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Intermittent fasting (IF), a dietary pattern alternating between eating and fasting periods within a 24-hour cycle, 
has garnered recognition for its potential to enhance both healthspan and lifespan in animal models and hu-
mans. It also shows promise in alleviating age-related diseases, including neurodegeneration. Vascular cognitive 
impairment (VCI) spans a severity range from mild cognitive deficits to severe cognitive deficits and loss of func-
tion in vascular dementia. Chronic cerebral hypoperfusion has emerged as a significant contributor to VCI, insti-
gating vascular pathologies such as microbleeds, blood-brain barrier dysfunction, neuronal loss, and white mat-
ter lesions. Preclinical studies in rodents strongly suggest that IF has the potential to attenuate pathological 
mechanisms, including excitotoxicity, oxidative stress, inflammation, and cell death pathways in VCI models. 
Hence, this supports evaluating IF in clinical trials for both existing and at-risk VCI patients. This review compiles 
existing data supporting IF’s potential in treating VCI-related vascular and neuronal pathologies, emphasizing 
the mechanisms by which IF may mitigate these issues. Hence providing a comprehensive overview of the avail-
able data supporting IF’s potential in treating VCI by emphasizing the underlying mechanisms that make IF a 
promising intervention for VCI.
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INTRODUCTION

The environment has wielded a substantial influence on the mo-
lecular evolution of all living organisms, intricately shaping epigen-
etic and genetic mechanisms and, in turn, modulating the associated 
phenotypic responses. Notably, environmental conditions exert a 
profound impact on the healthspan and lifespan of animals. Among 
these factors, dietary restriction stands out as a potent catalyst for 
metabolic shifts, triggering pleiotropic alterations that cascade 
through biological systems. These changes give rise to observable 

phenotypic modifications, often associated with substantial health 
benefits in both animals and humans. A noteworthy method of di-
etary restriction is intermittent fasting (IF), a specific regimen in-
ducing intermittent metabolic switching. This process is character-
ized by the depletion of glycogen stores and the simultaneous pro-
duction of ketone bodies from fatty acids. IF has emerged as a 
promising dietary intervention with potential applications in miti-
gating the adverse effects of cardiovascular diseases and neurode-
generative conditions, including vascular cognitive impairment 
(VCI). 
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VCI encompasses a spectrum of cognitive alterations attributed 
to vascular-related factors or burdens associated with cerebrovascu-
lar disease (CVD). These factors can give rise to varying degrees of 
cognitive impairment, ranging from mild cognitive impairment to 
the severe state of vascular dementia (VaD).1 With the global popu-
lation aging, VCI has become a significant concern, placing sub-
stantial socioeconomic burdens on healthcare systems. VaD is con-
sidered the second most prevalent form of dementia, behind Al-
zheimer’s disease (AD). However, some studies suggest VCI as the 
most prevalent cause of cognitive impairment and dementia in the 
elderly, due to potential under-diagnosis. Moreover, it’s noteworthy 
that CVD often coexists with AD pathology, accentuating its clini-
cal relevance, particularly in the context of mixed dementia.2 This 
intersection of pathologies raises significant public health concerns, 
prompting essential discussions regarding the imperative for en-
hanced treatment modalities and therapies tailored to address the 
complexities of VCI.

This review endeavors to examine the potential impact of IF on 
mitigating the risk of VCI and its related pathologies. We achieve 
this by comprehensively assessing the available evidence regarding 
the effects of an IF regimen on VCI. Furthermore, we delve into 
the plausible mechanistic underpinnings of how IF may exert ame-
liorative effects on the progression and pathological manifestations 
of VCI.

SEARCH STRATEGY, STUDY SELECTION, 
AND DATA ACQUISITION

This review was conducted through extensive searches in the 
United States National Library of Medicine (PubMed), Scopus, 
and Google Scholar databases. Additionally, a thorough search on 
www.clinicaltrials.gov was performed to identify any new or ongo-
ing studies. To identify diet interventions, we utilized the following 
cluster terms (intermittent fasting OR Ramadan OR time-restrict-
ed OR alternate OR periodic OR reduced meal frequency OR al-
ternate-day). Subsequently, we combined this cluster (using AND) 
with terms aimed at determining the outcome of VCI, employing 
the following cluster terms (vascular cognitive impairment and de-
mentia OR chronic cerebral hypoperfusion). The search had no 
language restrictions. The inclusion criteria for articles encom-

passed any animal model or human studies involving various forms 
of IF regimens in VCI. We excluded studies on AD, mild cognitive 
impairment without vascular basis, mental health-related cognitive 
disorders, cancer, and diabetes. Notably, no human studies meeting 
the criteria were found in the literature. Two vessel occlusion and 
bilateral common carotid artery stenosis (BCAS) models were in-
troduced in rodents to mimic characteristic features of VaD. IF in-
troduced in these rodents induced both epigenetic and genetic 
changes, offering protection against white matter (WM) lesions 
and neuronal cell death, improvement in neurocognitive function, 
and maintenance of hippocampal neuronal density. IF also demon-
strated the preservation of blood-brain barrier (BBB) permeability, 
reducing the number of leaky microvessels following chronic cere-
bral hypoperfusion (CCH). Mechanistically, IF was effective in 
mitigating pathological features in the brain through antioxidative 
and anti-inflammatory pathways.

INTERMITTENT FASTING AND 
METABOLIC SWITCHING

IF and calorie restriction (CR) are two distinct paradigms of di-
etary restriction extensively studied and associated with extensions 
in both healthspan and lifespan.3 CR entails a consistent reduction 
in daily calorie intake, often by a specified percentage (around 20% 
to 40%) below an individual’s usual caloric requirements. The pri-
mary objective of CR is to diminish total energy consumption over 
an extended period, irrespective of meal timing alterations. In con-
trast, IF centers on alternating between eating and fasting periods. 
Unlike CR, IF does not entail a daily reduction in calorie intake. 
Instead, it involves restricting food consumption to specific time 
windows while allowing unrestricted eating during others. Notably, 
during the eating periods of IF, calorie intake may align with or 
slightly dip below that of an ad libitum group. These dietary restric-
tion methods induce intermittent metabolic switching, depleting 
glycogen stores, and utilizing liver fat as an energy source, accom-
panied by the production of ketone bodies (β-hydroxybutyrate 
[βOHB]) (Fig. 1). In the ketotic state, where total serum βOHB 
significantly increases from baseline, ketones emerge as crucial con-
tributors to energy expenditure and the preferred energy source for 
the brain.4,5 Neurons display adaptive responses to ketones as an al-
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ternative energy source, characterized by increased expression of 
brain-derived neurotrophic factor (BDNF) and fibroblast growth 
factor 2. This metabolic shift also initiates the activation of tran-
scription factors such as cAMP-responsive element-binding protein 
(CREB) and peroxisome proliferator-activated receptor γ coactiva-
tor 1α (PGC1α), leading to the upregulation of genes associated 
with synaptic plasticity, neurogenesis, and mitochondrial biogene-
sis. Furthermore, the utilization of ketones stimulates the enhance-
ment of autophagy mechanisms and DNA repair pathways within 
neuronal networks.5

This metabolic shift highlights the adaptability induced by both 
IF and CR, underscoring the potential benefits of these distinct di-
etary approaches on brain function and overall health.5 IF is pre-
cisely defined as an eating pattern that cyclically alternates between 
eating and fasting without altering the total calorie intake. This in-
tervention has garnered significant attention for its potential to 
promote healthy longevity,6,7 showcasing positive metabolic and 

circadian outcomes8,9 across a spectrum of organisms, ranging from 
single-cell organisms to multicellular mammals. It is also important 
to distinguish IF from starvation, the latter representing a state of 
chronic nutritional insufficiency that may lead to organ failure and 
eventual death.

IF regimens can be broadly categorized into three types:10,11 time-
restricted feeding, involving the consumption of food during a spe-
cific time window each day; every other day fasting, where food is 
consumed every alternate-day; and periodic fasting (PF), charac-
terized by abstinence from food for 2 days per week while main-
taining a normal intake on the remaining 5 days. These distinctive 
forms of IF exhibit unique metabolic signatures, influencing vari-
ous cellular and molecular pathways. IF-induced metabolic switch-
ing induces robust autophagy, a cellular recycling process associat-
ed with numerous health benefits and triggers adaptive responses 
that enhance cellular resilience. The underlying molecular mecha-
nisms driving the observed healthspan and lifespan extensions re-

Figure 1. Intermittent fasting (IF) induces intermittent metabolic switching. Following a meal, glucose serves as the primary energy source, with 
any unused glucose undergoing glycogenesis and being stored in the liver. Conversely, during fasting periods, both liver glycogen and circulating 
glucose levels decrease, accompanied by a reduction in blood insulin levels. In response to low insulin levels, adipose tissue releases fatty acids, 
which are converted into ketone bodies (KB) by hepatic cells. During the fasting period, KB become the preferred energy source, marking the 
transition from glucose to ketones—an event termed intermittent metabolic switching (IMS). IMS triggers epigenetic modifications, leading to 
transcriptomic, proteomic, and metabolomic changes. These changes contribute to a myriad of beneficial effects associated with IF. IF has been 
shown to improve redox balance and stress response mechanisms and promote mitochondrial biogenesis, DNA repair, neuronal regeneration, 
plasticity, and autophagy, while simultaneously reducing inflammation, oxidative stress, and mitochondrial dysfunction. 
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main a subject of ongoing research. Investigations into the intricate 
interactions between nutrient-sensing pathways, epigenetic and ge-
netic mechanisms and cellular stress responses are shedding light 
on the multiple benefits of IF.12-15

IF extends several benefits to the aging brain and under condi-
tions of neurological diseases, potentially influencing cognitive 
health through a diverse range of biological mechanisms. These en-
compass the attenuation of excitotoxicity, mitigation of oxidative 
stress, preservation of mitochondrial function, and dampening of 
inflammation. IF has further exhibited efficacy in resistance against 
vascular aging, cognitive decline, and WM injury, offering a prom-
ising approach across a spectrum of neurodegenerative diseases.13-17 
Moreover, adherence to an IF diet has been associated with a re-
duced risk of several chronic conditions, including coronary heart 
disease,18 hypertension,19,20 diabetes,21 obesity, and metabolic syn-
dromes.22,23 These interconnected conditions have been implicated 
in the onset and progression of mild cognitive impairment and de-
mentia. The cumulative evidence underscores the potential of IF 
not only in promoting cognitive resilience but also in mitigating the 
risk factors contributing to the development of cognitive disorders. 
Thus, IF presents a holistic approach to brain health, addressing 
both cognitive well-being and the interconnected factors influenc-
ing cognitive disorders.

CHRONIC CEREBRAL HYPOPERFUSION AS 
A BASIS OF VCI DEVELOPMENT

VCI encompasses multiple vascular mechanisms and is charac-
terized by CCH.24-26 CCH can be attributed to multiple vascular 
factors, including cerebral small vessel disease associated with hy-
pertensive arteriopathy, cerebral microbleeds, lacunar strokes, small 
vessel occlusion caused by arteriolosclerosis, and small vessel dis-
ease related to cerebral amyloid angiopathy, all contributing to the 
development of VCI.27,28 It has been well established that CCH 
precedes cognitive decline in VCI patients with dementia,29 estab-
lishing the role of CCH in VCI progression. 

A growing number of studies on VCI have identified CCH as a 
common vascular factor among the various subtypes of VaD.26,30,31 
CCH has been reported as a major underlying cause that ties to-
gether some of the known mechanisms of VCI, such as excitotoxic-

ity, oxidative stress, and inflammation, leading to WM lesions, neu-
rodegeneration, and brain atrophy.32,33 In animal models of VCI, ex-
perimentally inducing CCH in animals has demonstrated the de-
velopment of VCI features that mimic manifestations in the clinic.

According to the National Institute of Neurological Disorders 
and Stroke–Association Internationale pour la Recherche et 
l’Enseignement en Neurosciences (NINDS-AIREN) criteria, VaD 
is clinically diagnosed based on a stepwise decline of cognitive im-
pairments, the presence of focal signs during neurological examina-
tions, evidence of a history of cardiovascular disease occurrence 
such as stroke, and the presence of significant WM disease.34,35 
Structural alterations within the brain during VCI can be character-
ized into two gross pathologies—(1) vascular and (2) neuronal pa-
thologies which include impairment to cerebrovascular and BBB 
integrity, damage to the WM, progressive loss of neurons, and brain 
atrophy. These structural alterations ultimately lead to cognitive 
deficits and dementia in VCI (Fig. 2).

A central challenge in the prevention and treatment of VCI is 
predicting and identifying at-risk patients. Given that VCI is a con-
dition with multiple causes and disease progression is unique and 
dynamic in each individual, there is a need for interventions with 
pleiotropic molecular mechanisms of action in the brain. IF serves 
as such a method to treat VCI, as IF is known to have pleiotropic 
benefits and improve cardiovascular and neurological conditions. 
In the subsequent sections, we comprehensively examine the im-
pact of IF-induced metabolic switching on vascular and neuronal 
pathologies in VCI, delving into its scientific underpinnings and 
potential therapeutic implications.

VASCULAR PATHOLOGIES AND THE 
EFFECTS OF INTERMITTENT FASTING IN 

VCI

Vascular pathologies resulting from CCH encompass the devel-
opment of abnormalities in the BBB and the occurrence of cerebral 
microbleeds, both of which have been linked to cognitive impair-
ments. This section will explore the potential mitigating effects of 
IF on these specific vascular pathologies in the context of VCI.
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Effects of intermittent fasting on BBB damage in VCI
The BBB is a dynamic interface crucial for maintaining central 

nervous system (CNS) homeostasis, thereby ensuring the normal 
function of the brain. The BBB comprises of endothelial cells lin-
ing blood vessels, tight junction (TJ) proteins facilitating molecular 
control between the blood and brain, pericytes along the vessels, 
astrocytic end feet, and surrounding basement membranes. In-
creased permeability of the BBB has been associated with VaD, and 
extensive research has elucidated the mechanisms underlying BBB 
breakdown.36,37 A comprehensive understanding of the mecha-
nisms governing BBB dysregulation and VCI/VaD pathophysiolo-
gy may offer insights for guiding VCI care decisions and potentially 
identifying new therapeutic targets at various stages of VCI pro-
gression and VaD manifestation.

A common cause of increased BBB permeability is the disrup-
tion of the inter-endothelial TJ proteins. Dysregulation of these 
proteins compromises BBB integrity and molecular passage.38,39 

High brain glucose levels due to dysregulated glucose metabolism 
during CCH is associated with BBB endothelial dysfunction.40 
Plausibly, high blood glucose induces translocation of TJ protein 
zonula occludens-1, affecting BBB integrity.40 IF has been reported 
to display potent effects on glucose metabolism and insulin signal-
ing.41,42 IF positively influences glucose metabolism and insulin sig-
naling, increasing the expression of TJ.43 Taken together, IF may 
maintain BBB integrity, mitigating vascular pathology post-CCH 
(Fig. 3).16

Endothelial dysfunction, partly due to inflammatory cytokines 
and decreased autophagy, contributes to cerebrovascular damage. 
The BBB function becomes compromised under inflammatory 
conditions.44 Inflammatory cytokines affect endothelial TJ pro-
teins45 and induce brain leukocyte infiltration.46 IF reduces brain 
inflammation through ketone bodies, which activate anti-inflam-
matory mechanisms.47-49 For example, IF may prevent BBB damage 
by upregulating forkhead transcription factor 1 (FoxO1) and sup-

Figure 2. Pathophysiology of vascular cognitive impairment (VCI). Chronic cerebral hypoperfusion (CCH) plays a central role in the complex 
pathophysiology of VCI, by inducing energy and oxygen deficiency within the brain. CCH causes an energy imbalance, thereby triggering oxida-
tive stress, endoplasmic reticulum stress, and mitochondrial dysfunction. Together, these pathologies contribute to a compromised blood-brain 
barrier (BBB) integrity, neuroinflammation, white matter (WM) lesions, and neurodegeneration. Under normal physiological conditions, BBB func-
tions as a selective semipermeable and dynamic interface, crucial for cerebral homeostasis. However, under CCH, its integrity is disrupted, leading 
to an increased movement of substances between the blood and the brain. The overactivation of glial cells, referred to as neuroinflammation, 
plays a pivotal role in the pathophysiology of VCI. Additionally, CCH induces damage to the myelin sheath, and the subsequent loss of myelin can 
impede the propagation of action potentials, eventually resulting in axonal loss and neuronal depletion. These pathological changes culminate in 
the manifestation of symptoms associated with vascular dementia, including cognitive impairment, memory loss, and other related manifesta-
tions. 
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pressing nuclear factor κB, a potent proinflammatory transcription 
factor under disease conditions.50,51 Endothelial dysfunction and 
inflammatory markers such as intercellular adhesion molecule 1 
and vascular cell adhesion molecule 1 decrease after fasting, sug-
gesting reduced leukocyte infiltration.52,53 Therefore, IF may be 
able to exert its endothelial protective effects through reduction in 
inflammatory signals, and hence preserve BBB integrity.

Oxidative stress is intricately linked to inflammation. Ketone 
bodies produced during IF-induced metabolic switching exhibit 
antioxidative effects by upregulating the transcription of genes, in-
cluding antioxidant enzymes (superoxide dismutase [SOD] 1, 
SOD2, and catalase) and FoxO, which mediate the protective ac-
tions of sirtuins (Sirts).54-57 Robust antioxidant activity, particularly 
that of manganese SOD, is recognized as essential for maintaining a 
healthy BBB.58 FoxO3, diminished in endothelial cells under hy-
poxia, is implicated in BBB damage.59 Downstream of FoxO3 lies 
the Sirt3 axis, known for its pivotal role in cellular resistance and 
regulation of BBB permeability post-ischemia.60 Additionally, Sirt3 
safeguards against oxidative stress by modulating mitochondrial 
calcium and biogenesis.61 While evidence specific to VCI models is 
lacking, it remains plausible that IF could potentially elevate anti-
oxidant SODs, FoxO3, and Sirt3 levels in endothelial cells, thus 

contributing to the maintenance of BBB integrity.
IF has been documented to elevate autophagy levels, particularly 

in hypoxic states.62 IF also has been reported to enhance endotheli-
al function in metabolic disease states by promoting autophagy.63 
Autophagy plays a crucial role in maintaining endothelial homeo-
stasis within vascular beds, thereby preserving the physiological 
structure and function of the endothelium within the BBB.64 Con-
sequently, IF may have the potential to sustain endothelial homeo-
stasis, enhance endothelial function, and thus protect BBB integrity 
through autophagy mechanisms. The astrocytic end feet surround-
ing the endothelium contribute significantly to BBB maintenance. 
They regulate the constriction of microvessels to control blood 
flow,65 facilitate the diffusion of solutes between the blood and the 
brain,66 and maintain endothelial cell properties. Aquaporin (AQP) 
proteins are essential channels involved in water transport across 
the BBB, crucial for maintaining well-regulated water homeostasis 
in the CNS.67 IF has demonstrated the ability to restore and main-
tain AQP levels in the brain.68 While this restorative effect has been 
observed in AD, there is potential for this mechanism to contribute 
to IF’s positive effects and reduction of BBB damage in other con-
ditions, including VaD. 

Figure 3. The potential therapeutic effects of intermittent fasting (IF) on vascular dementia (VaD). IF provides multifaceted benefits that can coun-
teract the pathology of VaD. One major risk factor for VaD is aging, and IF is known to slows down this process. The protective effects of IF extend 
to other risk factors such as arteriosclerosis, hypertension, and type 2 diabetes mellitus by improving lipid metabolism, reducing blood pressure, 
and improving insulin sensitivity and glucose metabolism, respectively. Moreover, IF reduces inflammation, preserves the blood-brain barrier 
(BBB) and white matter (WM) integrity, and promotes neurogenesis. These diverse effects collectively place IF as a promising therapeutic ap-
proach against VaD. 
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Effects of intermittent fasting on cerebral microbleeds in 
VCI

Cerebral microbleeds are minute chronic brain haemorrhages, 
likely stemming from structural abnormalities in small blood ves-
sels within the brain, detectable through magnetic resonance imag-
ing (MRI) sequences.69 Among VaD patients, the frequency of mi-
crobleeds in the brain ranges from 65% to 84.9%.70,71 The location 
of microbleeds in specific areas of the brain can result in focal dam-
age, disrupting the structural connectivity of neurological tracts 
and leading to impairment in specific cognitive domains.72,73 Cere-
bral microbleeds serve as downstream markers of brain damage 
caused by vascular pathological mechanisms and are associated 
with an increased risk of cognitive impairment and dementia in the 
general population.74 These microbleeds are directly linked to mi-
crovascular leakiness, leading to the extravasation of blood constit-
uents into the brain through vessel walls and vice versa. Therefore, 
microbleed formation plays a pivotal role as a downstream effect of 
BBB dysfunction and endothelial damage.75

Microbleeds are closely associated with hypertensive vasculopa-
thy and VaD, affecting the microvasculature in various brain regions 
such as the deep gray nuclei, brainstem, cerebellum, and deep WM.76 
The prevalence of microbleeds is linked to chronic hypertension 
and cognitive decline in the elderly.77,78 Adherence to an IF diet has 
shown beneficial effects on lowering blood pressure in both animals 
and humans.79,80 Although the exact mechanism is not fully under-
stood, there is speculation that the upregulation of BDNF may be 
responsible for the observed improvements in blood pressure dur-
ing fasting. BDNF has been reported to regulate blood pressure by 
increasing the release of the neurotransmitter acetylcholine from 
neurons. Acetylcholine, in turn, is responsible for blood vessel dila-
tion through endothelial nitric oxide synthase and prostaglandin 
production.81

In aging patients, microbleeds have been linked to elevated in-
flammatory markers such as tumor necrosis factor receptor 2 and 
lipoprotein phospholipase-A2 (a marker of vascular inflammation).82 
Indeed, inflammation-induced models have been developed to 
simulate and study microbleed development and treatment in ani-
mals, highlighting the causal connection between inflammation 
and microbleed formation.83 IF has been characterized to amelio-
rate inflammation activation in the brain, reducing proinflammatory 

cytokines and immune cell response following ischemia and CCH.84,85 
Therefore, IF may have the potential to decrease the formation of 
microbleeds in the brain by attenuating proinflammatory media-
tors. Furthermore, PF has been reported to promote endothelial 
progenitor cell-mediated revascularization in mice following isch-
emic conditions in the brain.86 PF improves endothelial progenitor 
cell function, thus enhancing repair and vascular maintenance of 
adult vessels. Further studies required to elucidate the IF mecha-
nisms through which vascular integrity is maintained following 
CCH, potentially associated with endothelial progenitor cell health,86 
leading to decreased microvascular fragility and a lower incidence 
of microbleeds.

A dyslipidemic lipid profile in patients has been associated with 
the formation of cerebral microbleeds.87 Elevated cholesterol levels 
in the bloodstream induce pathological structural abnormalities in 
the vessels, including reduced vasodilatory response, a severe in-
flammatory phenotype of the vessels, and the accumulation of 
plaques.88,89 A lower fraction of healthy lipids, such as high-density 
lipoprotein (HDL) cholesterol in the serum, has been reported as a 
risk factor for the formation of cerebral microbleeds.87 Additionally, 
abnormal cholesterol metabolism has been linked to an increased 
risk of VaD in patients.90 IF has demonstrated the ability to improve 
lipid profiles in various animal and human studies, increasing se-
rum HDL levels and other lipids, thereby reducing the risk of car-
diovascular diseases.91 While the exact mechanism by which cho-
lesterol influences the vasculature remains incompletely understood, 
reports suggest heightened expression of angiotensin II type 1 re-
ceptors, which are central to mediating the effects of angiotensin 
II.89 Angiotensin II induces cerebrovascular remodeling, promotes 
vascular inflammation and oxidative stress, resulting in impaired 
regulation of cerebral blood flow.92 IF has been reported to restore 
balance in the angiotensin system, thereby reducing angiotensin II-
induced vascular pathologies in the brain.93,94 Furthermore, IF in-
duces lipolysis in fat tissues, mobilizing fatty acid-derived ketones 
and βOHB, a major component of ketone bodies, into the blood-
stream.95 βOHB can traverse the BBB into the brain parenchyma, 
facilitating the recovery of stress-induced vascular cell senescence.96 
This mechanism could be instrumental in preserving and main-
taining the integrity of the vasculature, potentially preventing mi-
crobleed formation in the brain following CCH.
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NEURONAL PATHOLOGIES AND THE 
EFFECTS OF INTERMITTENT FASTING IN 

VCI

Despite variations among patients, the existing data consistently 
reveal a distinctive pattern in the development of neuronal patholo-
gies in VCI and VaD. The predominant pattern encompasses the 
formation of WM lesions, hippocampal and brain atrophy, leading 
to cognitive impairments—specifically, subcortical dementia with 
early impairment of frontal lobe function. This section will explore 
the potential mitigating effects of IF on these specific neuronal pa-
thologies in the context of VCI.

Effects of intermittent fasting on WM damage in VCI
Leukoaraiosis is defined as a spectrum of pathologies involving 

WM disease observed on MRI sequences of the brain during VCI, 
depicting the disruption of WM. In affected areas, axons, myelinat-
ed fibers, and oligodendrocytes are reduced, and there is an increase 
in fluid content. This condition represents the earliest and most 
frequent abnormality during VCI, closely associated with reduced 
blood flow in the brain—the hallmark feature of VCI.27,97,98 While 
WM changes have been postulated to occur as a consequence of 
BBB breakdown, it is suggested that BBB breakdown may play a 
pivotal role in the formation of white matter lesions (WMLs).99

In other forms of neurological diseases such as multiple sclerosis, 
myelin damage recruits T cells that traverse the BBB and migrate 
into the CNS, where they are activated by localized cerebral anti-
gen-presenting cells, promoting further inflammation and damage 
to the WM.100,101 This inflammatory response leads to damage to 
oligodendrocyte precursor cells (OPCs), mature oligodendrocytes, 
and induces demyelination. Research in multiple sclerosis models 
has reported that fasting mimicking diet (FMD) increases oligo-
dendrocyte differentiation from precursor cells, while protecting 
OPCs and mature oligodendrocytes from apoptosis in mice fol-
lowing WM damage.102 Additionally, IF was found to reduce acti-
vated-myelin-induced T cell migration into the CNS following 
WM damage.102 Given that OPCs play a role in myelin regenera-
tion, IF may mediate regeneration through the promotion of en-
dogenous glucocorticoid production and the reduction of T cell 
activation within the lesion area.102 Furthermore, intermittent ca-

loric restriction using the modified FMD was effective in the treat-
ment of animal model of multiple sclerosis through ameliorating 
inflammatory response and promoting recovery of the damaged 
tissue.103 This underscores the potential of IF in ameliorating and 
reversing WM damage in mice, even in VCI models. Furthermore, 
long-term adherence to IF may be suitable for promoting the re-
generation and replacement of damaged oligodendrocytes, thereby 
proving effective in the treatment of chronic diseases such as VCI 
and VaD (Fig. 3). Indeed, studies from our laboratory employing 
an animal model of VaD, the BCAS model, have demonstrated that 
IF protects against WML.14,16

Effects of intermittent fasting on brain atrophy in VCI
A reduction in cortical volume has been observed in patients fol-

lowing the manifestation of VCI.104 Cortical atrophy may be linked 
to dysregulated apoptosis during VCI, leading to neuronal loss, a 
decline in synaptic plasticity and hippocampal shrinkage.33,105 Neu-
ronal loss resulting from apoptosis contributes to cerebral atrophy 
and the degeneration of neuronal populations in the brain. Apop-
totic cell death plays a pivotal role in inflammatory processes, regu-
lating the function of both neuronal and glial cells in VCI. There is 
evidence suggesting that adult neurogenesis is crucial for the main-
tenance of hippocampal volume.106 IF has been reported, under non-
pathological conditions, to increase the longevity protein Klotho,107 
Notch signaling,108 and the BDNF pathway,85 consequently pro-
moting neurogenesis. Several studies have acknowledged the posi-
tive effects of IF in stroke, where it enhanced neuronal cell prolifer-
ation and survival in the subventricular zone and hippocampal re-
gions.15,85,109 Interestingly, chronic stress stimuli have been associat-
ed with a reduction in the number and size of glial cells, particularly 
astrocytes, suggesting a potential contribution to brain volume re-
duction or atrophy.110 

Effects of intermittent fasting on cognitive impairments 
in VCI

Cognitive functions predominantly arise from the complex inter-
play between cortical and subcortical regions. Vascular lesions, prev-
alent in VCI, have the potential to disrupt these intricate brain net-
works, resulting in functional deficits.111-113 Furthermore, it has be-
come increasingly evident that specific regions of WM are vulnera-
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ble and linked to the development of cognitive impairments.114,115 
This insight is supported by findings that indicate the emergence 
of cognitive impairments following damage and disruption to net-
works within the WM, especially in critical areas such as the inter-
nal capsule116 and corpus callosum.117

Learning and memory impairments have been associated with 
increased levels of reactive oxygen species (ROS).118 However, IF 
demonstrates the ability to attenuate ROS levels through increased 
ketone levels in the blood119,120 and has been shown to increase an-
tioxidants, neurotrophic factors, and protein chaperones in the 
brain.85 The elevation in antioxidant levels, such as SOD, neuro-
trophic factors like BDNF, and heat shock proteins has been associ-
ated with improved spatial learning, memory-related hippocampal 
long-term potentiation, and working memory.85,121,122 Neuroinflam-
mation is another mechanism underlying dementia and cognitive 
decline in the elderly.123 IF has been reported to exhibit a reduction 
in proinflammatory cytokines (interleukin [IL]-1α, IL-1β, tumor 
necrosis factor-α, IL-6, interferon γ).85,124 In addition, a decrease in 
toll-like receptor 4, which plays a role in neuroinflammation in neu-
rological conditions.51,125,126 IF suppresses neuroinflammation and 
oxidative stress and preserves cognitive function in VaD.127

Finally, the gut microbiome, though primarily having a role in 
metabolism, also mediates effects on brain health and cognition. 
The gut microbiota has been implicated in the pathogenesis of vari-
ous neurodegenerative diseases.128,129 IF has been reported to show 
a more enriched gut microbiome composition and metabolites 
that are linked to improved cognitive functioning in both mice and 
humans.43,130,131

CONCLUSION

The increasing prevalence of VCI is a pressing global public health 
challenge. Despite the absence of clinical trials specifically conduct-
ed on VCI cohorts to validate the efficacy of IF, the promising out-
comes observed in animal models underscore its potential in im-
proving VCI prognosis. While the precise molecular and cellular 
mechanisms underlying IF’s impact remain to be fully elucidated, 
its positive influence on various cardiovascular, metabolic, and neu-
rodegenerative conditions suggests a broad spectrum of benefits. 
This review provides an exploration of IF’s role in managing VCI, 

aiming to offer a novel perspective on how it might attenuate the 
pathologies associated with this condition.

Upon comprehensive scrutiny of the existing literature, a com-
pelling case emerges for the therapeutic application of IF in VCI 
and VaD. These findings should serve as a catalyst for future inves-
tigations, spanning both animal models and clinical settings, to re-
fine our understanding of the myriad mechanisms underlying IF’s 
potential in mitigating VCI pathogenesis. Prospective, longitudinal 
trials hold the promise of uncovering sustained improvements, not 
only in preventing pathological manifestations but also in amelio-
rating the degree and rate of cognitive decline. This, in turn, could 
yield substantial benefits for individuals at risk of VCI on a global 
scale. As research in the field advances, the insights gained provide 
a solid foundation for designing and implementing further trials, as 
well as offering new avenues for therapeutic interventions in the 
realm of VCI.
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