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Abstract

Severe cases of COVID-19 often necessitate escalation to the Intensive Care Unit (ICU), where 

patients may face grave outcomes, including mortality. Chest X-rays play a crucial role in the 

diagnostic process for evaluating COVID-19 patients. Our collaborative efforts with Michigan 

Medicine in monitoring patient outcomes within the ICU have motivated us to investigate the 

potential advantages of incorporating clinical information and chest X-ray images for predicting 

patient outcomes. We propose an analytical workflow to address challenges such as the absence 

of standardized approaches for image pre-processing and data utilization. We then propose 

an ensemble learning approach designed to maximize the information derived from multiple 

prediction algorithms. This entails optimizing the weights within the ensemble and considering 

the common variability present in individual risk scores. Our simulations demonstrate the superior 

performance of this weighted ensemble averaging approach across various scenarios. We apply 

this refined ensemble methodology to analyze post-ICU COVID-19 mortality, an occurrence 

observed in 21% of COVID-19 patients admitted to the ICU at Michigan Medicine. Our findings 

reveal substantial performance improvement when incorporating imaging data compared to 

models trained solely on clinical risk factors. Furthermore, the addition of radiomic features yields 

even larger enhancements, particularly among older and more medically compromised patients. 

These results may carry implications for enhancing patient outcomes in similar clinical contexts.

Media Summary

Severe cases of COVID-19 often require intensive care unit (ICU) escalation, where patients may 

still experience serious disease courses and outcomes, including mortality. Reliable predictors 
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of disease severity would be invaluable for clinicians to evaluate these patients and improve 

treatment and management. However, limited work has been done to assess clinical outcomes 

among COVID-19 ICU patients. Chest X-rays are an essential part of diagnostic practice in 

evaluating patients with respiratory infections, including COVID-19. Our team has partnered with 

the University of Michigan Health System (or Michigan Medicine) throughout the pandemic 

to monitor the ICU outcomes of COVID-19 patients using DataDirect, a GPU-based analytics 

platform launched by Michigan Medicine. Our experience has enabled us to explore the potential 

benefits of using both clinical information and chest X-ray images to predict COVID-19 outcomes 

among these patients with severe infection. Combining these data sources via DataDirect, we 

aim to develop more accurate prediction models that can aid in clinical decision-making and 

ultimately improve ICU outcomes. We propose an analytical workflow to address challenges 

such as the absence of standardized approaches for image pre-processing and data utilization. We 

then propose an ensemble learning approach designed to maximize the information derived from 

multiple prediction algorithms. Our results show that using this ensemble method to integrate 

clinical and imaging data sources can lead to more accurate predictions of ICU mortality, 

especially among older and sicker patients.
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1. Covid-19 Ehr Data, Analytical Workflow of Extracting Radiomic 

Features, and Ensemble Prediction

COVID-19 has undeniably reshaped the realm of critical care, shedding light on challenges 

pertaining to the clinical comprehension of this ailment and the statistical intricacies 

intertwined with data collection, processing, and analysis. Throughout the pandemic, our 

team collaborated with the University of Michigan Health System (Michigan Medicine) to 

investigate the risk factors associated with disease severity and patient outcomes. Our earlier 

work studied whether risk factors for COVID-19 that were identified during the initial 

wave persisted in the first year of the pandemic and across outcomes of varying severity 

(Salerno, Sun, et al., 2021). We found differences in the frequency of healthcare utilization 

and more severe COVID-19 outcomes such as hospitalization, readmission, and mortality, 

as well as differing risk factors for these outcomes, particularly when comparing younger, 

non-Black patients to older, male, and Black patients, as well as when comparing patients 

of differing comorbidity burden. As severe cases of COVID-19 often necessitate escalation 

to the intensive care unit (ICU), where patients may continue to face critical disease courses 

and outcomes, we anticipate that expanding our prior research to an ICU context could 

offer valuable insights to healthcare providers in emergency departments and critical care 

settings regarding treatment priorities. A pivotal advancement in this work is to harness a 

new analytical workflow and machine learning algorithm, enabling us to make full use of the 

extensive data available within Michigan Medicine’s electronic health record (EHR) as well 

as the patient images facilitated by DataDirect within an ICU setting.
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1.1. DataDirect and the Democratization of Michigan’s EHR.

DataDirect is a GPU-based analytics platform launched by Michigan Medicine to allow 

researchers to collaborate on datadriven analyses for disease prevention and treatment 

through the shared EHR data of the entire hospital system (DataDirect, 2023). This rich 

database provides health and geolocation data of more than 4 million Michigan Medicine 

patients, as well as an imaging data repository of more than 750,000 chest X-rays for 

100,000+ patients, genetic testing results, and patient-reported survey data. Moreover, chest 

X-rays are an essential part of diagnostic practice in evaluating patients with respiratory 

infections, such as COVID-19. As part of the Precision Health Initiative, Michigan Medicine 

has collected X-ray images from inpatient settings, including those patients with COVID-19. 

As portable chest X-rays are efficient in triaging emergent cases, their use has raised the 

question of whether imaging carries additional prognostic utility for survival among patients 

with COVID-19. With access to the EHR and X-ray data from these sources via DataDirect, 

we have been in a unique position to develop new methodologies for identifying patient 

characteristics, clinical factors, and radiomic features linked to COVID-19 status, disease 

severity, and survival outcomes, and to evaluate the efficacy of ensemble learning methods 

for COVID-19 patient risk stratification and prognostication. Our prior work focused on 

machine learning techniques to assess the prognostic utility of radiomic features for in-

hospital COVID-19 mortality (Sun et al., 2022). Our study found incremental improvements 

in prognostic ability utilizing texture features derived from X-rays, and we concluded 

that chest X-rays, in conjunction with clinical information, may be predictive of survival 

outcomes particularly among older patients or those with higher comorbidity burden.

1.2. Proposed Reproducible Analytic Workflow.

This experience has enabled us to scrutinize the benefits of using both radiomic features 

and clinical information when building predictive models. In this work, we focus on 

formalizing the task of prediction in settings where readily available radiomic data, such as 

images taken via portable chest X-ray, may supplement or even replace clinical information 

which would be taken during an extended history and physical examination, that may be 

unavailable in emergent or critical care settings (Ramani et al., 2021). Owing to the wealth 

of data available through DataDirect, we have extracted and created a set of demographic, 

socioeconomic, and clinical risk factors which have previously been identified as being 

related to COVID-19 in the literature. In response to the unique challenges associated with 

chest X-ray data for COVID-19, that is, no available image segmentation information, we 

propose a principled pipeline for feature extraction with the X-ray data, where we select 

relevant imaging features based on patient survival information.

1.3. Weighted Ensemble Averaging.

To gain a deeper insight into the potential impact of employing diverse predictive modeling 

strategies on our research outcomes, we conducted a comprehensive comparison of four 

commonly-utilized prediction algorithms through a series of simulations. These simulations 

were designed to shed light on the performance variations among these algorithms and their 

potential applications in our study. Initially, we created an ensemble learner by averaging the 

Sun et al. Page 3

Harv Data Sci Rev. Author manuscript; available in PMC 2024 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk scores generated by each individual learner, which, as a proof of concept, allowed us to 

assess whether a “collective wisdom” approach could outperform individual predictors.

Subsequently, we took a more rigorous approach by proposing an ensemble learner 

that harnessed the maximal information from these individual strategies. This involved 

optimizing the ensembling weights and considering the shared variability of the individual 

risk scores. Our simulations demonstrated the superior performance of this weighted 

ensemble averaging approach across a spectrum of scenarios. We then applied this refined 

ensemble methodology to analyze post-ICU COVID-19 mortality, which we observed in 

21% of patients with COVID-19 in acute care settings at Michigan Medicine. By leveraging 

this ensemble method, we were able to construct predictions using the DataDirect platform 

while fostering collaboration with Michigan Medicine for this pivotal project.

While the integration of data from various sources has been explored extensively in 

precision oncology and other fields, we present our work in a pulmonary critical care 

setting, which may also provide a compelling use case for such integration. Our study 

showcases the application of machine learning in this critical healthcare setting and delves 

into the construction of a dependable ensemble risk score. These insights may be valuable 

for advancing our understanding of predictive modeling and hold significant implications for 

improving patient outcomes in similar clinical contexts.

2. Motivating Data

Coronavirus disease 2019 (COVID-19) is a respiratory illness that presents with a wide 

range of symptoms and clinical manifestations (Hoogenboom et al., 2021; Karagiannidis et 

al., 2021). Though the impact and severity of the COVID-19 pandemic have varied in the 

past three years, a significant number of COVID-19 patients experience rapid progression 

of respiratory compromise and other complications, leading to mechanical ventilation and 

intensive care unit (ICU) admissions (Chang et al., 2021; Hosey & Needham, 2020). These 

patients experience serious disease courses and outcomes, including mortality, which ranged 

from 25.7% to 28.3% (McCue et al., 2021; Quah et al., 2020), with some reports citing rates 

as high as 100% (Michelen et al., 2021). Reliable predictors of disease severity would be 

invaluable for assessing COVID-19 ICU patients, and enhancing treatment and management. 

However, limited research has been done to evaluate clinical outcomes among these ICU 

patients. Moreover, since the start of the pandemic, several dominant variants have arisen, 

leading to modifications in symptom management and therapeutic protocols (Dutta, 2022; 

L. Lin et al., 2022). There is limited research on the variation in predictors among severe 

COVID-19 patients across different variants (Ayala et al., 2021; El-Shabasy et al., 2022). 

The data outlined below pertain to our comprehension of the mortality risk factors for 

patients with COVID-19 following their admission to an ICU.

2.1. Study Population and Outcome.

The eligibility criteria for participants in this study encompass patients who meet all of the 

following conditions: (1) confirmed positive for COVID-19 or transferred with a confirmed 

positive diagnosis, (2) were hospitalized in a Michigan Medicine ICU between March 10, 

2020, and January 26, 2022, and (3) possessed at least one COVID-related chest X-ray 
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image on record (Jiao et al., 2021). A total of 2,289 patients meeting these inclusion 

criteria were included in the study; see Figure 4 for the derivation of our study cohort. The 

primary outcome is post-ICU mortality, defined as the time from first ICU admission due 

to COVID-19 until death, which could be censored by the end of the follow-up window. 

Our methods and findings are limited to this specific population, although the general 

methodological framework may be adaptable to other comparable settings.

2.2. Potential Risk Factors.

We collected temporal information on COVID-19 diagnosis, COVID-19 related ICU-

escalation, and death (where applicable) from the DataDirect database. In addition, 

we collected EHR-derived risk factors, including patient demographics, socio-economic 

status, comorbidity conditions, vaccination records, and physiologic measurements. Patient 

demographics included age, sex, self-reported race and ethnicity, smoking status, alcohol 

use, drug use, and COVID-19 vaccination status. We defined vaccination status based on 

recorded vaccine doses and types, i.e., 0 = ‘Not Vaccinated’ (no doses before first ICU 

escalation), 1 = ‘Partially Vaccinated’ (one dose of Moderna or Pfizer), or 2 = ‘Fully 

Vaccinated’ (two doses of Moderna or Pfizer, or one dose of Janssen).

We defined twenty-nine prevalent comorbidity conditions based on whether the patient had 

any associated ICD-10 codes on admission. We further obtained physiologic measurements 

within 24 hours of ICU escalation, including body mass index, oxygen saturation, body 

temperature, respiratory rate, diastolic and systolic blood pressure, heart rate, and need for 

respiratory support such as mechanical ventilation. We used patient residences to define 

neighborhood socioeconomic status at the US census tract-level. We defined four composite 

measures based on the average proportion of adults within a given census tract meeting 

certain criteria for (1) affluence, (2) disadvantage, (3) ethnic immigrant concentration, and 

(4) education level, categorized by quartiles (Salerno, Sun, et al., 2021; Salerno, Zhao, 

et al., 2021; Sun et al., 2022). See Appendix A for details. We excluded potential risk 

factors with sizable missing data rates >30%, such as demographic and social history 

data (e.g., marital status) and certain patient care measurements (e.g., invasive vital sign 

measurements); otherwise, to fill in missing values, we used mean or mode imputation for 

computational convenience. Among those predictors included in our subsequent modeling, 

missingness rates varied from 4.19% (BMI) to 19.05% (body temperature). A full summary 

of these missingness rates among all potential risk factors can be found in Appendix B, 

Table B1.

To address ongoing concerns about new mutations and the potential utility of our proposed 

approach in the future, we included the dominant variant period of the virus at the time of 

infection as another possible predictor (refer to Figure 1). We defined the dominant variant 
period based on a patient’s date of COVID-19 diagnosis, with the following categories: 

Original (March 2020 - March 2021), Alpha (April 2021 - July 2021), and Delta (August 

2021 - January 2022). This variable was intended to serve as a proxy for the impact of the 

particular wave of the pandemic, which may contain variations in the virus, disease severity, 

and provided therapeutic interventions and care standards. As explained later, we conducted 
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sensitivity analyses on our proposed approach with respect to this variable to determine 

whether its prognostic value may change.

All patients in our study had at least one COVID-related chest X-ray image, which was 

taken in either the anterior-posterior or left-right axes, based on the anatomical coordinate 

system. In cases where patients had images taken from multiple orientations, we only 

considered those taken from the anterior-posterior or posterior-anterior positions, as these 

images had the same orientation and were the most prevalent. Our analysis used the images 

taken closest to the time of ICU admission.

3. Proposed Reproducible Analytic Workflow

The clinical and imaging data were obtained from the Precision Health DataDirect 

Deidentified Research Warehouse. The clinical features were aggregated either at the 

patient-encounter or patient-order level. The raw Digital Imaging and Communications 

in Medicine (DICOM) image files and their corresponding image headers, which were 

identified using accession numbers, were linked to the patient-encounter data. The data was 

pre-processed as described in this study before use in our predictive models; see Figure 2.

3.1. Image Pre-Processing.

To address the lack of available image segmentation information for COVID-19 chest 

X-rays, as well as the high variability in the characteristic reticular “ground glass” 

opacifications, we propose a principled pipeline for feature extraction with the X-ray data, 

where we select relevant imaging features based on patient survival information. We pre-

processed each image according to the pipeline in Figure 2. After selecting the appropriate 

raw image files, we normalized the pixel intensities of each image to a standard range of 

0 (black) to 255 (white) units. This allows for the pixel information to be stored with less 

memory, facilitating more efficient computation. We then used histogram equalization to 

enhance the contrast of the images, by “spreading out” frequent pixel intensity values and 

the range of the image intensities (Jain, 1989).

As opposed to directly using the image pixel data in our predictive methods, we extracted 

texture features from the images. Texture features summarize the image characteristics, 

namely the spatial distribution of the pixel intensity levels (Galloway, 1975; Haralick et al., 

1973). We extracted seven feature classes from each image: (1) first order, (2) shape, (3) 

gray level co-occurrence matrix, (4) gray level size zone matrix, (5) gray level run length 

matrix, (6) neighboring gray tone difference matrix, and (7) gray level dependence matrix 

(Chu et al., 1990; Thibault et al., 2013). In addition to the texture features extracted from the 

original, pre-processed images, we also extracted higher-order features from the images after 

applying six different filters: (1) wavelet, (2) Laplacian of Gaussian, (3) square, (4) square 

root, (5) logarithm, and (6) exponential. With seven classes of features extracted from the 

original and six transformed images, we obtained a total of 1,311 candidate image features 

using pyradiomics (van Griethuysen et al., 2017).
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3.2. Feature Screening.

After image pre-processing, we obtained a texture feature matrix for each patient, from 

which we further selected target radiomic features that reflected patterns related to patient 

survival. The goal of this initial feature screening was to generate more interpretable and 

parsimonious prediction models. We first selected candidate features by fitting univariate 

Cox proportional hazards models on each feature (Therneau & Grambsch, 2000), retaining 

those that were statistically significant p-value ≤ 0.05). To prevent information leakage, 

we did not perform feature screening and selection using all the data. Instead, in each 

experiment, we used the training data to do feature screening, feature selection, and 

modeling fitting, while the predictive performance of each method was calculated on the 

testing data. To further explore the impact of the clinical and demographic covariates on 

the selection of the radiomic features, and to assess any potential overlap of predictive 

information in these features with the clinical data, we performed a sensitivity analysis by 

adjusting for these variables during later model fitting and feature selection.

3.3. Example Patient Image Features.

We exemplify the image pre-processing and feature extraction in two random patients 

selected from the study population – one who died during the follow-up period, and one 

who did not (i.e., censored; see Figure 3). The patient who died had higher values in 

the extracted texture features, namely the gray level non-uniformity (0.989 versus 0.098), 

zone entropy (0.837 versus 0.523), gray level variance (0.259 versus 0.249), and large area 

high gray level emphasis (0.793 versus 0.02). Higher values in this context correspond to 

greater heterogeneity in the texture patterns, indicative of the characteristic bilateral airspace 

opacities.

3.4. Computational Resources.

We conducted our data processing and analysis using Python (version 3.9.7), along with 

key libraries such as NumPy (version 1.24.2) and scikit-survival (version 0.19.0). Data 

pre-processing and model training were conducted in a high-performance computing (HPC) 

environment consisting of administrative nodes and standard Linux-based server hardware 

housed in a secure data center. These components were interconnected via both a high-speed 

Ethernet network (1 Gbps) and an InfiniBand network (40/100Gbps). A compliant parallel 

file system, meeting HIPAA regulations, was available for temporary data storage to support 

research. The project utilized six dedicated nodes, each equipped with eight RTX2080Ti 

GPUs, totaling 48 GPUs. On average, it took 303 seconds (with a range of 288 to 318 

seconds) or approximately five minutes to extract texture features from a single raw X-ray 

image across 100 replications.

4. Statistical Analysis

4.1. Methods.

We first considered several commonly used algorithms to construct our risk prediction 

models, namely, the Cox proportional hazards model (Therneau & Grambsch, 2000), 

survival support vector machines (Van Belle et al., 2007; Y. Wang et al., 2016), random 
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survival forests (Ishwaran et al., 2008), and survival gradient boosting (Hothorn et al., 

2006). We constructed an ensemble learner by averaging the risk scores from each of these 

four individual learners (Sun et al., 2022; Viana et al., 2009; P. Wang et al., 2019). We 

then proposed a more efficient ensemble learner tailored for survival analysis. This new 

ensemble method maximizes the utilization of information from the individual approaches 

by fine-tuning the ensembling weights and incorporating considerations for the shared 

variability present in the individual risk scores.

4.1.1. Notation.—With right censoring, we let T  and C denote survival time and 

censoring time, respectively. We observe Y = min T , C , and δ = I T ≤ C , where I ⋅  is the 

indicator function. We further assume the observed data Y i, δi, Xi , i = 1, …, n  are i.i.d. 

copies of Y , δ, X , where Xi = Xi, 1, …, Xi, p
⊤ ∈ ℝp denotes the p–dimensional risk factors for 

each patient.

4.1.2. Cox Proportional Hazards Regression.—The Cox model (Cox, 1972) 

specifies that, at time t, the conditional hazard of post-ICU mortality for a patient with a 

set of p risk factors, Xi, is

λ t ∣ Xi = λ0 t exp Xi
⊤β ,

where λ0 t  is the baseline hazard, exp Xi
⊤β  is the relative risk function of Xi, and β denotes 

a p-vector of coefficients to be estimated. For each patient, we estimate the risk score, i.e., 

Xi
⊤β, a larger value of which implies a higher risk of mortality.

4.1.3. Support Vector Machines.—Given the observed data, Y i, δi, Xi , i = 1, …, n , 

we estimate risk scores, ψ⊤Xi with ψ ∈ ℝp, by solving

min
ψ, ξ

1
2 ∥ ψ ∥2 + γ

i, j
vijξij

 subject to ψ⊤ Xj − Xi ≥ − ξij

 and ξij ≥ 0, i, j = 1, …, n,

where vij = δiI Y i < Y j  is a comparability indicator for the ith and jth subjects, ξij is the pair-

specific slack variable, and γ > 0 is a regularization parameter. This version of the survival 

support vector machine is based on C-index (Harrell et al., 1982), which assesses the 

rank concordance between the predicted risk scores and survival times among comparable 

individuals, that is,

Pr  Score i >  Score j ∣ T i > T j ,

where T i and Scorei are, respectively, the survival time and the risk score for subject i. In this 

setting, a larger value of the risk score implies a lower risk of mortality (Van Belle et al., 

2007).
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4.1.4. Random Survival Forests and Survival Gradient Boosting.—Both 

methods (Hothorn et al., 2006; Ishwaran et al., 2008; Salerno & Li, 2022) aim to combine 

predictions from multiple survival trees. In random survival forests, we construct ‘B’ 

survival trees by resampling ‘B’ datasets of n observations with replacement and randomly 

selecting subsets of p′ < p risk factors to train individual trees on. The log-rank test statistic 

is used as the splitting criterion (Shimokawa et al., 2015). With each tree grown on a 

different subset of p′ predictors, we then combine the B trees into a random survival forest 

by averaging over the survival predictions for each tree (Ishwaran et al., 2011). In survival 

gradient boosting, we sequentially combine predictions from individual survival trees across 

‘M’ steps, where M was tuned using cross-validation with respect to the C-index calculated 

on the training datasets (Hothorn et al., 2006). At the mth step, the predicted risk score is 

given by

ℱm X = ℱm − 1 X + wmfm X ,

where ℱm − 1 X  is the prediction from the previous step, fm X  is a new prediction from a 

single tree in the current step, and 0 < wm ≤ 1 is the step size.

4.1.5. Naive Ensemble Averaging.—To create an ensemble predictor, we combine 

the risk scores (after standardization as detailed in Section 4.1.6) generated by the four 

algorithms discussed. A basic method for forming an ensemble prediction for each subject 

would involve averaging the four risk scores. However, it is important to note that this 

approach assumes equal importance of individual learners in the construction of the 

ensemble risk score and that the pairwise correlations between these individual learners 

remain consistent.

4.1.6. Weighted Ensemble Averaging.—A more principled approach is to weight 

the individual scores according to the information they provide, taking into account the 

covariance among the individual learners. Initially, we ensure that all scores generated by 

various algorithms align in the same direction: lower scores indicate a reduced mortality 

risk, and higher scores imply an elevated risk; if this alignment is not present, we reverse 

the sign of the scores. Subsequently, we employ a rank-based probit transformation to 

standardize these scores. This transformation maintains the interpretation that lower ranks 

correspond to lower mortality risk, while higher ranks signify higher mortality risk. 

Specifically, for n individual scores constructed by Algorithm a ∈ 1, …, A  (e.g.,  A = 4
in our case), we convert them to percentile ranks, denoted by ri

a , i = 1, …, n, and apply the 

probit transformation to obtain “standardized” risk scores, i.e.,

ϕi
a = Φ−1 ri

a − 0.5 /n ,

where Φ ⋅  is the standard normal distribution function. We then construct a weighted 

ensemble prediction for each subject by the weighted average of the A standardized risk 

scores, i.e.,
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ϕi
e =

a = 1

A
w a ϕi

a .

Ideally, we choose the weights w a  by minimizing the mean squared error (Viana et al., 

2009):

E ϕi − ϕi
e 2 = w⊤Cw,

where w = w 1 , …, w A ⊤
. Here, ϕi denotes the ‘true’ risk score, calculated by applying the 

probit transformation to the rank based on the ‘true’ survival time of patient i = 1, …, n. The 

matrix C is the A × A covariance matrix of the A individual prediction algorithms, where the 

j, k th element in the matrix is defined as cjk = E ϕi − ϕi
j ϕi − ϕi

k  for 1 ≤ j, k ≤ A. As we 

cannot observe the true risk scores for all patients due to censoring, we propose to estimate 

C by using the inverse probability weighted cross-validation errors. Denote its estimate by 

C, with the j, k th element defined as

cjk = 1
n i = 1

n δi
π̂i

ϕi − ϕ−i
j ϕi − ϕ−i

k ,

where ϕ−i
a  is the prediction of the ith subject obtained by applying Algorithm a to the data 

with the ith subject left out, as done in the ensemble literature for creating cross-validation 

errors (Acar & Rais-Rohani, 2009; Goel et al., 2007; Y. Lin et al., 2002; Meckesheimer 

et al., 2001). Here, π̂i = Ŝc Y i ∣ Xi , and Ŝc ⋅ ∣ Xi  is the estimate of the survival function of 

the censoring time given Xi, i.e. Sc t ∣ Xi = Pr Ci > t ∣ Xi . It can be obtained by fitting a Cox 

proportional hazards model with the reversed censoring indicator, 1 − δi. When the censoring 

time distribution is correctly specified, it can be shown that cjk consistently estimates cjk

(Hothorn et al., 2006; Laan & Robins, 2003). As such, the problem can be formulated as

min
w

 w⊤Cw  s.t.  1⊤w = 1,

and the solution can be obtained using Lagrange multipliers or, explicitly,

w = C−11
1⊤C−11

.

This approach might produce negative weights and weights exceeding one. To address 

this issue and ensure non-negativity, we employ only the diagonal elements of C when 

computing the weights (Viana et al., 2009). Furthermore, these diagonal elements are known 

to be better approximated and more reliable compared to the off-diagonal ones (Viana et al., 

2009). We applied this correction in the simulations in Section 5, and it yielded a superior 
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performance compared to alternative methods, potentially confirming the efficacy of this 

approach.

4.2. C-Index for Prognostic Utility.

We first developed a series of predictive models by training the individual learners described 

above on a common set of demographic and clinical risk factors which we extracted from 

each patient’s electronic health record. Subsequently, we obtained predicted risk scores from 

these learners and combined them using the two ensemble averaging algorithms presented 

to derive combined risk scores for each patient. To determine whether X-ray imaging 

carried additional prognostic utility above and beyond the identified clinical risk factors, we 

repeated each procedure for the individual and ensemble learners, including both the clinical 

risk factors and screened radiomic features in the predictive models.

We assessed the predictive performance of each method using Harrell’s C-index. A higher 

C-index would indicate that the models with clinical and imaging features had a better 

performance in ranking subjects by predicted survival times as compared to the models 

with only clinical features (Longato et al., 2020). This would suggest that the radiomic 

features enhanced the model’s ability to differentiate between subjects experiencing events 

(deaths) at different times. To calculate the C-index, we partitioned the data into five folds, 

training each model on 80% of the data and testing on the remaining fold to compute the 

C-index. We repeated this process 100 times and reported the median as the estimate of 

the C-index. To gauge whether including radiomic features improved each model’s C-index, 

instead of reporting p-values which may not adequately account for the full spectrum 

of variations inherent in the estimation process (Greenland et al., 2016), we plotted the 

empirical distribution of C-index values across these 100 replications and reported the 

median and interquartile range (IQR) of this distribution.

4.3. Feature Importance.

To measure the importance of each risk factor across the various methods, we computed 

the decrease in C-index after removing the risk factor from the dataset (Breiman, 2001; 

Fisher et al., 2019). Risk factors with larger decreases in C-index were viewed as more 

important. Specifically, we utilized the permutation-based feature importance Algorithm 

1 below (Molnar, 2020). We replicated this process on various patient subgroups to gain 

a better understanding of which patient groups would benefit most from our method. 

Specifically, we conducted subgroup analyses categorized by age (split at 65 years) and 

the number of existing comorbid conditions (split at the median of 9).
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4.4. Adjusted Associations.

We fit a fully-adjusted Cox model with the final set of selected features to explore their 

connections with post-ICU mortality. Furthermore, a sensitivity analysis was conducted to 

scrutinize potential interactions between these risk factors and the prevailing COVID-19 

variant during the infection period. This was undertaken to gauge the applicability of our 

findings across various phases of the pandemic.

5. Simulation Studies

We carried out a series of simulations to assess the performance of our proposed ensemble 

averaging method in comparison to the various machine learning approaches mentioned 

earlier.

5.1. Data Generation.

5.1.1. Linear Log Hazards.—We designed our simulations to mimic the setting of the 

real data. We generated 22 covariates, Xi = Xi, 1, …, Xi, 22
⊤ ∈ ℝ22, i = 1, …, n independently 

across n subjects. from a multivariate Gaussian distribution, with a zero mean vector and a 

compound symmetric covariance matrix with unit variances and covariances equal to 0.2, 

i.e.,

Xi N22 0,
1 0.2 … 0.2
⋮ ⋮ ⋱ ⋮

0.2 0.2 … 1
.

We assume that among them, 12 are related to the true survival time. We also assume that 

censoring time can be covariate dependent so that 9 covariates are related to the censoring 

time. There are 3 covariates that are related to both survival and censoring times. In our later 

real data analysis, 13 variables were found to be relevant to survival. We simulated the true 

survival time for each observation, T i, from an exponential distribution with a hazard of

λ Xi = μT × exp Xi, 1β1 + ⋯ + Xi, 12β12 ,

where the log hazard is linear in Xi. Moreover, we independently generated censoring times, 

Ci, from an exponential distribution with a hazard of

λc Xi = μC × exp Xi, 10α1 + ⋯ + Xi, 18α9 .

The α and β coefficients were generated from uniform distribution, U − 1,1 . We selected 

values for μT and μC to introduce varying levels of approximate censoring rates, specifically 

targeting rates of 40%, 60%, 70%, and 80%. We aimed to evaluate the performance of 

each prediction approach across these four censoring scenarios. Within each scenario, 

we generated a total of 100 independent datasets, with each dataset comprising n = 2,300
observations. These settings were chosen to closely resemble our real data, taking into 

account both the sample size and the desired approximate censoring rates. Within each 
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dataset, 80% of the observations were allocated for the purpose of training and fitting 

various models, while the remaining 20% were held aside as testing data for model 

evaluation. To assess the effectiveness of each model, we employed the C-index metric 

to evaluate the predictions made on the testing data.

5.1.2. Nonlinear Log Hazards.—Our setup was similar to the linear setting, except that 

we simulated the survival and censoring times from hazards that are nonlinear in covariates. 

Specifically, we simulated survival times, T i, from an exponential distribution with a hazard 

of

λ Xi = μT × exp 0.3exp Xi, 1 − Xi, 2 − 0.3log Xi, 3 + Xi, 4
2 + 0.25sin Xi, 5Xi, 6

−0.2 Xi, 7 − Xi, 8 + Xi, 9
2 − 0.2 Xi, 10 − Xi, 11 + Xi, 12 ,

where the log hazard is nonlinear in Xi. We then independently generated censoring times, 

Ci, from an exponential distribution with a hazard of

λc Xi = μC × exp 0.15sin Xi, 10 − Xi, 11 + Xi, 12 − 0.05 Xi, 13 − Xi, 14 + Xi, 15
2

+0.05exp Xi, 16 − Xi, 17 + Xi, 18 .

We again selected values for μT and μC with the aim of introducing varying levels of 

approximate censoring rates, specifically targeting rates of 40%, 60%, 70%, and 80%. We 

followed the identical procedure as detailed in the preceding subsection to evaluate the 

performance of our prediction algorithm. Our objective was to assess how well the algorithm 

performed when the assumptions of the linear log hazard model were not met.

5.2. Simulation Results.

Table 1 presents the outcomes of the simulations where the datagenerating mechanism 

adheres to a linear log hazard model. In this scenario, it is evident that all prediction models 

exhibit commendable performance, with the Cox model with linear log hazards consistently 

outperforming the others across all levels of censoring rates. Specifically, the median C-

index for the Cox model ranges from 85.9% (at a 40% censoring rate) to 90.1% (80% 

censoring), and survival support vector machines (SVM) follow closely in performance 

(85.8% to 89.8%). The proposed weighted ensembling approach exhibits competitive results 

across all censoring rates, yielding C-indices (85.6% to 89.5%) close to those achieved 

by the Cox model and survival SVM. For context, note that there are 2,643,850 unique 

pairs of observations in each dataset. Therefore, a 1% increase in C-index corresponds to 

26,000 more patient pairs being correctly ranked in terms of their mortality risk. It is worth 

noting that as the censoring rate increases, the predictive performance of all methods shows 

improvement, as the C-index may increase when focusing on discrimination of earlier events 

or among higher risk patients (Longato et al., 2020).

Table 2 presents the simulation results for the scenario where the data were generated 

with the log hazards nonlinear in the predictors, and all methods demonstrate a decline in 

prediction as they grapple with the increasingly complex nature of the risk relationship. In 
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this challenging context, the weighted ensemble averaging method consistently outperforms 

all other competing methods, achieving the highest median C-index across all levels of 

censoring rates (73.1% at 40% censoring to 78.9% at 80% censoring). Furthermore, it 

showcases numerical stability with the narrowest IQRs when compared to all other methods. 

Conversely, when the linearity assumption breaks down, the Cox model exhibits the poorest 

performance in terms of the C-index, ranging from 65.6% at 40% censoring to 72.5% 

at 80% censoring. We again note the upward trend of the predictive performance of the 

methods as censoring rates increase.

5.3. Sensitivity Analysis for Missing Data.

In a sensitivity analysis, we conducted additional simulations to assess the impact of the 

mean imputation strategy on each model’s performance, including our proposed weighted 

ensemble. We simulated data as described above, but we additionally simulated missingness 

under the assumption that the data are missing at random (MAR) (Rubin, 1976). We 

assessed the performance of the mean imputation by varying the percentage of missingness 

for each covariate from the complete case (0%) to 10% and 20%, corresponding respectively 

to the average and maximal missingness percentage among the included variables in the 

real data analysis. The findings indicate that the conclusions drawn in scenarios with 

the complete data remain valid when there are missing data, even when imputed using 

means. This hints at the robustness of the predictive models used. However, the efficacy of 

predictive models based on mean imputation decreases as the proportion of missing data 

rises. This decline is attributed to the fact that covariates were generated from a multivariate 

normal distribution with non-zero correlations and mean imputation might overlook such 

information. For additional details, see Appendix B.

6. COVID-19 ICU Data Analysis Results

6.1. Outcome Distribution.

Figure 4 illustrates the derivation of the study population and provides a breakdown of the 

initial population based on their ICU and mortality outcomes. Notably, it reveals that 48% 

of admitted patients required ICU escalation at some point during their hospital stay, making 

them the focus of our study. Among these patients, 21% died while in the ICU, in contrast 

to 12% of patients who did not necessitate ICU admission. Among those who succumbed in 

the ICU, 3% did so during their initial ICU encounter, while 18% passed away after being 

transferred to a lower level of care or discharged.

6.2. Characteristics of the Study Population.

Out of 2,289 patients in our study, 1,528 (66.8%) were diagnosed during the dominance 

of the original variant, 320 (14.0%) during the Alpha variant, and 441 (19.2%) during the 

Delta variant in Southeast Michigan. The median age was 61 years [Interquartile Range 

(IQR): 29], which differed by wave of the pandemic; it was higher among those infected 

earlier (62 years; IQR: 26) versus during the Alpha (59 years; IQR: 36) and Delta (59 

years; IQR: 34) waves. Further, self-reported race differed significantly by wave, with a 

higher proportion of patients identifying as White in later waves of the pandemic (Original: 

67%, Alpha: 72%, Delta: 80%) than patients of color. Noticeably, patients diagnosed and 
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admitted to the ICU with the original variant tended to have a higher comorbidity burden 

on average than patients in the Alpha and Delta waves. Moreover, the vast majority of 

patients (1,914; 84%) were not vaccinated at the time of ICU escalation, while 291 (13%) 

were fully vaccinated, and a small minority (84; 3.7%) were partially vaccinated, with 

these proportions diverging in later waves. Full descriptive characteristics for this patient 

population are given in Appendix A, Table A2.

Kaplan-Meier estimated survival curves for post-ICU mortality are given in Figure 5, 

stratified by dominant variant. Marginally, patients diagnosed during the Alpha wave had 

slightly better survival than patients diagnosed during the Original or Delta waves; however, 

these unadjusted differences were not statistically significant.

6.3. C-Index for Prognostic Utility.

We first built predictive models using only the clinical and demographic risk factors derived 

from each patient’s EHR. Across the six methods under consideration, we calculated the 

median C-indices ranging from 75.1% to 75.4% among the individual learners, 75.3% with 

naive ensemble averaging, and 76.2% with our weighted ensemble averaging (Figure 6). 

With the addition of the screened radiomic features, we observed an increase in C-index 

for survival support vector machines [median (IQR) C-index of 75.3 (2.3) versus 75.8 

(2.0)], random survival forests [75.1 (1.4) versus 76.0 (1.6)], naive ensemble averaging 

[75.3 (1.4) versus 76.2 (1.6)], and weighted ensemble averaging [76.2 (1.4) versus 76.9 

(1.5)] approaches. Across all models and feature subsets, the weighted ensemble averaging 

with both clinical and radomic features yielded the highest C-index (76.9%). In subgroup 

analyses, we found that predictions on younger (≤ 65 years old) and healthier (≤ 9 

comorbidities) patients were more accurate than those on older (> 65 years) patients and 

those with higher comorbidity burden (> 9 comorbidities). However, including imaging data 

resulted in greater improvement in prediction performance in all subgroups compared to 

models trained solely on clinical and demographic risk factors. The improvement realized 

with the addition of radiomic features was higher, on average, among older and sicker 

patients across all predictive models (Figure 7). Finally, we plotted Kaplan-Meier survival 

estimates for each patient subgroup, stratified by high- versus low-predicted risk scores from 

our ensemble-averaged model. Our results demonstrate significant differences in survival 

between high- and low-risk patients across all subgroup comparisons (log-rank p-values < 

0.0001), with greater differences among older and sicker patients (Figure 8).

6.4. Feature Importance.

Figure 9 reports the values of feature importance (as defined in Section 4.3) for the set 

of selected features. Age was the most important predictor of post-ICU mortality across 

all methods, followed by vaccination status. Further, we found that certain prevalent 

comorbidity conditions such as indications of fluid and electrolyte disorders, metastatic 

cancers, neurological disorders, renal failure, physiologic measurements such as oxygen 

saturation (SpO2), need for respiratory support, and a patient’s race were predictive of 

mortality to a lesser extent. Important imaging texture features included gray-level non-

uniformity and gray level variance, measures of the variability pixel intensity values in the 

image, large area high gray level emphasis, a measure of the proportion of the image with 
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larger sized zones of higher gray-level values, zone entropy, a measure of heterogeneity in 

the texture patterns (Zwanenburg et al., 2020).

6.5. Associations between Selected Risk Factors and Mortality.

We considered the selected risk factors in a fully-adjusted Cox proportional hazards model. 

Table 3 presents the estimated hazard ratios (HR) and 95% confidence intervals (CI), 

showing that older age (HR: 1.03; CI: 1.03–1.04), indications of fluid and electrolyte 

disorders (HR: 3.12; CI: 2.21–4.40), metastatic cancers (HR: 1.51; CI: 1.25–1.83), 

neurological disorders (HR: 1.60; CI: 1.33–1.92), renal failure (HR: 1.32; CI: 1.09–1.61), 

and need for respiratory support (HR: 1.39; CI: 1.12–1.72) were significantly associated 

with higher post-ICU mortality, while higher oxygen saturation (HR: 0.93, CI: 0.90–

0.97) was significantly associated with lower mortality. We also found that being either 

partially (HR: 0.45; CI: 0.27–0.75) or fully (HR: 0.32; CI: 0.22–0.45) vaccinated was also 

significantly associated with lower mortality in a seemingly dose-response relationship. We 

applied a Cox model including interactions between all other selected risk factors and the 

dominant variant at diagnosis; see Table 3. To assess how the effects of risk factors differed 

across the different waves of the pandemic, we considered the significant interactions with 

each main effect (where the original variant served as the reference group). The estimated 

associations for each risk factor during each wave of the pandemic were largely consistent, 

except for vaccination status during the Alpha wave, where the effect of vaccination was 

weaker in this wave.

7. Discussion

7.1. What We Have Addressed.

The COVID-19 pandemic has led to a proliferation of machine learning tools aimed at 

predicting increasingly severe outcomes, such as infection, hospitalization, ICU escalation, 

and mortality. Early in the pandemic, accurate risk stratification was crucial to effectively 

allocate resources (F.-Y. Cheng et al., 2020; Hartman et al., 2020; Knight et al., 2020; Van 

Singer et al., 2021). Given the severity of COVID-19, understanding post-ICU outcomes 

is of particular interest as patients may experience lasting pulmonary and neurological 

morbidity. This study aimed to explore the prognostic value of radiomic features among 

COVID-19 patients who required ICU-level care. Our findings revealed that age, vaccination 

status, fluid and electrolyte disorders, metastatic cancers, neurological disorders, oxygen 

saturation, and race were important risk factors. In terms of imaging features, pixel 

heterogeneity measures proved significant. We observed improvements in performance 

across four individual prediction models and an ensemble predictor when including imaging 

data in addition to clinical risk factors. Furthermore, the improvement with the inclusion of 

radiomic features was higher among older and sicker patients.

Our work exemplified a valuable experience of leveraging the vast resources available 

through DataDirect and the Precision Health Initiative to identify important radiomic 

features for predicting COVID-19 survival among a highly vulnerable subset of patients with 

the most severe disease. By integrating electronic health records and chest X-ray databases, 

we have created a framework that allows for convenient linkage between imaging studies 
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and essential clinical information. Our standardized workflow for image pre-processing, 

feature selection, and predictive modeling ensures reproducibility of results. Furthermore, 

our findings were consistent with the growing literature on ICU outcomes for COVID-19 

patients. For example, a post-ICU mortality rate of 21.57% was reported in the first wave of 

the pandemic (Ramani et al., 2021), a rate similar to what we observed (21.41%); like our 

study, other authors also identified age, gender, sequential organ failure assessment score, 

Charlson Comorbidity Index score, Palliative Performance Score, and need for respiratory 

support as risk significant factors for COVID-19 mortality (Lorenzoni et al., 2021).

Our image analysis results were also consistent with several recent studies that explored the 

use of COVID-19 chest X-ray images as COVID-19 predictors. For example, a previous 

study identified 51 radiomic features associated with COVID-19, six of which were 

predictive of short-term mortality, including low gray-level emphasis and size zone matrix 

non-uniformity (Ferreira Junior et al., 2021), which coincided with our findings. A deep 

learning algorithm was proposed to extract features that correlated with radiologic labels 

predicting worsening disease trajectory and the need for mechanical ventilation, and AUCs 

were reported to range from 0.64 to 0.74, and 0.81 in an open-access dataset (Gourdeau et 

al., 2022a; Gourdeau et al., 2022b), which were close to our results as well; inclusion of 

imaging data was found to improve prediction, with an AUC of 0.70 and an accuracy of 

0.69, compared to an AUC of 0.65 and an accuracy of 0.66 using clinical data alone (J. 

Cheng et al., 2022), which corroborated with our findings.

7.2. Risk Factors of Potential Interest.

By and far, the most important risk factor across all methods was age (Ji et al., 2020; 

Richardson et al., 2020; Weng et al., 2020). Further sub-group analysis revealed that our 

methods had higher predictive utility among patients 65 years of age or younger; however, 

the subgroup containing patients over 65 years saw the most improvement in prognostication 

with the additional information from their chest X-rays. This is consistent with our previous 

work, which considered outcomes of varying severity, including inpatient mortality among 

all hospitalized patients (Salerno, Sun, et al., 2021; Sun et al., 2022). Recent studies have 

supported these results, including a systematic review and meta analysis, which showed 

that older age was significantly associated with disease severity, as well as six prognostic 

endpoints (Fang et al., 2020; Figliozzi et al., 2020; Güllü et al., 2021).

Vaccination status was another factor that was shown to be predictive across all methods 

explored in this analysis, with partial or full vaccination having a statistically significant 

protective effect with a dose-response relationship in fully-adjusted models for associations. 

We note that this result has mixed support in the recent literature. Many studies have 

confirmed that COVID-19 vaccination is efficacious in reducing rates of endpoints such 

as severe disease, hospital admission, ICU escalation, or need for respiratory support/

mechanical ventilation; however, with respect to post-ICU mortality, these studies failed 

to find statistically significant differences in outcomes (AlQahtani et al., 2022; Freund et 

al., 2022; Grasselli et al., 2022). One recent study found differences in mortality rates by 

patient vaccination status, specifically among non-immunocompromised patients as opposed 

to those patients who were identified as being immunocompromised (Singson et al., 2022). 
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Overall, the vaccination rate in this patient population was low, particularly in later waves of 

the pandemic, lending additional evidence to the underuse of vaccines in populations with 

severe diseases.

Additional comorbid conditions, including metastatic cancers, neurologic, and fluid and 

electrolyte disorders, were also found to be predictive of post-ICU mortality, as well 

as associated with this outcome in adjusted models. It is well known that patients 

who are immunocompromised, particularly those with late-stage cancers, are more likely 

to experience severe complications from COVID-19, such as acute respiratory distress 

syndrome, liver injury, myocardial injury, and renal insufficiency, leading to worsened 

outcomes (Han et al., 2022; Yang et al., 2020; Zhang et al., 2021). Beyond the direct 

impact of COVID-19 infection, indirect effects of the pandemic such as disruptions to 

cancer diagnosis, management, and surgical intervention have also been shown to impact 

years of life lost and attributable deaths in these vulnerable populations, necessitating the 

development of strategies for resource allocation and care management early on (Hartman 

et al., 2020; Sud et al., 2020). Lastly, the presence of fluid and electrolyte disorders on ICU 

escalation implies an increased severity of a patient’s disease course, especially given what 

is known about COVID-19 involvement across multiple organ systems (Chiam et al., 2021; 

De Carvalho et al., 2021; Nahkuri et al., 2021; Pourfridoni et al., 2021).

We found oxygen saturation to be the only physiologic measurement under our 

consideration that was predictive of mortality. Oxygen saturation is known to be indicative 

of worsening outcomes for patients with COVID-19, especially as a precursor to acute 

respiratory distress syndrome and mortality (Bhatraju et al., 2020; Matthay et al., 2020; 

Zhao et al., 2020). Median oxygen saturation was 95.57% in our patient population. This 

is notably low, given that roughly 30% of patients were receiving supplemental oxygen 

support prior to ICU escalation, and thus may be reflective of progressive hypoxia or future 

respiratory decompensation.

Important radiomic features included gray level non-uniformity, zone entropy, gray level 

variance, and large area high gray level emphasis, which characterize the heterogeneity in 

the texture patterns and variability of pixel intensity values on chest X-ray (Zwanenburg et 

al., 2020). Our previous work reported similar findings among hospitalized patients with 

COVID-19. Namely, we found that zone entropy and dependence non-uniformity, measures 

of feature heterogeneity, were predictive of in-hospital mortality, in addition to median pixel 

intensity and large dependence high gray level emphasis (Sun et al., 2022). Similar results 

were reported (Varghese et al., 2021).

7.3. Considerations on Using Image Data for COVID-19 ICU Outcome Prediction.

In our study, a 2% increase in the C-index, resulting from including radiomic features, 

translates to correctly ranking approximately 50,000 more patient pairs regarding their 

mortality risk out of a total of 2,618,616 possible pairs. This is meaningful, especially given 

the clinical complexity of these patients, many of whom suffer from multi-organ failure and 

multiple comorbidities. Our findings suggest that the greatest improvement in prognostic 

utility is among older and sicker patients, typically challenging to risk-stratify in acute care 

settings. Importantly, the use of imaging alongside clinical indicators for prognostication 
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in COVID-19 acute care settings is relatively novel. X-ray images in the COVID-19 ICU 

population are primarily used for specific medical decisions, like dosing diuretics, adjusting 

ventilator settings, or placing endotracheal tubes and central venous catheters. However, 

our data indicate that X-rays in the COVID-19 ICU population can be meaningfully used 

for risk stratification and prognostication, which could play a crucial role in informing the 

overall course of a patient’s ICU stay. Nevertheless, X-rays introduce additional burdens for 

patients, physicians, and higher medical costs. Identifying subgroups where these imaging 

features are valuable for risk prediction can guide clinical practice. Furthermore, it is worth 

noting that multi-modal data and the integration of radiomic data with clinical risk factors 

are not commonly utilized, especially in the context of COVID-19. This patient population 

presents unique challenges, as the presence of significant findings on X-rays does not always 

correlate with a poor outcome. For example, some younger, healthier patients with bilateral 

infiltrates on chest X-rays may not require hospital-level care (Long et al., 2020). Knowing 

when and for whom X-rays are useful is essential information to guide clinical practice.

We discussed the use of machine learning for predicting COVID-19 outcomes and 

constructing a dependable ensemble risk score. Our main objective was to evaluate the 

added prognostic value of imaging features in clinical prediction models. Our findings 

demonstrated enhancements in predictive accuracy, especially within specific patient 

subgroups. In our approach, we summarized data from chest X-ray images using texture 

features, which quantify pixel intensity distributions and heterogeneity through various 

derived metrics. Our aim was to offer a statistically rigorous, interpretable, and replicable 

method for integrating imaging information into predictive models. Other potential analytic 

choices, as discussed above, include radiologist-derived severity scores and deep learning 

of the raw images (J. Cheng et al., 2022; Gourdeau et al., 2022a; Gourdeau et al., 

2022b). While these approaches may be subject to certain biases, in future work, we 

believe it is necessary to compare various approaches to better understand their relative 

strengths and pitfalls. Other approaches, such as methods developed for image segmentation, 

are promising, but these approaches often rely on supervised learning, meaning that 

segmentation maps are necessary to train the models. As no segmentation maps exist for 

COVID-19 images, utilizing this information effectively is still an open problem.

Our framework enabled us to leverage survival data, with a relatively long observation 

period, to identify features that were most strongly associated with patient outcomes. 

Throughout our workflow, we fully utilized the time-to-event data as the outcomes for 

feature screening and selection, predictive modeling, and the final associative model. This is 

in contrast to many predictive studies that use dichotomous outcomes such as death (yes/no), 

without considering the duration of followup or the possibility of censoring. However, there 

is room for future development and improvement by incorporating longitudinal clinical and 

X-ray information in our prediction model. This could provide a better understanding of 

how patient survival experience changes throughout the course of the disease. Further, we 

performed marginal screening on each feature, with a significance threshold of α = 0.05 for 

retaining features. Alternative screening approaches, as compared to marginal screening, 

could be to conduct Cox regression conditional on a small number of principal components 
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or other lower-dimensional representation of the data (Liu et al., 2017), or to use the false 

discovery rate to control the number of retained features (Benjamini & Hochberg, 1995).

Another area of consideration in this study was whether the model trained on current data, 

which included original, Alpha, and Delta variants, could be easily applied in the future 

as new variants may evolve and therapeutic practices change. We considered the dominant 

variant at diagnosis and a patient’s vaccination status as proxies for how the pandemic has 

evolved. Our model showed a degree of robustness to differences in the dominant variant 

when we explored our selected features in associative models.

We primarily focused on portable chest X-ray as the imaging modality due to its 

convenience and efficacy in triaging emergent cases. However, other imaging platforms, 

such as chest CT scans, may provide higher quality imaging, especially in settings where 

patients remain for extended periods. It would be valuable to explore the differences in 

information that can be obtained from these imaging modalities and incorporate these 

insights into our predictive models. Doing so can help us better comprehend the underlying 

mechanisms of disease progression and ultimately enhance patient outcomes, as well as lead 

to future work extending these methods to analyze the use of imaging features to improve 

prediction of treatment responses, furthering our understanding of imaging-guided therapy 

for COVID-19 (Bard, 2021).

Finally, we recommend the use of an ensemble learning approach to improve risk prediction. 

By integrating risk predictions from established and effective machine learning techniques, 

ensembling enables us to harness more information to create more precise predictions. 

Our approach to weighted ensembling involved optimizing the ensembling weights and 

considering the shared variability of the individual risk scores. However, other ensembling 

approaches such as Super Learner can be used, which weights each algorithm in the 

ensemble by its cross-validation performance (Van der Laan et al., 2007). Using a ‘smart’ 

ensembling approach, in general, could provide valuable insights for clinical decision-

making and aid clinicians in identifying patients with a higher risk of mortality following 

escalation to intensive care.

7.4. Limitations.

This is a single-center study at Michigan Medicine. Enhancing generalizability would 

require external validation, including predictive modeling on an independent validation set. 

Additionally, our data predates the dominance of the Omicron variant due to database update 

delays, warranting a future analysis on an Omicron cohort for the robustness of results. 

Patients transferred from out of state, especially those needing higher care levels, may 

lack accurate immunization records, potentially weakening vaccine effects. Differentiating 

between vaccine types and booster doses could enhance our understanding of vaccination’s 

prognostic value. Our sensitivity analysis indicates that the performance of predictive 

models based on mean imputation declines with an increasing proportion of missing data. 

Exploring alternative multiple imputation techniques, particularly those tailored for machine 

learning, may enhance the prognostic utility of the proposed approach, particularly in 

scenarios where data are missing at random. (Lo et al., 2019; Rubin & Schenker, 1986). 
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Finally, extending these methods to handle longitudinal data could better quantify changes in 

a patient’s clinical course, informing therapeutic decisions.

7.5. Conclusions.

This work presents an analytic workflow for combining clinical, socio-demographic, and 

radiomic risk factors for COVID-19 mortality after escalation to an intensive care setting. 

Our findings demonstrate the additional prognostic benefits of incorporating imaging 

information into various prediction models, particularly among certain vulnerable patient 

sub-populations. These results are supported by a growing body of literature and our 

previous experience working with data on COVID-19 patients at Michigan Medicine, as 

well as the resources available to us through DataDirect. The DataDirect COVID-19 clinical 

data and X-ray database is a crucial part of a new precision health initiative established in 

Michigan Medicine during the pandemic, and its infrastructure has provided an invaluable 

platform for facilitating our work. Future studies that leverage detailed patient information in 

EHRs, such as patient demographics, comorbidity conditions, physiological measurements, 

treatment history, and temporal relationships between infection and subsequent outcomes, 

will continue to provide insights into the lingering impact of the pandemic, informing the 

long-term management of patients recovering from COVID-19.
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Appendix A.: Demographic and Clinical Predictors

A.1. Neighborhood Socioeconomic Status.

We defined four composite measures of neighborhood socioeconomic status at the 

US census tract-level based on patient residences (Salerno, Zhao, et al., 2021). 

These composites, derived from the National Neighborhood Data Archive, measured a 

neighborhood’s (1) affluence, (2) disadvantage, (3) ethnic immigrant concentration, and (4) 

education, and were defined in the average proportion of adults within a census tract fall 

meeting each respective measure’s criteria. Each measure was aggregated and was further 

categorized by quartiles (Table A2).

Affluence: the proportion of households with income greater than $75K, proportion 

of the population aged 16+ employed in professional or managerial occupations, and 

proportion of adults with bachelor’s degrees or higher.

Disadvantage: the proportion of non-Hispanic Black, proportion of female-headed 

families with children, proportion of households with public assistance income or 
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food stamps, proportion of families with income below the federal poverty level, and 

proportion of the population aged 16+ unemployed.

Ethnic Immigrant Concentration: the proportion of Hispanic and proportion of 

foreign born.

Education: the proportion of adults with less than a high school diploma.

A.2. Elixhauser Comorbidity Conditions.

Table A1 lists the comorbidity conditions considered as risk factors in this analysis and the 

corresponding ICD-10 codes used to define them. Each comorbidity was coded as a binary 

indicator, flagging whether a patient carried any ICD-10 code associated with the condition 

at baseline.

Table A1.

Elixhauser comorbidity conditions and associated ICD-10 codes.

Comorbidity Condition ICD-10 Codes

Congestive Heart Failure I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0

Cardiac Arrhythmias I44.1-I44.3, I45.6, I45.9, I47.x-I49.x, R00.0, R00.1, R00.8, T82.1, Z45.0, Z95.0

Valvular Disease A52.0, I05.x-I08.x, I09.1, I09.8, I34.x-I39.x, Q23.0-Q23.3, Z95.2-Z95.4

Pulmonary Circulation Disorders I26.x, I27.x, I28.0, I28.8, I28.9

Peripheral Vascular Disorders I70.x, I71.x, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8, 
Z95.9

Hypertension, Uncomplicated I10.x

Hypertension, Complicated I11.x-I13.x, I15.x

Paralysis G04.1, G11.4, G80.1, G80.2, G81.x, G82.x, G83.0-G83.4, G83.9

Neurological Disorders G10.x-G13.x, G20.x-G22.x, G25.4, G25.5, G31.2, G31.8, G31.9, G32.x, G35.x-
G37.x, G40.x, G41.x, G93.1, G93.4, R47.0, R56.x

Chronic Pulmonary Disease I27.8, I27.9, J40.x-J47.x, J60.x-J67.x, J68.4, J70.1, J70.3

Diabetes, Uncomplicated E10.0, E10.1, E10.9, E11.0, E11.1, E11.9, E12.0, E12.1, E12.9, E13.0, E13.1, 
E13.9, E14.0, E14.1, E14.9

Diabetes, Complicated E10.2-E10.8, E11.2-E11.8, E12.2-E12.8, E13.2-E13.8, E14.2-E14.8

Hypothyroidism E00.x-E03.x, E89.0

Renal Failure I12.0, I13.1, N18.x, N19.x, N25.0, Z49.0-Z49.2, Z94.0, Z99.2

Liver Disease B18.x, I85.x, I86.4, I98.2, K70.x, K71.1, K71.3-K71.5, K71.7, K72.x-K74.x, 
K76.0, K76.2-K76.9, Z94.4 Peptic ulcer disease, excluding bleeding: K25.7, 
K25.9, K26.7, K26.9, K27.7, K27.9, K28.7, K28.9

Lymphoma C81.x-C85.x, C88.x, C96.x, C90.0, C90.2

Metastatic Cancer C77.x-C80.x

Solid Tumour without Metastasis C00.x-C26.x, C30.x-C34.x, C37.x-C41.x, C43.x, C45.x-C58.x, C60.x-C76.x, 
C97.x

Rheumatoid Arthritis/Collagen 
Vascular

L94.0, L94.1, L94.3, M05.x, M06.x, M08.x, M12.0, M12.3, M30.x,

Diseases M31.0-M31.3, M32.x-M35.x, M45.x, M46.1, M46.8, M46.9

Coagulopathy D65-D68.x, D69.1, D69.3-D69.6

Obesity E66.x

Weight Loss E40.x-E46.x, R63.4, R64
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Comorbidity Condition ICD-10 Codes

Fluid and Electrolyte Disorders E22.2, E86.x, E87.x

Blood Loss Anaemia D50.0

Deficiency Anaemia D50.8, D50.9, D51.x-D53.x

Alcohol Abuse F10, E52, G62.1, I42.6, K29.2, K70.0, K70.3, K70.9, T51.x, Z50.2, Z71.4, Z72.1

Drug Abuse F11.x-F16.x, F18.x, F19.x, Z71.5, Z72.2

Psychoses F20.x, F22.x-F25.x, F28.x, F29.x, F30.2, F31.2, F31.5

Depression F20.4, F31.3-F31.5, F32.x, F33.x, F34.1, F41.2, F43.2

TABLE A2.

Summary of descriptive characteristics for the study population of 2,289 patients and 

stratified by predominant COVID-19 variant at diagnosis.

Characteristic Overall1
n = 2,289

Original1
n = 1,528

Alpha1
n = 320

Delta1
n = 441

p-value2

Age, years 61 (43, 72) 62 (47, 73) 59 (36, 70) 59 (38, 72) <0.001

Sex 0.8

 Female 938 (41%) 630 (41%) 126 (39%) 182 (41%)

 Male 1,351 (59%) 898 (59%) 194 (61%) 259 (59%)

Race <0.001

 White 1,610 (70%) 1,030 (67%) 229 (72%) 351 (80%)

 Black 436 (19%) 326 (21%) 58 (18%) 52 (12%)

 Other/Unknown 243 (11%) 172 (11%) 33 (10%) 38 (8.6%)

Ethnicity 0.9

 Hispanic or Latino 101 (4.4%) 64 (4.2%) 15 (4.7%) 22 (5.0%)

 Non-Hispanic or 
Latino

2,104 (92%) 1,409 (92%) 291 (91%) 404 (92%)

 Refused/Unknown 84 (3.7%) 55 (3.6%) 14 (4.4%) 15 (3.4%)

Body Mass Index 29 (24, 34) 29 (25, 34) 29 (23, 33) 28 (24, 34) 0.3

Alcohol Abuse 310 (14%) 222 (15%) 36 (11%) 52 (12%) 0.15

Blood Loss, Anemia 519 (23%) 386 (25%) 66 (21%) 67 (15%) <0.001

Cardiac Arrhythmias 1,795 (78%) 1,230 (80%) 238 (74%) 327 (74%) 0.003

Chronic Pulmonary 
Disease

1,094 (48%) 790 (52%) 133 (42%) 171 (39%) <0.001

Coagulopathy 944 (41%) 672 (44%) 121 (38%) 151 (34%) <0.001

Congestive Heart Failure 1,029 (45%) 733 (48%) 135 (42%) 161 (37%) <0.001

Deficiency, Anemia 725 (32%) 551 (36%) 80 (25%) 94 (21%) <0.001

Depression 1,001 (44%) 717 (47%) 139 (43%) 145 (33%) <0.001

Diabetes 1,048 (46%) 755 (49%) 126 (39%) 167 (38%) <0.001

Drug Abuse 416 (18%) 299 (20%) 49 (15%) 68 (15%) 0.050

Fluid and Electrolyte 
Disorders

1,768 (77%) 1,218 (80%) 217 (68%) 333 (76%) <0.001

Hypertension 1,712 (75%) 1,207 (79%) 226 (71%) 279 (63%) <0.001

Hypothyroidism 528 (23%) 379 (25%) 70 (22%) 79 (18%) 0.009
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Characteristic Overall1
n = 2,289

Original1
n = 1,528

Alpha1
n = 320

Delta1
n = 441

p-value2

Liver Disease 708 (31%) 506 (33%) 88 (28%) 114 (26%) 0.005

Lymphoma 225 (9.8%) 156 (10%) 37 (12%) 32 (7.3%) 0.10

Metastatic Cancer 516 (23%) 355 (23%) 78 (24%) 83 (19%) 0.10

Obesity 1,137 (50%) 783 (51%) 163 (51%) 191 (43%) 0.012

Neurological Disorders 802 (35%) 587 (38%) 98 (31%) 117 (27%) <0.001

Paralysis 329 (14%) 243 (16%) 44 (14%) 42 (9.5%) 0.003

Peptic Ulcer Disease, 
Excluding Bleeding

290 (13%) 205 (13%) 45 (14%) 40 (9.1%) 0.039

Peripheral Vascular 
Disorders

917 (40%) 653 (43%) 129 (40%) 135 (31%) <0.001

Psychoses 294 (13%) 221 (14%) 36 (11%) 37 (8.4%) 0.002

Pulmonary Circulation 
Disorders

778 (34%) 555 (36%) 104 (32%) 119 (27%) 0.001

Renal Failure 1,017 (44%) 757 (50%) 121 (38%) 139 (32%) <0.001

Autoimmune Diseases 407 (18%) 293 (19%) 56 (18%) 58 (13%) 0.014

Solid Tumor Without 
Metastasis

520 (23%) 360 (24%) 73 (23%) 87 (20%) 0.2

Valvular Disease 698 (30%) 505 (33%) 85 (27%) 108 (24%) <0.001

Weight Loss 822 (36%) 614 (40%) 100 (31%) 108 (24%) <0.001

Oxygen Saturation 95.57 (93.75, 
97.28)

95.56 (93.80, 
97.29)

95.53 (93.96, 
97.50)

95.67 (93.50, 
97.10)

0.7

Temperature 98.30 (97.93, 
98.81)

98.33 (97.95, 
98.93)

98.18 (97.87, 
98.59)

98.30 (97.92, 
98.69)

<0.001

Respiratory Rate 19.7 (17.8, 24.0) 19.5 (17.8, 23.7) 19.6 (17.3, 
23.2)

20.5 (18.0, 
24.9)

0.003

Diastolic Blood Pressure 67 (61, 74) 67 (61, 74) 67 (60, 74) 66 (60, 74) 0.4

Systolic Blood Pressure 122 (110, 137) 123 (110, 138) 121 (110, 136) 120 (109, 135) 0.3

Heart Rate 85 (73, 98) 85 (74, 98) 84 (73, 95) 85 (73, 99) 0.5

Respiratory Support 0.6

 No Respiratory 
Support

1,376 (71%) 918 (72%) 189 (69%) 269 (70%)

 Respiratory Support 563 (29%) 362 (28%) 84 (31%) 117 (30%)

Affluence Quartile <0.001

 1 530 (25%) 391 (27%) 66 (22%) 73 (18%)

 2 496 (23%) 327 (23%) 72 (24%) 97 (23%)

 3 547 (25%) 333 (23%) 79 (27%) 135 (32%)

 4 590 (27%) 398 (27%) 81 (27%) 111 (27%)

Disadvantage Quartile <0.001

 1 659 (30%) 398 (27%) 103 (35%) 158 (38%)

 2 547 (25%) 354 (24%) 79 (27%) 114 (27%)

 3 445 (21%) 316 (22%) 49 (16%) 80 (19%)

 4 512 (24%) 381 (26%) 67 (22%) 64 (15%)

Ethnic Immigration 
Quartile

0.011

 1 1,004 (46%) 643 (44%) 137 (46%) 224 (54%)
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Characteristic Overall1
n = 2,289

Original1
n = 1,528

Alpha1
n = 320

Delta1
n = 441

p-value2

 2 777 (36%) 533 (37%) 114 (38%) 130 (31%)

 3 336 (16%) 240 (17%) 38 (13%) 58 (14%)

 4 46 (2.1%) 33 (2.3%) 9 (3.0%) 4 (1.0%)

Education Quartile <0.001

 1 750 (35%) 478 (33%) 113 (38%) 159 (38%)

 2 708 (33%) 450 (31%) 100 (34%) 158 (38%)

 3 518 (24%) 378 (26%) 59 (20%) 81 (19%)

 4 187 (8.6%) 143 (9.9%) 26 (8.7%) 18 (4.3%)

Vaccination Status 0.002

 Not Vaccinated 1,914 (84%) 1,255 (82%) 262 (82%) 397 (90%)

 Partially Vaccinated 84 (3.7%) 61 (4.0%) 15 (4.7%) 8 (1.8%)

 Fully Vaccinated 291 (13%) 212 (14%) 43 (13%) 36 (8.2%)

1
Median (Q1, Q3); n (%)

2
Kruskal-Wallis rank sum test; Pearson’s Chi-squared test

Appendix B.: Simulations to Assess the Robustness of Mean Imputation

After data preprocessing, variables with no more than 30% missing data were included in 

our analysis. As shown in Table B1, diastolic blood pressure (78.90% missing), systolic 

blood pressure (78.90% missing), religion (36.30% missing), and marital status (32.90% 

missing) had more than 30% missing data. They were excluded in the data preprocessing 

procedure. Although the preferred language only had 0.57% missing data, it was also 

excluded, as 97% of non-missing cases were English. For computational convenience, 

missing values in the included variables were imputed using mean or mode, as described 

in Section 2.2. The missing percentages among these variables range from 4.19% (BMI) to 

19.05% (temperature); see Table B1.

Table B1.

Summary of missingness for the study population of 2,289 patients. Predictors with no 

missing values were not included in this table for conciseness. Predictors with greater than 

30% missing data were excluded from the analysis. Missing values of predictors included in 

the analysis were imputed by mean (for continuous variables) or mode (for categorical 

variables).

Characteristic Number (%) Missing How Handled

Diastolic Blood Pressure (Invasive from Arterial Line) 1,806 (78.90%) Excluded

Systolic Blood Pressure (Invasive from Arterial Line) 1,806 (78.90%) Excluded

Religion 831 (36.30%) Excluded

Marital Status 753 (32.90%) Excluded

Temperature 436 (19.05%) Imputed

Oxygen Saturation 402 (17.56%) Imputed
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Characteristic Number (%) Missing How Handled

Respiratory Rate 400 (17.47%) Imputed

Heart Rate 393 (17.17%) Imputed

Respiratory Support 350 (15.29%) Imputed

Diastolic Blood Pressure (Non-Invasive from Cuff) 162 ( 7.08%) Imputed

Systolic Blood Pressure (Non-Invasive from Cuff) 162 ( 7.08%) Imputed

Affluence Quartile 126 ( 5.50%) Imputed

Disadvantage Quartile 126 ( 5.50%) Imputed

Ethnic Immigration Quartile 126 ( 5.50%) Imputed

Education Quartile 126 ( 5.50%) Imputed

Body Mass Index 96 ( 4.19%) Imputed

Preferred Language1 13 ( 0.57%) Excluded

1
Preferred language was additionally excluded as a predictor, as 97% of the non-missing cases were English speaking.

We assessed the performance of the mean imputation by varying the percentage of 

missingness for each covariate from the ideal case (0%) to 10% and 20%, corresponding 

respectively to the average and maximal missingness percentage among the included 

variables in the real data analysis. First, we generated the data as done in Section 5. Then 

we additionally simulated missingness under the assumption of missing at random (MAR), 

i.e., the missing patterns solely depend on the observed data (Rubin, 1976). Let Ri, j be the 

missing indicator for covariate j of subject i, Xi, j, e.g., Ri, j = 1 if Xi, j is observed, and = 0 

otherwise. For j = 1, …, 22, Ri, j is generated from the following model:

logit Pr Ri, j = 1 ∣ Xi, −j = a0 + Xi, 1γ1 + ⋯ + Xi, j − 1γj − 1 + Xi, j + 1γj + 1 + ⋯ + Xi, 22γ22,

where logit x = ln x/ 1 − x , Xi, − j  is Xi excluding variable j, the γ coefficients were 

generated from U − a, a , and a and a0 were chosen to achieve approximate missingness 

rates of 10% or 20%, corresponding respectively to the average and maximal missingness 

percentage among the included variables in the real data analysis. Since the covariates 

were generated through a multivariate normal distribution with non-zero correlations, mean 

imputation may not be the most optimal method for imputation. However, due to its 

computational efficiency, we aimed to evaluate its performance, particularly in situations 

where the proportion of missing data is not excessively high. The results suggest that the 

conclusions derived from scenarios with complete data hold true even in the presence of 

missing data, even when imputed using means. For example, if the linear assumption holds, 

it is evident that all prediction models based on mean imputed values exhibit commendable 

performance, with the Cox model with linear log hazards consistently outperforming the 

others across all levels of censoring rates when the missing percentage is less than 10%. The 

performance of the proposed weighted ensemble method closely aligns with that of the Cox 

model. When the missing percentage is 20%, and the censoring rate is less than 80%, the 

performance of the weighted ensemble method is better than the other models. On the other 

hand, if the linear assumption fails, the weighted ensemble averaging method with mean 

imputed values consistently outperforms all other competing methods, achieving the highest 

median C-index across all levels of censoring rates. However, the effectiveness of predictive 
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models based on mean imputation diminishes as the proportion of missing data increases. 

The decline is expected, given that the covariates were generated from a multivariate normal 

distribution with non-zero correlations. Mean imputation may overlook such information.

Table B2.

Comparisons of median C-indices of six machine learning algorithms across varying 

censoring rates (40% to 80%) under a linear log hazard model with various proportions of 

missing data for each covariate (0%, 10%, 20%). The table displays median C-index values 

from 100 experiments, along with their interquartile ranges.

Censoring Rate

40% 60% 70% 80%

0% Missing

Cox Model with Linear Log Hazards 85.9 (1.6) 87.9 (1.6) 88.0 (1.8) 90.1 (1.5)

Survival Support Vector Machines 85.8 (1.6) 87.8 (1.6) 87.8 (1.9) 89.8 (1.4)

Survival Gradient Boosting 84.6 (1.7) 86.3 (1.8) 86.1 (2.1) 88.0 (1.9)

Random Survival Forests 83.1 (2.0) 84.8 (1.9) 85.3 (2.3) 86.9 (2.3)

Naive Ensemble Averaging 83.1 (2.0) 85.0 (1.9) 85.5 (2.3) 87.3 (2.1)

Weighted Ensemble Averaging 85.6 (1.4) 87.4 (1.7) 87.4 (1.8) 89.5 (1.5)

10% Missing

Cox Model with Linear Log Hazards 83.6 (2.3) 85.2 (2.1) 85.8 (2.4) 87.7 (2.6)

Survival Support Vector Machines 83.6 (2.1) 85.2 (2.1) 85.7 (2.3) 87.6 (2.8)

Survival Gradient Boosting 82.2 (2.2) 83.9 (2.3) 84.2 (2.6) 85.9 (2.7)

Random Survival Forests 80.9 (2.1) 82.6 (2.5) 83.3 (2.9) 84.9 (2.7)

Naive Ensemble Averaging 81.0 (2.1) 82.8 (2.5) 83.4 (2.8) 85.2 (2.8)

Weighted Ensemble Averaging 83.3 (1.9) 85.1 (2.1) 85.4 (2.5) 87.2 (2.6)

20% Missing

Cox Model with Linear Log Hazards 81.5 (2.2) 83.5 (3.4) 83.2 (3.3) 86.1 (3.8)

Survival Support Vector Machines 81.7 (2.2) 83.7 (2.6) 83.3 (3.2) 85.9 (3.3)

Survival Gradient Boosting 80.7 (2.3) 82.9 (3.0) 82.7 (3.0) 84.7 (3.2)

Random Survival Forests 79.5 (2.6) 81.5 (2.9) 81.7 (2.9) 83.2 (3.1)

Naive Ensemble Averaging 79.6 (2.6) 81.6 (2.8) 81.8 (2.9) 83.6 (3.0)

Weighted Ensemble Averaging 81.8 (2.4) 83.9 (2.7) 83.4 (2.4) 85.9 (2.8)

Table B3.

Comparisons of median C-indices of six machine learning algorithms across varying 

censoring rates (40% to 80%) under a nonlinear log hazard model with various proportions 

of missing data for each covariate (0%, 10%, 20%). The table displays median C-index 

values from 100 experiments, along with their interquartile ranges.

Censoring Rate

40% 60% 70% 80%

0% Missing

Cox Model with Linear Log Hazards 65.6 (2.0) 67.8 (3.0) 69.0 (2.9) 72.5 (3.1)
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Censoring Rate

40% 60% 70% 80%

Survival Support Vector Machines 73.0 (1.7) 74.6 (1.4) 76.3 (1.8) 78.7 (2.4)

Survival Gradient Boosting 72.6 (1.3) 74.2 (1.6) 75.7 (2.1) 78.0 (2.3)

Random Survival Forests 71.5 (1.5) 73.3 (1.6) 75.2 (2.0) 77.5 (1.9)

Naive Ensemble Averaging 71.5 (1.5) 73.4 (1.6) 75.3 (2.0) 77.6 (1.9)

Weighted Ensemble Averaging 73.1 (1.1) 74.8 (1.4) 76.6 (1.6) 78.9 (1.6)

10% Missing

Cox Model with Linear Log Hazards 64.5 (1.8) 66.3 (3.3) 67.9 (3.5) 70.8 (2.8)

Survival Support Vector Machines 70.7 (1.9) 72.3 (2.2) 73.5 (1.7) 75.9 (3.0)

Survival Gradient Boosting 69.9 (2.1) 71.4 (2.0) 73.0 (2.8) 74.7 (2.7)

Random Survival Forests 69.6 (1.6) 71.3 (2.5) 72.8 (2.8) 75.1 (2.3)

Naive Ensemble Averaging 69.6 (1.6) 71.4 (2.5) 72.8 (2.9) 75.2 (2.4)

Weighted Ensemble Averaging 70.9 (1.4) 72.5 (2.1) 74.4 (2.4) 76.4 (2.5)

20% Missing

Cox Model with Linear Log Hazards 63.8 (2.0) 65.6 (3.2) 66.0 (3.4) 69.4 (4.0)

Survival Support Vector Machines 68.9 (2.1) 70.6 (2.4) 71.5 (2.3) 73.5 (3.9)

Survival Gradient Boosting 67.8 (1.9) 70.1 (2.9) 70.0 (3.3) 72.9 (3.9)

Random Survival Forests 68.1 (2.0) 69.7 (2.0) 70.9 (3.3) 73.0 (3.9)

Naive Ensemble Averaging 68.1 (2.0) 69.8 (2.0) 71.0 (3.3) 73.1 (4.0)

Weighted Ensemble Averaging 69.2 (1.5) 71.0 (2.2) 72.0 (2.9) 74.5 (3.5)
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Figure 1. 
Distribution of COVID-19 diagnoses by the time period for the 2,289 patients admitted to a 

Michigan Medicine ICU.
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Figure 2. 
Flowchart of data processing and analytic workflow
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Figure 3. 
Raw images and pre-processed images along with extracted radiomic features for two 

example patients, one patient who was observed alive at the end of follow-up (Row 1, Panels 

A-C), and one patient who died during the follow-up period (Row 2, Panels D-F). Selected 

imaging features are given for comparison.
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Figure 4. 
Flowchart of outcomes and derivation of our study population n = 2,289 .
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Figure 5. 
Kaplan-Meier curves comparing post-ICU survival among the 2,289 patients in the study 

cohort, stratified by dominant COVID-19 variant at diagnosis.
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Figure 6. 
Comparisons of C-index when using clinical and clinical + imaging-derived risk factors, 

obtained by six machine learning algorithms. Boxplots report the distribution of the C-index 

across 100 training and testing experiments for the clinical versus clinical + imaging models 

(left) and the distribution of improvement in the C-index (right).
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Figure 7. 
Prediction performance in C-index of different algorithms comparing (1) patients 65 years 

or younger versus older than 65 years, and (2) patients with ≤ 9 (median) versus > 9 

comorbidities. Plot rows depict different subsets of patients, while plot columns show the 

C-index empirical distributions for the clinical versus clinical + imaging feature models 

(left) and the distribution of improvement in the C-index (right).
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Figure 8. 
Kaplan-Meier curves for post-ICU escalation mortality, stratified by patient age and risk 

group (defined by median risk score), computed using weighted ensemble averaging models 

incorporating clinical or clinical plus imaging features within each age and comorbidity 

burden category: (A) age > 65, (b) age ≤ 65, (c) comorbidities > 9, (d) comorbidities ≤ 

9. High-risk groups are represented by solid lines, while low-risk groups are depicted with 

dashed lines.
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Figure 9. 
Feature importance for selected clinical and imaging features and the associated standard 

deviations (error bars).
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Table 1.

Comparisons of median C-indices of six machine learning algorithms across varying censoring rates (40% to 

80%) under a linear log hazard model using complete data. The table displays median C-index values from 

100 experiments, along with their interquartile ranges.

Censoring Rate

40% 60% 70% 80%

Cox Model with Linear Log Hazards 85.9 (1.6) 87.9 (1.6) 88.0 (1.8) 90.1 (1.5)

Survival Support Vector Machines 85.8 (1.6) 87.8 (1.6) 87.8 (1.9) 89.8 (1.4)

Survival Gradient Boosting 84.6 (1.7) 86.3 (1.8) 86.1 (2.1) 88.0 (1.9)

Random Survival Forests 83.1 (2.0) 84.8 (1.9) 85.3 (2.3) 86.9 (2.3)

Naive Ensemble Averaging 83.1 (2.0) 85.0 (1.9) 85.5 (2.3) 87.3 (2.1)

Weighted Ensemble Averaging 85.6 (1.4) 87.4 (1.7) 87.4 (1.8) 89.5 (1.5)
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Table 2.

Comparisons of median C-indices of six machine learning algorithms across varying censoring rates (40% to 

80%) under a nonlinear log hazard model using complete data. The table displays median C-index values from 

100 experiments, along with their interquartile ranges.

Censoring Rate

40% 60% 70% 80%

Cox Model with Linear Log Hazards 65.6 (2.0) 67.8 (3.0) 69.0 (2.9) 72.5 (3.1)

Survival Support Vector Machines 73.0 (1.7) 74.6 (1.4) 76.3 (1.8) 78.7 (2.4)

Survival Gradient Boosting 72.6 (1.3) 74.2 (1.6) 75.7 (2.1) 78.0 (2.3)

Random Survival Forests 71.5 (1.5) 73.3 (1.6) 75.2 (2.0) 77.5 (1.9)

Naive Ensemble Averaging 71.5 (1.5) 73.4 (1.6) 75.3 (2.0) 77.6 (1.9)

Weighted Ensemble Averaging 73.1 (1.1) 74.8 (1.4) 76.6 (1.6) 78.9 (1.6)
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Table 3.

Adjusted associations between identified risk factors and mortality after the ICU admission, among the 2,289 

patients with COVID-19 and stratified by dominant variant at diagnosis.

A. Without Interactions B. With Interactions by Dominant Variant

All Variants Original Alpha Delta

Characteristic HR CI HR CI HR CI HR CI

Age 1.03 (1.03, 1.04) 1.04 (1.03, 1.05) 1.04 (1.03, 1.05) 1.02 (1.01, 1.03)

Fluid & Electrolyte DiD 2.77 (1.95, 3.94) 3.19 (2.04, 4.99) 3.19 (2.04, 4.99) 1.60 (0.82, 3.13)

Vaccination Status

 Not Vaccinated - - - - - - - -

 Partially Vaccinated 0.44 (0.26, 0.75) 0.35 (0.18, 0.65) 1.66 (0.48, 5.76) 0.35 (0.18, 0.65)

 Fully Vaccinated 0.32 (0.22, 0.46) 0.29 (0.19, 0.45) 0.75 (0.31, 1.78) 0.29 (0.19, 0.45)

Metastatic Cancer 1.42 (1.17, 1.73) 1.43 (1.14, 1.80) 1.43 (1.14, 1.80) 1.43 (1.14, 1.80)

Neurological DiD 1.49 (1.24, 1.80) 1.43 (1.15, 1.78) 1.43 (1.15, 1.78) 1.43 (1.15, 1.78)

Renal Failure 1.32 (1.09, 1.61) 1.12 (0.89, 1.41) 1.12 (0.89, 1.41) 2.59 (1.58, 4.25)

Oxygen Saturation 0.93 (0.89, 0.96) 0.94 (0.89, 0.98) 0.94 (0.89, 0.98) 0.94 (0.89, 0.98)

Respiratory Support

 No - - - - - - - -

 Yes 1.39 (1.12, 1.72) 1.34 (1.04, 1.73) 1.34 (1.04, 1.73) 1.34 (1.04, 1.73)

 Unknown 1.06 (0.79, 1.42) 1.16 (0.83, 1.63) 1.16 (0.83, 1.63) 1.16 (0.83, 1.63)

Race

 White - - - - - - - -

 Black 0.98 (0.77, 1.25) 0.94 (0.71, 1.24) 0.94 (0.71, 1.24) 0.94 (0.71, 1.24)

 Other/Unknown 1.45 (1.11, 1.90) 1.40 (1.03, 1.90) 4.35 (1.94, 9.76) 1.40 (1.03, 1.90)

Gray Level Nonuniformity 1.02 (0.88, 1.18) 1.01 (0.84, 1.20) 1.01 (0.84, 1.20) 1.01 (0.84, 1.20)

Zone Entropy 1.03 (0.92, 1.16) 1.10 (0.94, 1.28) 1.10 (0.94, 1.28) 1.10 (0.94, 1.28)

Gray Level Variance 1.18 (1.07, 1.31) 1.20 (1.06, 1.35) 1.20 (1.06, 1.35) 1.20 (1.06, 1.35)

Large Area High Gray 1.11 (1.01, 1.22) 1.12 (1.01, 1.25) 1.12 (1.01, 1.25) 1.12 (1.01, 1.25)

Level Emphasis

Note: HR, Hazard Ratio; CI, 95% Confidence Interval; DiD, Disorders.
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