Skip to main content
. Author manuscript; available in PMC: 2024 Jul 5.
Published in final edited form as: Cell Syst. 2024 Jun 5;15(6):563–577.e6. doi: 10.1016/j.cels.2024.05.002

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

lipopolysaccharide (LPS) Sigma Aldrich, B5:055 L2880
Murine TNF Roche 11271156001
Pam3CSK4 InvivoGen tlrl-pms
polyinosine-polycytidylic acid (Poly(I:C)) InvivoGen tlrl-picw
Synthetic CpG ODN 1668 InvivoGen tlrl-1668
Recombinant flagellin (FLA) InvivoGen tlrl-flic
FSL1 InvivoGen tlrl-fsl
R848 InvivoGen tlrl-r848
Recombinant Mouse-IFNβ PBL Assay Science 12401–1
Recombinant-Murine-IFNg PeproTech 315–05
Recombinant-Murine -IL10 PeproTech 210–10
Recombinant-Murine-IL13 PeproTech 210–13
Recombinant-Murine-IL4 PeproTech 214–14
Docosahexaenoic acid Sigma-Aldrich D-2534
TRIzol reagent Invitrogen 15596018
Hoechst 33342 dye Thermo Fisher 62249

Critical commercial assays

Direct-zol RNA isolation kit Zymo Research R2060
KAPA Stranded RNA-Seq Kit KAPA Biosystems KK8421

Deposited data

Single cell NFκB signaling dynamics This paper Mendeley Data: https://doi.org/10.17632/gkxzb5hcmk.1
RNA-seq data of hMPDM, BMDM, and RAW 264.7 cells stimulated with LPS This paper GEO: GSE246566

Experimental models: Cell lines

RelA-mVenus hMPs This paper hMPs
RAW 264.7 ATCC TIB-71

Experimental models: Organisms/strains

RelAmVenus/mVenus (C57BL/6) Adelaja et al.15 JAX stock 38987

Software and algorithms

MACKtrack - Image Analysis (single cell tracking and measurement) Adelaja et al.15 https://github.com/brookstaylorjr/MACKtrack
NFκB trajectory feature calculations This paper https://github.com/signalingsystemslab/polarized_macs_NFkB_response_dynamics https://doi.org/10.5281/zenodo.11099125
NFκB math model and parameter inference This paper https://github.com/michaeliter/nfkb_param_fitting https://doi.org/10.5281/zenodo.11099470
Cutadapt Martin71 https://github.com/marcelm/cutadapt
PRINSEQ Schmieder and Edwards72 https://sourceforge.net/projects/prinseq/files/
STAR Dobin et al.73 https://github.com/alexdobin/STAR
Samtools Danecek et al.74 https://github.com/samtools/samtools
featureCounts Liao et al.75 https://subread.sourceforge.net/
DESeq2 Love et al.76 https://github.com/thelovelab/DESeq2 https://doi.org/10.18129/B9.bioc.DESeq2
edgeR Robinson et al.77 https://bioinf.wehi.edu.au/edgeR/https://doi.org/10.18129/B9.bioc.edgeR
stats-package (R4.1.1) R Core Team78 https://www.r-project.org/
Tslearn Tavenard et al.46 https://github.com/tslearn-team/tslearn/
TensorFlow 2 Abadi et al.79 https://github.com/tensorflow/tensorflow https://doi.org/10.5281/zenodo.4724125
Keras API Chollet80 https://github.com/keras-team/keras
scikit-learn Pedregosa et al.81 https://scikit-learn.org/stable/
Google Colaboratory Google https://colab.google/
XGboost Chen and Guestrin51 https://github.com/dmlc/xgboost
SHAP (SHapley Additive exPlanations) Lundberg et al.82 https://github.com/shap/shap
scikit-fda Suárez et al.83 https://github.com/GAA-UAM/scikit-fda
Uniform Manifold Approximation & Projection (UMAP) McInnes et al.84 https://github.com/lmcinnes/umap
MATLAB ODE simulation & optimization The MathWorks Inc.85 https://www.mathworks.com/