriers persist, AI presents a transformative opportunity to revo-
lutionize spinal imaging workflows, empowering clinicians to translate data into actionable 
insights for improved patient care.

Keywords: Artificial intelligence, Machine learning, Deep learning, Spine, Patient care, 
Clinical decision-making

INTRODUCTION

Providing optimal spine patient care is becoming increasing-
ly complex due to the rapid growth of patient data, the rising 
number of spine patients, and expanding treatment options. 
The large amount of information from medical imaging and 
electronic health records (EMRs), combined with growing pa-
tient volumes driven by an aging population, presents a major 
challenge for efficient data processing and analysis. At the same 

time, the increase in treatment methods, from minimally inva-
sive procedures to personalized medicine, demands careful 
consideration of risks, benefits, and suitability for each individ-
ual. Traditional methods may struggle in this situation, high-
lighting artificial intelligence (AI)’s potential to process large 
amounts of data, identify patterns, and support evidence-based 
decision-making for more efficient, personalized, and effective 
spine care.1,2

Medical research is undergoing a revolution. AI, powered by 
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machine learning (ML) and deep learning (DL), is unlocking 
new discoveries with the potential to improve diagnoses, treat-
ments, and patient outcomes. While spine image research faced 
early challenges due to complex anatomical structures, data scar-
city, and nonstandardized protocols,3 the field has witnessed a 
remarkable surge in research and commercially available solu-
tions, particularly in the past 5 or 6 years. This rapid advance-
ment is readily apparent in a PubMed search, where a stagger-
ing 86% of all AI spine research papers have been published 
since 2017.

While traditional research methods like regression and cor-
relation models remain valuable tools, the field is experiencing 
a paradigm shift towards AI algorithms, particularly ML, DL, 
and generative models. Compared to regression models, which 
are limited to predicting simple linear relationships, ML can 
learn complex, nonlinear interactions and hidden patterns with-
in data.4 DL builds on this by utilizing numerous layers of com-
putations to extract more complex features from high-dimen-
sional data, such as image data. While both ML and DL can be 
used to build clinical decision support systems or prognosis 
prediction models, DL also excels at extracting meaningful fea-
tures from images, enabling applications like landmark detec-
tion and disease classification. Generative models, such as gen-
erative adversarial networks and large language models (LLMs), 
go even further. They learn the underlying patterns and rela-
tionships within data and then use this knowledge to create en-
tirely new data.5 This opens up possibilities like synthetic com-
puted tomography (CT) images generated from magnetic reso-
nance imaging (MRI) images,6 radiology reports written by AI,7 
and chatbots to answer frequently asked questions for patients.8

This review focuses on recent advancements in AI-powered 
spine image analysis and patient care. However, instead of fo-
cusing on the role of a specific AI algorithm, our aim is to cover 
this from the perspective of a clinical task-based manner (Fig. 1). 
To do this, we searched PubMed and Google Scholar for rele-
vant articles published between January 2017 and March 2024. 
Our search query combined terms related to AI, ML, and DL 
with those related to the spine (including “spine” or “vertebra”) 
and spinal imaging modalities (including “radiograph,” “CT,” 
and “MR”). We then assessed the retrieved studies for their meth-
odologies, evaluation metrics, and contributions to spine sur-
gery or research. Additionally, we hand-searched the reference 
lists of included articles to identify relevant studies not captured 
by the initial database search. This process resulted in a final se-
lection of 134 articles for review.

CURRENT STATUS AND CLINICAL 
APPLICATIONS ACROSS PATIENT CARE 
PROCESS

1. Image Improvement
The improvement of image quality through AI is a well-es-

tablished field already implemented in clinical practice, partic-
ularly in CT and MRI. Traditional interpolation techniques 
based on simple mathematics artificially increase the resolution 
but often result in blurring. DL has taken this process to the 
next level, generating more realistic and sharper images.9 This 
AI-based interpolation scheme is incorporated as a part of DL-
based image improvement protocols in the latest scanners.

In CT scans, the radiation dose follows the “As low as reason-

Fig. 1. Artificial intelligence (AI) applications in spinal imaging and patient care. This figure summarizes the 6 clinical applica-
tions of AI in spinal imaging and patient care, following the order they are introduced in this article. Each application contrib-
utes to various stages of patient care. DL, deep learning; CT, computed tomography; MRI, magnetic resonance imaging; MR, 
magnetic resonance; OPLL, ossification of posterior longitudinal ligament.
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ably achievable” principle. Lower doses typically lead to noisier 
images. Fortunately, AI algorithms now effectively reduce this 
noise postacquisition, enabling high-quality images with re-
duced radiation doses.10

In MRI, scan time serves as a trade-off for image quality, anal-
ogous to the radiation dose in CT: Achieving high image quali-
ty often requires longer scan time, leading to patient discomfort 
and potential movement artifacts. Traditional techniques like 
parallel imaging and compressed sensing address scan time re-
duction but still struggle with noises and artifacts. Recent ad-
vancements in DL-based reconstruction have overcome these 
challenges. By combining traditional schemes with DL-based 
optimization, DL reconstruction significantly improves signal-
to-noise ratio with significantly reduced scan times.11,12 In spine 
MRI, DL-reconstructed images have been found to be inter-
changeable with standard MRI for detecting various abnormal-
ities, offering excellent image quality with a remarkable 70% re-
duction in scan time.13 Major magnetic resonance (MR) ven-
dors have already incorporated these features, and vendor-neu-
tral solutions for spine MR are also commercially available.13

However, some concerns remain regarding the potential for 
DL-based improvements to alter lesion details or introduce ar-
tifacts.13,14 Ongoing research and validation are crucial to ensure 
the reliability and safety of these AI-powered tools in clinical 
practice.

2. Assistance at the Initial Diagnostic Stage
Spinal imaging plays a critical role in the initial step of patient 

care, with measurements and landmark locations being one of 
the fundamental information. This information guides treat-
ment planning and risk assessment, ensuring precise and objec-
tive decision-making for effective patient management. For AI-
based image analysis, accurate segmentation of the vertebral 
body and disc spaces is a critical first step. Segmentation assists 
in spine numbering and data preparation for other spine analy-
sis algorithms. This is why structure segmentation models have 
been a significant focus of spine AI research, with numerous 
public datasets available to train them.15 Additionally, recent 
breakthroughs in natural image segmentation techniques have 
nudged developments of automated segmentation tools for spine 
surgical hardware, achieving near-perfect Dice scores (Fig. 2).16

Assessment of kyphosis, lordosis, and scoliosis is another pri-
mary indication of spinal imaging. However, accurate assess-
ment of spinal curvature relies on hand-measured parameters, 
such as Cobb angle, pelvic incidence (PI), sacral slope, pelvic 
tilt, lumbar lordosis (LL), and sagittal vertical axis. This is a la-

borious task, prone to high interobserver agreements, and thus 
has been one of the early targets of spine AI research. Like hu-
man analysis, supervised DL models can be trained to identify 
or segment specific landmarks on anteroposterior (AP) and lat-
eral spine radiographs, automatically connecting them to cal-
culate spinal parameters. Advanced models can now detect up 
to 78 landmarks and 18 spinopelvic parameters in whole spine 
lateral radiographs, demonstrating excellent agreement with 
human measurements.17-19 In AP radiographs, automated Cobb 
angles exhibit lower mean error compared to human intra-/in-
terobservers (2°–6.32° vs. ± 9.6°/± 11.8°), showing potential for 
scoliosis screening in children (sensitivity, 95.7%; specificity, 
88.1%), or progression monitoring in postoperative patients.20-22 
Several commercially available software solutions have already 
received U.S. Food and Drug Administration (FDA) or Korean 
Ministry of Food and Drug Safety approval for landmark and 
curvature detection.23,24

Vertebral segmentation and numbering within spine CT and 
MR images have become a well-established area of research, of-
fering significant advancements in medical imaging analysis. 
This technology automatically identifies and delineates specific 
anatomical structures, most commonly the vertebral body, in-
tervertebral disc, and spinal canal. Reportedly, these automated 

Fig. 2. Adaptation of personalized SAM (PerSAM) model for 
segmentation of surgical hardware (blue) in spine radiographs. 
This model utilizes a personalized segment anything model to 
automatically generate prompts (green stars) for pixel-wise 
segmentations of spine surgical hardware in spine radiographs. 
The segmentations achieved Dice scores exceeding 0.9.



AI in Spinal Imaging and Patient CareLee S, et al.

https://doi.org/10.14245/ns.2448388.194 � www.e-neurospine.org   477

algorithms achieve impressive accuracy, with Dice scores rang-
ing from 89% to 95% for these key structures.25 Several medical 
technology vendors have already received FDA approval for spine 
labeling software, and their incorporation into PACS (Picture 
Archiving and Communication Systems) is already underway.23 
The true power of automatic segmentation lies in its ability to 
facilitate quantitative analysis and automated diagnoses. For in-
stance, automated vertebral segmentation enables (1) the detec-
tion of abnormal vertebral heights,26 (2) the Identification of 
abnormal spinal curvatures,27 and (3) the planning of surgical 
procedures and radiotherapy.28 With disc segmentation, we can 
automatically grade disc degeneration in sagittal MRIs.29 Fur-
thermore, research with neural foramen segmentation has shown 
that the cross-sectional area of the neural foramen directly cor-
relates with patient height and inversely correlates with age.30 
These segmentation models have opened doors for automatic 
diagnoses of spinal stenosis and neural foraminal stenosis.31-33

3. Image Interpretation and Diagnosis
1) Disc herniation and degeneration

While disc and spinal canal segmentation models play a cru-
cial role in identifying anatomical structures, their potential ex-
tends far beyond that. In MRI, AI models are making significant 
strides in detecting and grading lumbar spinal stenosis. These 
models are trained to identify stenosis in the lumbar central ca-
nal, lateral recess, and neural foramina using axial or sagittal 
images.32,34 One study reported remarkable agreement between 
a trained model and subspecialized radiologists in classifying 
stenosis severity (normal/mild vs. moderate/severe) in an ex-
ternal test set, achieving kappa values ranging from 0.95 to 0.96.32 
AI-powered MRI analysis can significantly benefit radiologists 
by reducing interpretation time (124–274 seconds vs. 47–71 
seconds, p< 0.001) and improving interobserver agreement (κ 
values = 0.71 and 0.70 with DL vs. 0.39 and 0.39 without DL, 
both p< 0.001).7 FDA-approved solutions are already emerging. 
For example, a lumbar spine report generation software boasts 
impressive sensitivity and specificity for detecting central canal 
stenosis, as demonstrated in 2 separate studies (92.70% and 
99.04% or 77.14% and 98.95% for central canal stenosis).35,36

Beyond MRI, AI-powered spinal stenosis diagnosis is also 
making progress in CT scans and radiographs. AI models have 
achieved diagnostic accuracies of 83%–88% for the spinal canal 
and 71%–75% for the lateral recess on axial CT scans.37 This 
opens doors for evaluating disc herniation in CT scans or even 
diagnosing opportunistic disc herniation during abdomen and 
chest CT scans. For cervical spine radiographs, AI approaches 

have demonstrated promising results in detecting ossification 
of the posterior longitudinal ligament (accuracy 0.88, area un-
der the receiver operating characteristics curve, area under the 
curve [AUC] 0.94, surpassing the performance of spine physi-
cians)38 and spondylotic myelopathy (accuracy, 71.1%; AUC=  
0.864).39 Another study reports AUC values up to 90% for spi-
nal stenosis in lumbar radiographs,40 suggesting the potential of 
AI as a triage tool for further imaging.

2) Fracture
Compression fracture, the most common type of spinal frac-

ture, has been one of the first targets for fracture detection in 
radiographs. Current DL models achieve impressive accuracy, 
reaching around 90% in compression fracture detections41-43 
and even in differentiating between old and new compression 
fractures (AUC= 0.80).44 One model reports the performance 
was comparable to human readers (accuracy of 93%, p< 0.001) 
with lung markings as the primary source of false positives.45 
Further advancing the field, an FDA-approved universal frac-
ture detector is already in widespread use. It efficiently detects 
fractures in radiographs of all limbs, spine, and ribs. For spine 
fracture specifically, a recent study compared human, AI-only, 
and AI-assisted human detection. The results revealed a clear 
advantage of AI-assisted human interpretation, with sensitivity/
specificity of 94.5%/100% compared to 92.4%/98.4% for humans 
alone and 89.1%/62.2% for AI alone.46

More recently, advancements in fracture detection have ex-
tended to CT scans. In 2022, the winners of the cervical spine 
fracture detection challenge47 achieved an AUC of 0.96 (95% 
confidence interval [CI], 0.95–0.96), sensitivity of 88% (95% 
CI, 86%–90%), and specificity of 94% (95% CI, 93%–96%).48 
This same year also saw the introduction of an FDA-approved 
cervical spine fracture detector. Research further extends to 
thoracolumbar CT scans, with some studies demonstrating the 
ability to categorize fractures into 4 types (no injury, compres-
sion, burst, translational/rotational, and distraction) with accu-
racies ranging from 68.6% (burst) to 89.3% (distraction).49

3) Inflammation and tumors
Identifying and classifying inflammatory diseases, infections, 

and tumors are actively researched fields within spine imaging, 
each too vast to explore fully here. However, AI models are al-
ready demonstrating impressive capabilities, achieving expert-
level performance in several tasks. For example, in pelvic radio-
graphs, DL models can diagnose sacroiliitis with accuracy that 
is on par with experts (Cohen kappa = 0.79).50 Similarly, they 
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can accurately quantify inflammatory sacroiliitis in MRI51,52 
and differentiate between tuberculous and pyogenic spondylitis 
with an AUC of 0.802 (compared to 0.729 for human experts, 
p= 0.079).53

Spinal oncology has also seen exciting advancements in ra-
diomics and DL. Algorithms can now detect metastatic lesions 
in CT scans (sensitivity, 75%–90%54,55) and be applied to reduce 
interrater variability.56 In MRI, DL models outperformed fourth-
year residents in differentiating malignant vertebral fractures, 
achieving 90% sensitivity and 79% specificity.57 Furthermore, 
ML and DL can discriminate between normal and pathologic 
bone marrow patterns in MRI58,59 and distinguish spine metas-
tases from lung cancer versus other primary origins.60

4. Surgical Planning and Intraoperative Use
CT aids surgical planning by detailing bone anatomy and pa-

thology and guiding surgical approaches. Moreover, navigation 
systems using preoperative CT images improve screw place-
ment accuracy. Synthetic CT scans are computer-generated im-
ages resembling conventional CT scans but are created using 
other imaging modalities like MR images through generative 
models or other DL algorithms.61 This technology has several 
advantages over CT scans, such as elimination of radiation ex-
posure (radiation dose of an average lumbar spine CT scan:  
3.5 mSv),2 improved visualization of metal structures and the 
peripheral field of view, and high-resolution depiction of soft 
tissue structures like intraosseous hemangiomas.62 Studies com-
paring visualization of body structures, artifacts, and geometri-
cal measurements between synthetic and traditional CT scans 
have found the synthetic versions to be non-inferior.6,62

However, synthetic CT is still a relatively young field with 
limited clinical use. While some applications like presurgical 
and radiotherapy planning are emerging,61,63,64 caution is advised 
when using measurements from synthetic spine CT scans. Stud-
ies have shown inaccuracies in pedicle measurements performed 
in the axial plane, with relative errors reaching up to 34%.65

Augmented reality (AR) and virtual reality (VR) are emerg-
ing technologies demonstrating promising benefits in various 
healthcare fields, including robotic surgery, laparoscopic sur-
gery, and, notably, orthopedic surgery for the spine.66 One of 
their main applications is as a navigation tool in the operating 
room. AR and VR systems use computer vision techniques to 
process preoperative or intraoperative images (radiographs, CT 
scans, or MRIs) and overlay relevant anatomical structures, po-
tential screw trajectories, or ideal screw locations onto the sur-
gical field, guiding surgeons with real-time visualization.67

The integration of DL into AR and VR systems further en-
hances their capabilities, particularly in object and landmark 
detection within images. For example, DL has been used to 
track a specific vertebra of interest in fluoroscopic images with 
high accuracy (mean error of 2.27%)68 and identify 7 anatomi-
cal landmarks on intraoperative lumbar spine CT scans with 
minimal error.69 Additionally, DL has shown promise in im-
proving robotic screw placement1,70 and identifying bone drill 
breakthroughs during surgery.71 Classification models powered 
by DL can even differentiate various types of pedicle screws72 
and anterior cervical fusion systems73 in radiographs.

Screw navigation systems are getting a boost from neural 
networks. These AI tools automate screw planning, including 
screw size and trajectory. One study reports a dramatic 90% re-
duction in workflow time, with just 3 out of 130 screws requir-
ing manual adjustment.74 Neural networks can also personalize 
screw placement for each patient’s bone structure. This custom-
ization helps maximize pull-out force and reduce screw failure, 
which will be an essential benefit for patients with osteoporo-
sis.75

We anticipate that AI will play a crucial role in addressing 
some current limitations of AR and VR, such as low image res-
olution and steep learning curves. AI-powered AR and VR so-
lutions hold potential, offering features like determining ideal 
spine alignment and implant size, compensating for motion, 
and even facilitating 3D printing.66,67

5. Opportunistic Diagnosis
Opportunistic screening refers to usage of incidental infor-

mation from existing medical images acquired for a different 
purpose.76 For example, an abdominal radiographs and CT scans 
intended for other diagnoses may incidentally reveal compres-
sion fractures.77,78 One of the most promising areas for this ap-
proach lies in body composition imaging, particularly for the 
assessment of bone mineral density (BMD).

While dual-energy x-ray absorptiometry (DXA) remains the 
standard for BMD measurement, CT scans offer valuable in-
sights, especially for individuals with obesity, severe degenera-
tive spine disease, or postoperative spine conditions where DXA 
accuracy can be compromised. Quantitative CT using reference 
phantoms or dual-energy CT has been used for these cases, but 
their accessibility remains limited. However, advancements in 
ML are now enabling the extraction of reliable BMD informa-
tion from various CT scans, including the abdomen, chest, and 
lumbar spine, transforming them into valuable opportunistic 
screening tools.79-81
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Opportunistic CT scans are also revealing valuable insights 
into sarcopenia, a condition linked to vertebral compression 
fractures and increased mortality across various diseases.82,83 
Sarcopenia is strongly associated with the cross-sectional area 
and mean density of muscles like the psoas or abdominal wall 
in CT scans.76 AI algorithms can now automatically segment 
muscles, subcutaneous and visceral fat, and vertebral bodies for 
sarcopenia and BMD measurement.84,85 Body composition mea-
surements from opportunistic imaging could even potentially 
aid in the risk stratification of patients undergoing spinal sur-
gery or predict future fractures.86,87

6. Clinical Decision-Making, Prediction, and Prognostication
ML and DL algorithms are revolutionizing the way we pre-

dict patient outcomes in spine surgery. While still in their early 
stages of clinical implementation, these powerful tools hold im-
mense promise for personalized care and improved decision-
making.

While the traditional studies with well-designed large cohorts 
or linear regression models have achieved success,88 ML algo-
rithms can capture both linear and nonlinear relationships be-
tween diverse factors and outcomes, requiring less human in-
tervention in model development.89 This leads to superior pre-
dictive performance compared to traditional methods.90,91 Fur-
thermore, ML enables clustering of patients with similar data 
patterns. This paves the way for prognostication and treatment 
optimization tailored to specific groups of patients.92,93

However, it’s important to note that successful outcome pre-
diction using ML requires high-quality, well-structured datasets 
with minimal missing data and clear outcome measures.

1) Herniated disc disease surgery
Herniated disc disease is a common spine condition where 

ML has shown utility in surgical decision support and postop-
erative prognosis. One key area of focus involves predicting re-
current herniation after surgery. Several ML studies have iden-
tified high-risk patients based on patient demographics, clinical 
parameters, and pre- and postoperative pain scores.90,94 Signifi-
cant factors reported to be associated with reherniation includ-
ed pain scores, Oswestry Disability Index (ODI), PI–LL mis-
match, body mass index, coronal angulation, duration of symp-
toms, and age.94 Additionally, incorporating radiographic fea-
tures such as facet orientation, herniation type, Modic changes, 
and disc calcification has further enhanced prediction accuracy 
for recurrent lumbar disc herniation.95

The decision to proceed with surgery for herniated disc dis-

ease involves complex considerations. Models trained on pa-
tient demographics, questionnaire data, and MRI results exhibit 
promising potential in surgical triaging, predicting surgical re-
ferrals with AUCs ranging from 0.68 to 0.88.96,97 Similar models 
have also been used to predict improvements in quality of life 
after surgery (AUCs up to 0.78),98 or after conservative therapy 
(100% accuracy for 12 scale ODI).91 Mourad et al.99 built a sur-
gical recommendation model based on clinical symptoms, MRI 
findings, and patient demographic factors. The root mean square 
error between model predictions and ground truth was 0.0964, 
with agreement being higher than agreement between individ-
ual doctors.

Moreover, ML models trained with demographic information, 
comorbidities, and preoperative/intraoperative findings have 
shown efficacy in predicting hospital length of stay or readmis-
sion after spine surgeries like anterior cervical discectomy and 
fusion,100-102 or lumbar single-level laminectomy.103 This could 
aid in determining the appropriate care setting (outpatient vs. 
inpatient) or optimize hospital resource allocations.

2) Spinal deformity
Adult spinal deformity surgery is complex and carries a high 

risk of complications. To improve outcomes and reduce these 
complications, researchers have developed algorithms to aid 
clinical decision-making.104 For instance, a study by the Inter-
national Spine Study Group used ML-based clustering and found 
4 prognostic phenotypes.105 This approach identified that young-
er, more resilient patients with good mental health were less 
likely to need repeat surgery compared to older, frail patients 
with poorer mental health. Another study by Scheer et al. em-
ployed decision tree ensembles to predict proximal junctional 
kyphosis and pseudoarthrosis with an AUC of 0.896106 and 
0.947.107

3) Postoperative complication
ML models are demonstrating remarkable potential in pre-

dicting major postoperative complications following spine sur-
gery, such as wound infections, thromboembolism, and mor-
tality.108,109 These models leverage diverse demographic and clin-
ical parameters, often exceeding the performance of traditional 
logistic regression models and established risk scores like the 
American Society of Anesthesiologists (ASA) physical status 
classification score.110

For instance, Hopkins et al. developed an ML model that pre-
dicts postoperative surgical site infection after spinal fusion with 
a median AUC of 0.787.111 Their analysis revealed factors like 



AI in Spinal Imaging and Patient CareLee S, et al.

https://doi.org/10.14245/ns.2448388.194480  www.e-neurospine.org

congestive heart failure, chronic pulmonary failure, hemiplegia/
paraplegia, and multilevel fusion as the most influential vari-
ables, providing valuable insights for risk stratification. Addi-
tionally, another study identified 10 key predictors, including 
age, gender, ASA physical status classification grade, surgical 
approach, and preoperative laboratory values, demonstrating 
the broad range of factors that ML models can incorporate for 
comprehensive risk assessment.112

Hardware failure is another concern, especially for patients 
with known risk factors such as osteoporosis, long fixation length, 
and certain fixation end points.113 You only look once v5 (YO-
LOv5), a type of convolutional neural network model special-
ized for both detection and classification, can help detect hard-

ware failure in postoperative radiographs (Fig. 3).114

DISCUSSION

1. Limitations and Challenges
While AI holds immense promise for spinal imaging, several 

limitations require careful consideration. The “black box” na-
ture of certain models and the lack of interpretability in deci-
sion-making raise concerns for clinical adoption. Fortunately, 
researchers are developing techniques to make AI models more 
interpretable. These techniques, like Gradient-weighted class 
activation mapping or Shapley additive explanations, can create 
heatmaps or graphs that highlight the focus of the model when 
making predictions. This can help explain, for instance, how 
the model identified spinal stenosis115 or reherniation.94 Even 
more recent advancements involve using LLMs to explain AI 
model predictions in a more comprehensive way, further im-
proving interpretability.116

Another crucial hurdle is ensuring generalizability.117 Recent 
studies suggest external validation may not adequately assess 
true model performance. They recommend that researchers 
prioritize recurrent local validation across diverse datasets to 
ensure real-world applicability.118 The focus should shift from 
chasing perfect metrics to demonstrating tangible clinical value, 
such as reducing inter-reader variability or mitigating human 
errors.

Furthermore, the scarcity of high-quality labeled datasets pos-
es a significant challenge. Compared to other radiology fields, 
large public benchmarks for spinal imaging remain inadequate. 
Existing public datasets (Table 1) tend to be small in size (< 1,000 
images), fragmented across institutions, and heterogeneous in 
acquisition and populations, leading to overfitting and limited 
generalizability. While current models perform well for normal 

Table 1. Public spine radiology image datasets

Source Modality Region of interest Segmentation/labels Data size Released date

SPIDER131 MR Lumbar Segmentations of the vertebrae, disc, 
and spinal canal

447 Sagittal series (218 patients) 2023

Mendeley data132 MR Lower Lumbar Radiology report 48,345 Axial slices (515 patients) 2019

RSNA cervical 
fracture47

CT Cervical Label and segmentations of vertebrae 
and fractures

3,112 Patients 2023

CTSpine1K133 CT Whole spine Segmentation of vertebra 1,005 CT 2021

VerSe134 CT Whole spine Segmentations of the vertebrae 374 Sagittal series (355 patients) 2020

BUU’ spine135 XR Lumbar Labels of 4 disease entities 400 2023

VinDr-SpineXR136 XR Whole spine Labels of 13 disease entities 10,466 2021

MR, magnetic resonance; CT, computed tomography; XR, x-ray. 

Fig. 3. Hardware failure predictions on spine radiographs. An 
off-the-shelf model was trained to predict 8 types of hardware 
failures: adjacent segment disease, loosening, migration, pseu-
doarthrosis, protrusion, rod fracture, screw fracture, and sub-
sidence. The arrows were embedded in the original images to 
indicate screw fracture (black arrow) and adjacent segment 
disease (white arrow).
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spinal anatomy, there are very few models trained on datasets 
with normal variants,119 fractures,120 or models predicting vari-
ous disease entities.121,122

2. Future Directions
Despite the challenges, the future of AI in spinal imaging is 

bubbling with potential. Researchers are increasingly leveraging 
prospectively gathered data from clinical trials and multi-cen-
tered datasets, yielding promising results.15 For instance, studies 
utilizing the American college of surgeons-national surgical 
quality improvement program database have successfully gen-
erated ML models for predicting 30-day readmissions111,123 or 
discharge to nonhome facility124 after lumbar fusion using pre-
discharge information.

Another exciting approach involves directly incorporating 
EMR or imaging data into DL models. Natural language pro-
cessing shows promise in predicting intraoperative vascular in-
juries with superior accuracy compared to traditional methods.125 
Similarly, DL models trained directly on images can identify 
hidden features invisible to the human eye. For example, DL 
models utilizing preoperative sagittal MRIs of the cervical spine 
as inputs have demonstrated higher accuracy in predicting early 
onset adjacent segment disease in cervical fusion patients com-
pared to models using only preoperative clinical data.126,127 Ad-
ditionally, AI models trained on spinal radiographs and CT scans 
are outperforming established risk assessment tools in predicting 
fractures.128,129 Finally, encouraging results have been achieved 
in predicting the early progression of scoliosis using spinal ra-
diographs.130

CONCLUSION

In conclusion, this review highlights the remarkable progress 
and potential of AI in advancing spinal imaging and patient care. 
From automated measurements to surgical planning, AI is trans-
forming workflow efficiency, accuracy, and reliability across the 
spectrum of spine imaging. However, thoughtfulness is required 
to ensure real-world validity, utility, and adoption of AI tools.
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