Chemicals, peptides, and recombinant proteins |
|
lipopolysaccharide (LPS) |
Sigma Aldrich, B5:055 |
L2880 |
Murine TNF |
Roche |
11271156001 |
Pam3CSK4 |
InvivoGen |
tlrl-pms |
polyinosine-polycytidylic acid (Poly(I:C)) |
InvivoGen |
tlrl-picw |
Synthetic CpG ODN 1668 |
InvivoGen |
tlrl-1668 |
Recombinant flagellin (FLA) |
InvivoGen |
tlrl-flic |
FSL1 |
InvivoGen |
tlrl-fsl |
R848 |
InvivoGen |
tlrl-r848 |
Recombinant Mouse-IFNβ |
PBL Assay Science |
12401–1 |
Recombinant-Murine-IFNg |
PeproTech |
315–05 |
Recombinant-Murine -IL10 |
PeproTech |
210–10 |
Recombinant-Murine-IL13 |
PeproTech |
210–13 |
Recombinant-Murine-IL4 |
PeproTech |
214–14 |
Docosahexaenoic acid |
Sigma-Aldrich |
D-2534 |
TRIzol reagent |
Invitrogen |
15596018 |
Hoechst 33342 dye |
Thermo Fisher |
62249 |
|
Critical commercial assays |
|
Direct-zol RNA isolation kit |
Zymo Research |
R2060 |
KAPA Stranded RNA-Seq Kit |
KAPA Biosystems |
KK8421 |
|
Deposited data |
|
Single cell NFκB signaling dynamics |
This paper |
Mendeley Data: https://doi.org/10.17632/gkxzb5hcmk.1
|
RNA-seq data of hMPDM, BMDM, and RAW 264.7 cells stimulated with LPS |
This paper |
GEO: GSE246566
|
|
Experimental models: Cell lines |
|
RelA-mVenus hMPs |
This paper |
hMPs |
RAW 264.7 |
ATCC |
TIB-71 |
|
Experimental models: Organisms/strains |
|
RelAmVenus/mVenus (C57BL/6) |
Adelaja et al.15
|
JAX stock 38987 |
|
Software and algorithms |
|
MACKtrack - Image Analysis (single cell tracking and measurement) |
Adelaja et al.15
|
https://github.com/brookstaylorjr/MACKtrack
|
NFκB trajectory feature calculations |
This paper |
https://github.com/signalingsystemslab/polarized_macs_NFkB_response_dynamics
https://doi.org/10.5281/zenodo.11099125
|
NFκB math model and parameter inference |
This paper |
https://github.com/michaeliter/nfkb_param_fitting
https://doi.org/10.5281/zenodo.11099470
|
Cutadapt |
Martin71
|
https://github.com/marcelm/cutadapt
|
PRINSEQ |
Schmieder and Edwards72
|
https://sourceforge.net/projects/prinseq/files/
|
STAR |
Dobin et al.73
|
https://github.com/alexdobin/STAR
|
Samtools |
Danecek et al.74
|
https://github.com/samtools/samtools
|
featureCounts |
Liao et al.75
|
https://subread.sourceforge.net/
|
DESeq2 |
Love et al.76
|
https://github.com/thelovelab/DESeq2
https://doi.org/10.18129/B9.bioc.DESeq2
|
edgeR |
Robinson et al.77
|
https://bioinf.wehi.edu.au/edgeR/https://doi.org/10.18129/B9.bioc.edgeR
|
stats-package (R4.1.1) |
R Core Team78
|
https://www.r-project.org/
|
Tslearn |
Tavenard et al.46
|
https://github.com/tslearn-team/tslearn/
|
TensorFlow 2 |
Abadi et al.79
|
https://github.com/tensorflow/tensorflow
https://doi.org/10.5281/zenodo.4724125
|
Keras API |
Chollet80
|
https://github.com/keras-team/keras
|
scikit-learn |
Pedregosa et al.81
|
https://scikit-learn.org/stable/
|
Google Colaboratory |
Google |
https://colab.google/
|
XGboost |
Chen and Guestrin51
|
https://github.com/dmlc/xgboost
|
SHAP (SHapley Additive exPlanations) |
Lundberg et al.82
|
https://github.com/shap/shap
|
scikit-fda |
Suárez et al.83
|
https://github.com/GAA-UAM/scikit-fda
|
Uniform Manifold Approximation & Projection (UMAP) |
McInnes et al.84
|
https://github.com/lmcinnes/umap
|
MATLAB ODE simulation & optimization |
The MathWorks Inc.85
|
https://www.mathworks.com/
|