Table 2. Architecture of the proposed CNN model for binary classification (one-vs-all).
Layer Name | Activation Size |
---|---|
Image Input | 224 × 224× 3 |
Conv1 (7 × 7, 64) Stride 2, BN, Relu, MAP-2 | 112 × 112× 64 |
Conv2a (3 × 3, 64) Stride 1, BN, Relu | 56 × 56× 64 |
Conv2b (3 × 3, 64) Stride 1, BN, Relu | 56 × 56× 64 |
Conv3a (3 × 3, 128) Stride 2, BN, Relu | 28 × 28× 128 |
Conv3b (3 × 3, 128) Stride 1, BN, Relu | 28 × 28 × 128 |
Conv4a (3 × 3, 256) Stride 1, Relu, GAP | 1 × 1 × 256 |
Fully Connected, SoftMax | 2 |