Skip to main content
. 2024 Jul 5;10(27):eadp3353. doi: 10.1126/sciadv.adp3353

Fig. 3. IR and NIR transient absorption spectroscopy of injected electrons in the conduction band of TiO2.

Fig. 3.

(A) Experimental setup and cartoon illustration of visible pump and NIR or IR probe transient absorption spectroscopy to interrogate the dynamics of injected electrons through direct and indirect charge transfer into the TiO2 conduction band for AuNR@TiO2 heterostructures. (B) Steady-state absorption spectrum of a AuNR@TiO2 film. (C) Ultrafast IR transient absorption spectra of AuNR@TiO2 heterostructures probed at 4.9 to 5.1 μm following 515-nm excitation in units of mili optical density (mOD). The green box indicates the probe wavelength of 5 μm used for analyzing the dynamics shown in (D). (D) Transient absorption dynamics at 5 μm for TiO2 with 345-nm (black) and 515-nm excitation (cyan), AuNRs@TiO2 with 515-nm excitation(green), and AuNRs with 515-nm excitation (pink). (E) Experimentally derived values of ΔAmax are shown as a function of absorbed (abs.) photon density using pump fluence–dependent experiments for the TiO2 film with 345-nm pump and 5-μm probe (black circles) and for AuNRs@TiO2 with 515-nm pump and 5-μm probe (black squares). Similar experiments with a 1.15-μm probe are shown for TiO2 excited with 266-nm pump (red circles) and for AuNRs@TiO2 with 515-nm pump (red squares) and 650-nm pump (red triangles and inset) as a function of absorbed photon density. Table S1 lists the fitted slopes.