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This review explores the topic of microRNAs (miRNAs) for improved early detection of imperceptible cancers, with potential to
advance precision medicine and improve patient outcomes. Historical research exploring miRNA’s role in cancer detection
collectively revealed initial hurdles in identifying specific miRNA signatures for early-stage and difficult-to-detect cancers. Early
studies faced challenges in establishing robust biomarker panels and overcoming the heterogeneity of cancer types. Despite this,
recent developments have supported the potential of miRNAs as sensitive and specific biomarkers for early cancer detection as well
as having demonstrated remarkable potential as diagnostic tools for imperceptible cancers, such as those with elusive symptoms or
challenging diagnostic criteria. This review discusses the advent of high-throughput technologies that have enabled
comprehensive detection and profiling of unique miRNA signatures associated with early-stage cancers. Furthermore,
advancements in bioinformatics and machine-learning techniques are considered, exploring the integration of multi-omics data
which have potential to enhance both the accuracy and reliability of miRNA-based cancer detection assays. Finally, perspectives on
the continuing development on technologies as well as discussion around challenges that remain, such as the need for
standardised protocols and addressing the complex interplay of miRNAs in cancer biology are conferred.
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CHALLENGES IN EARLY DETECTION OF DIFFICULT-TO-DETECT
CANCERS
Current trajectories suggest that global cancer cases will reach
over 35 million by 2050 [1] and that almost half of all cancer cases
that were diagnosed in England in 2018 were at advanced stages
(3 and 4) [2]. This highlights the urgency of early detection in
order to attempt to reduce the burden this will inevitably cause on
patients, their social support network, healthcare systems, as well
as local and global economies.
However, despite this pressing need, early detection poses

many challenges. The lack of systemic effects due to the small size
of primary tumours, or metastases, in early stages of development
often leads to the asymptomatic nature of disease progression. In
addition, the reported lack of specific and sensitive screening tests
that follow standardised testing parameters collectively contribute
to delayed accurate detection.
Certain well-documented cancers present unique challenges in

diagnosis, including pancreatic, non-small cell lung cancer
(NSCLC), liver, and central nervous system (CNS) tumours. All
aforementioned cancers share the challenge of being asympto-
matic in early stages of development, and often present with
vague and non-specific symptoms as the disease advances [3–7].
The deep-seated retroperitoneal location of the pancreas fre-
quently hinders early detection of cancer through common
screening methods. In addition to this, there are no widely
adopted reliable screening tests [8]. NSCLC has limited effective

screening tools applicable to high-risk groups, high false positive
rates in common imaging techniques along with invasive
diagnostic biopsy procedures posing significant risks, especially
in light of the recent pandemic [9, 10]. The early detection of Liver
cancers is complicated by cirrhosis masking key diagnostic
symptoms, imaging limitations when considering small lesions
due to poor arterial phase hyperenhancement of contrast agents
and the challenges of liver biopsies [11, 12]. CNS tumours often
present with subtle or non-specific symptoms due to their
location, imaging struggles to differentiate between benign and
malignant tumours and biopsy procedures carry high risks [13, 14].
These reasons, combined with technological advances in

biosensor and machine-learning development, have led to
heightened interest in the area of clinically pertinent microRNA
(miRNA) biomarkers obtained from, and stable within, minimally
invasive biofluids, such as blood, saliva, and urine.

MICRORNAS
MicroRNAs (miRNAs) are short, non-coding RNA molecules that are
typically 18–25 nucleotides in length. The first miRNA, Lin-4, was
discovered in Caenorhabditis elegans (C. elegans) in 1993 by
Ambros and colleagues. Initial results suggested that the Lin-4
gene did not code for a protein but, instead, gave rise to a short
RNA sequence of 22 nucleotides in length that was observed to
interact with the 3′ untranslated region (UTR) of the Lin-4
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messenger RNA (mRNA), via Watson-Crick base pairing, repressing
its expression and initiating the larval stages of development [15].
Research into miRNAs continued at a somewhat slow pace and in
2000 another pivotal miRNA was reported by Reinhart and
colleagues. Let-7 was identified as a key player in the timing of
larval development in the same model system, C. elegans. Notably,
Let-7 is evolutionarily conserved across diverse species, including
Homo Sapiens, indicating a fundamental role in biological
processes [16]. The discoveries of Lin-4 and Let-7 collectively
reshaped the scientific landscape, leading to a new field of
research with substantial potential to impact development, health,
and disease across a wide range of species. Upon consideration of
cancer, a pioneering study by Calin and colleagues shed light on
the aberrant expression of specific miRNAs in Chronic Lympho-
cytic Leukaemia (CLL). In particular, miR-15a and miR-16-1 genes,
often down-regulated or deleted in approximately 68% of CLL
cases, were found to target the B-cell lymphoma 2 (BCL-2) gene,
providing a mechanistic link between their downregulation or
deletion and the apoptotic resistance commonly observed in CLL
cells. Thus, suggesting that the loss of these miRNAs contributes
to the pathogenicity of CLL, via promotion of cell survival [17]. The
findings resulted in a growing field of research, contributing to a
broader understanding of the roles of miRNAs in cancer biology,
offering potential avenues for the development of miRNA-based
therapeutics, as well as pioneering efforts to identify miRNA
signatures that could be used to distinguish between different
cancer types.
MiRNAs are coded for in both exons and introns of genes or

non-coding RNA transcripts [18] suggesting a link to host-gene
promoters. MiRNA-coding sequences are first transcribed by RNA
polymerase II (Pol II) into long primary transcripts (pri-mRNAs) [19].
Pri-mRNAs are then capped and polyadenylated [20], and
subsequently cleaved in the nucleus by Drosha and Pasha
resulting in a hairpin-looped precursor nucleotide (pre-miRNA)
of approximately 60–75 nucleotides in length. Pre-miRNA is
actively transported out of the nucleus into the cytoplasm by
Exportin 5 [21] whereupon another RNAse III enzyme, Dicer, binds

and cleaves the pre-miRNA generating a 19 to 23 nucleotide
duplex structure with a mature (master) and complementary
(passenger) strand. The mature miRNA is then integrated into the
RNA-induced silencing complex (RISC) chiefly consisting of
Argonaute Proteins 1–4 (AGO 1–4), Dicer, and TAR RNA-binding
protein (TRBP) [22], which guides the RISC to specific mRNA
targets, leading to either translational repression or mRNA
degradation [23].

Circulating microRNAs
Freely circulating nucleic acids in blood were first denoted about
60 years ago [24, 25], with subsequent research reporting that
tumour-specific DNA and RNA were frequently found in the
plasma of cancer patients [26, 27]. Historically it was a common
belief within the scientific community that RNA molecules would
not be a suitable biomarker within blood samples due to the
presence of endogenous nucleases within plasma [28], however
upon the discovery of miRNAs within fixed tissues [29] this idea
was rapidly dismissed. This was further explored by Chen et al. [30]
who identified a set of miRNAs that were consistently present and
stable within serum samples. This groundbreaking work laid the
foundation for the exploration of circulating miRNAs as non-
invasive biomarkers for various diseases, including cancer.
The release of miRNAs from cells into extracellular environ-

ments, including blood, is believed to result from a variety of
mechanisms. These include active secretion via exosomes,
microvesicle release, and protein-mediated export (such as high-
density lipoproteins and AGO2) [31–34] (Fig. 1). The stability of
circulating miRNAs is enhanced by their association with various
carriers, as described, protecting them from nuclease- and
protease-facilitated degradation [35, 36] as well as stabilising the
molecules when exposed to sample processing conditions such as
freeze-thaw cycles [37].
The first reported case of using miRNAs as candidate

biomarkers for cancer was published by Lawrie and colleagues
in 2008 whereby blood serum concentrations of a panel of three
miRNAs (miR-155, miR-210 and miR-21) were compared in

Fig. 1 MiRNA excretion mechanisms and extracellular survival. MiRNAs are actively and passively released by cells via various approaches,
including multivesicular bodies (MVB) and cellular excretion via exosomes, microvesicle formation achieved via membrane shedding, as well
as association with AGO-2 and HDL.
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patients with diffuse large B-cell lymphoma compared to healthy
control sera [38]. This pioneering publication demonstrated for the
first time that miRNAs are clearly detectable in serum samples and
that miRNAs have potential for clinical approaches in cancer
detection via minimally invasive means of sample sourcing.

RECENT DEVELOPMENTS OF MICRORNAS AS BIOMARKERS
FOR EARLY CANCER DETECTION OF DIFFICULT-TO-DIAGNOSE
CANCERS
As outlined, the emergence of miRNAs as promising biomarkers
for early cancer detection has been a key development in the field
of molecular biology. Further to this, particular miRNA signatures
have been suggested to hold great impact when regarding
efficient diagnosis of imperceptible cancers at an early stage. We
shall go on to explore the identification and clinical validation of
miRNA signatures, along with technological advances in biosensor
development and machine learning used to detect, analyse, and
report key miRNA signatures.

Identification and clinical validation of miRNA signatures
Pioneering research by Lu et al. [39] conducted a screen of
expression profiles of miRNAs from more than 300 patient-derived
biosamples, including multiple cancers. They were able to
successfully classify poorly differentiated tumours using miRNA
profiles alone, which when compared to messenger RNA (mRNA)
counterparts which were highly inaccurate, emphasised the
potential of miRNA profiling in cancer diagnosis. Given the
growing promise that miRNA’s serve as biosample-based diag-
nostic tools, the exploration of their application within the field of
imperceptible cancers has been growing steadily.
In 2024, Shi et al. [40] explored miRNAs that could serve as

biomarkers for the early detection of pancreatic cancer in patients
presenting with chronic pancreatitis. The study successfully
implemented a robust rank aggregation (RRA) machine-learning
algorithm to aid in early pancreatic diagnosis via screening the
expression profile of candidate miRNA biomarkers. Serum-derived
miR-205-5p was identified as a promising predictor candidate that
was observed to discern between patients with pancreatitis and
pancreatic cancer, with reported accuracy rates of 91.5%.
Furthermore, results demonstrated that miR-205-5p expression
could be used as a predictive marker for more advanced disease,
with high-expression rates matching with poorer prognosis within
R1/2 resection margins of tumour specimens (indicative of
residual tumour) compared to R0 resection counterparts (resection
for cure or complete remission).
NSCLC is another well-reported cancer that is difficult to

diagnose in early stages, often due to asymptomatic presentation,
erroneous radiographic interpretation, or symptoms being
wrongly attributed to other chronic respiratory conditions such
as chronic obstructive pulmonary disease (COPD) [41]. A study by
Dong et al. [42] analysed the miRNA profiles of plasma samples
derived from both NSCLC patients and healthy controls via a
miRNA microarray. Real time quantitative RT-q-PCR was then used
to assess the expression levels of 11 different miRNAs that were
upregulated. Three particular miRNAs, miR-1247-5p, miR-301b-3p
and miR-105-5p, were demonstrated to accurately distinguish
between patients with NSCLC and healthy individuals, with
corresponding AUCs being reported as 0.769, 0.761, and 0.777,
respectively. Such findings are supported by previous studies
[43, 44] which denote that miR-301b-3p is not only present at
elevated rates in NSCLC, but pivotal to cancer cell characteristics
including proliferation, migration and invasion via targeting Rho
GTPase activating protein, DLC1. Further analyses conducted by
Arab et al. [45] identified elevated miR-141 expression in plasma
samples from NSCLC patients and matched healthy controls,
independent of age and sex. ROC plot analyses indicated high
sensitivity (82.7%) and specificity (98%) for miR-141 in terms of

discriminating between early NSCLC patients (TNM stages I, II and
IIIA) and healthy individuals.
Liver cancer, most commonly Hepatocellular carcinoma (HCC), is

commonly diagnosed at an advanced stage with poor prognosis
due to limited therapeutic options. Several studies have reported
the promise of miRNAs as biomarkers for early diagnosis of HCC
opening up the opportunity for a greater volume of treatment
options and thus heightened prognostic outcomes. Amr et al. [46]
explored the promise of two previously reported miRNAs (miR-122
and miR-224) as biomarkers for early stage HCC diagnosis, in
comparison to the conventional serum marker, alpha-fetoprotein
(AFP), which has a modest accuracy of detecting early stage HCC
[47]. Blood plasma samples of patients with HCC, preceded by
chronic HCV infection (n= 40) were compared to non-HCC
controls, those with Chronic hepatitis C (CHC) (n= 40) and
disease-free individuals (n= 20). RT-qPCR assays specific for hsa-
miR-122 and hsa-miR-224 were run to assess the expression levels
within all samples obtained. Chief findings reported mean plasma
values of miR-122 and miR-224 were significantly lower and
higher, respectively, within HCC samples in comparison to HCC-
free groups. Furthermore, results suggested that miR-122 and miR-
224 could predict HCC with comparable sensitivity (87.5% and
92.5%, respectively), specificity (95 and 90%, respectively), and
accuracy (0.96 and 0.94, respectively). In comparison, AFP
sensitivity and specificity results were much poorer at 57.5 and
95%, respectively. Additional studies further support the findings
of reduced miR-122 and elevated miR-224 expression profiles as
promising biomarkers for the early diagnosis of HCC [48–50].
Despite overall cancer-derived mortality declining over the past

two decades, CNS malignancies still contribute to high mortality
rates [51]. This is believed to be largely due to a lack of accurate
mass screening methods for early detection often hindered by
factors such as the blood–brain–barrier (BBB). Cerebrospinal fluid
(CSF) due to its function is in direct contact with any possible
pathology within the CNS and is a model biofluid source for
biomarker detection, with relatively easy sourcing via a lumbar
puncture. MiRNAs have been widely reported to be abundant
within CSF [52], with previous studies suggesting that dysregu-
lated miRNA expression is associated with malignant CNS tumours
[53, 54]. Promising results were reported in a small-scale study
conducted by Shalaby et al. [55], whereby the promise of miRNAs
were explored as novel biomarkers for medulloblastoma (MB)
detection. The study explored the presence of extracellular
miRNAs within both cell culture medium as well as CSF samples
obtained from MB and non-tumour control patients. Microarray
analysis identified 268 high-expression miRNA profiles and 6 low-
expression miRNA profiles, in comparison to controls. Selected
miRNAs were chosen to validate these findings (including miR-
486-3p, miR-572, miR-3918, miR-4476, miR-615, miR-1290, miR-
152a, miR-125b, and miR-1298) via RTq-PCR. The analysis
confirmed the heightened presence of 4 key miRNAs (miR-1290,
miR-125a, miR-125b and miR-1298) within CSF from test samples.
This pioneering, albeit small, study identified a small selection of
key miRNAs that were enriched within CSF samples from MB
patients, which contributed to additional larger-scale studies
being conducted. One such study was conducted by Kopkova
et al. [56], which involved a two-phase (discovery and validation)
approach. During the initial discovery phase 89 CSF samples, taken
from patients with glioblastoma (n= 32), low-grade glioma
(n= 14), meningioma (n= 11), brain metastases (n= 13) and
non-tumour controls (with normal-pressure hydrocephalus,
n= 19), were screened via small RNAseq analysis. This identified
miRNAs with altered expression when compared to controls,
ultimately leading to a panel of 9 candidate miRNA biomarkers
(let-7a, let-7b. miR-10a, miR-10b, miR-21-3p, miR-30e, miR-140,
miR-196a and miR-196b) to be explored. During the validation
phase a further 126 pathology-matched CSF samples independent
of the discovery cohort, including glioblastoma (n= 41), low-
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grade glioma (n= 8), meningioma (n= 44), brain metastases
(n= 12) and non-tumour controls (with normal-pressure hydro-
cephalus, n= 21), were processed via RTq-PCR. Findings identified
that combination patterns of 5 key miRNAs (miR-30e, miR-140, let-
7n, miR-10a and miR-21-3p) served as promising biomarker tools
in discerning between healthy donors and cancers, with high
sensitivity and specificity. Furthermore, the study also identified a
promising prognostic panel in glioblastoma patients, with median
overall survival (OS) scores in patients with elevated levels of miR-
10b and miR-196b observed to be 9 months, compared to low-
expression concentrations equating to median OS of 16.5 months.
Collective outputs from key studies, inclusive of particular

aforementioned studies from above, can be found in Table 1,
further determining the efficacy of circulating miRNAs as
biomarkers for imperceptible cancers.

Technological biosensor advances
Due to the nature of miRNAs being short and highly conserved,
resulting in high homology, presents challenges in detection that
is specific and sensitive. Overcoming such challenges relies upon
technological advances in their detection, of which there have
been an abundance in recent years. RTq-PCR was rapidly accepted

by the scientific community as a means of quantifying miRNA,
after first being described in published works by Chen et al. [57]. It
is now deemed as an orthogonal and gold-standard approach for
validating miRNA expression differences within sample sets.
However, due to limitations of this approach, including RNA-
sensitivity, specificity and cross-reactivity, and normalisation, other
techniques are now becoming established as validation
approaches when exploring miRNA detection and profiling. One
technique, NanoString’s nCounter® microRNA assay, was reported
as having advantages in terms of improved sensitivity and
specificity over conventional techniques (such as RTq-PCR) within
a pioneering paper in 2014 by Mestdagh et al. [58], a finding that
has been further supported within the literature [59, 60]. The
technology works without relying upon reverse transcription or
amplification and is capable of highly multiplexed analysis of
samples. This is achieved via direct digital detection of RNA or
DNA molecules of interest using colour-coded pairs of probes
(capture and reporter) which hybridise to the target molecules.
The high-throughput approach facilitates reliable and reproduci-
ble expression profiling of up to 800 genes in a single assay, with
input biomarker molecules as low as 1 ng (RNA). Another well-
reported sensing technology is that of Next Generation RNA

Table 1. Circulating miRNAs as clinical biomarkers for detection of difficult-to-diagnose cancers.

miRNA profiling Test
sample

Cancer
Type

Healthy Control vs. Cancer Study
Reference

Sensitivity Specificity AUC (95% CI)

miR-20a, miR-21, miR-25, miR-99a, miR-185, miR-191 Serum Pancreatic
(PDAC)

89% 100% 0.992 [85]

miR-30c-5p, miR-let7e-5p, miR340-5p, miR-223-3p, miR-
26a-5p, miR-340-3p, miR-335-5p, miR-23b-3p, miR-142-3p,
miR-200c-3p, miR-148a-3p, miR-216a-5p, miR-145-5p, miR-
200b-3p, miR-143-3p, miR-34a-5p, miR-429, miR-141-3p,
miR-1260b, miR-145-3p, miR-216b-3p, miR-200a-3p, miR-
1260a, miR-217-5p

Plasma
and
Serum

Pancreatic
(PDAC)

87% 88% 0.920 [86]

miR-93-5p, miR-339-3p, miR-425-5p, miR-425-3p Plasma Pancreatic
(PDAC)

80% 94.7% 0.885 [87]

miR-15b, miR-27b Serum Lung
(NSCLC)

100% 84% 0.980 [88]

miR-155, miR-20a, miR-25, miR-296, miR-126, miR-223,
miR-199a, miR-24, miR-152, miR-145, miR-let7f

Plasma Lung
(NSCLC)

81.8% 82.9% 0.879 [89]

miR-31-5p, miR-210-3p, miR21-5p Sputum
and
Plasma

Lung
(NSCLC)

85.5% 91.7% 0.913 [90]

miR-1247-5p, miR-301b-3p, miR-105-5p Plasma Lung
(NSCLC)

72.5% 82.2% 0.815 [42]

miR-141 Plasma Lung
(NSCLC)

96.3% 99.3% 0.972 [45]

miR-16 and miR-122 Serum Liver (HCC) 58% 84% 0.803 [91]

miR-206, miR-141-3p, miR-433-3p, miR-1228-5p, miR-199a-
5p, miR-122-5p, miR-192-5p, miR-26a-5p

Serum Liver (HCC) 86% 73% 0.887 [92]

miR-4661-5p, miR-4746-5p Serum Liver (HCC) 85% 89% 0.942 [93]

miR-92-3p, miR-107, miR-3126-5p Serum Liver (HCC) 97.5% 87.8% 0.962 [94]

miR-30e, miR-140 CSF CNS (Brain
Tumour)

76% 75% 0.776 [56]

miR-15b CSF CNS
(Glioma)

90% 94.9% 0.960 [95]

miR-15b Plasma CNS
(Glioma)

100% 100% 1.000 [96]

miR-210 Serum CNS
(Glioma)

91.3% 91.27% 0.927 [97]

miR microRNA, AUC area under the curve, PDAC pancreatic ductal adenocarcinoma, NSCLC non-small cell lung cancer, HCC hepatocellular carcinoma; CSF
cerebrospinal fluid, CNS central nervous system.
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sequencing (RNAseq) as utilised in the previously discussed study
conducted by Kopkova et al. [56]. RNAseq, developed upon classic
Sanger sequencing, offers a parallel sequencing by synthesis (SBS)
approach that has many advantages over other sequencing
approaches. Not only does it offer large data outputs (300 kb up to
multiple terabases/run) but has high sensitivity, quantitative
precision, as well as the ability to screen a high number of
samples in parallel (high throughput in nature) [61]. However,
despite this there are some challenges associated when applying
this technology to miRNA screening. These include misannotation
of novel or underexpressed miRNA [62, 63], sequencing biases
based on library preparation protocol variations, and extensive
sample processing [64]. As a means of circumnavigating some of
these challenges new technologies are being developed within
the scientific community. Recently, Cai et al. [65] reported a
molecular probe-based system that allows for amplification-free
multiplexed detection of microRNAs within unprocessed biofluid
samples. This electro-optical sensing platform functions via
custom probes combining a DNA carrier and molecular beacon
labelled with a reversible fluorophore and quencher in a hairpin
structure which upon binding to the miRNA-target unhinges and
restores fluorescence. The DNA-carrier acts as a barcode with its
length resulting in differential electrical signal upon nanopore
(nanopipette) detection. This technology displayed femtomolar
sensitivity thus supporting detection of sub-nanomolar concen-
trations of miRNAs within biofluids without the need of
amplification steps, and single-base mismatch selectivity essential
for discriminating between miRNA’s high homology due to their
short sequence length, on unprocessed blood serum samples
obtained from Prostate Cancer patients. One limitation of this
strategy is the electrical resolution of DNA with nanopore;
however this could be resolved via reconstruction of nanopores
using smaller pore sizes or heightened bandwidths. Furthermore,
environmental conditions such as temperature and surrounding
humidity could also affect the nanopipette setup. However,
despite such limitations, due to the nature of this strategy, panels
of known miRNA signatures could be screened simultaneously
within biosamples such as serum (as reported) as well as other
biosamples including CSF thus aiding towards its use for miRNA
detection in imperceptible CNS cancers. Another study reported
impressive limit of detection (LOD) improvements in comparison
to the techniques described. Kanik et al. [66] presented a sensitive
and multiplexed digital microarray setup that uses a polarisation-
enhanced single-particle reflectance imaging sensor (SP-IRIS) to
detect plasmonic gold nanorod probes that hybridise to miRNA
targets. Within proof of concept studies, a LOD of 100 attomolar
was reported when detecting synthetic miR-223-3p as a target,
showing marked improvements over more common femtomolar
ranges. Furthermore, the assay itself was conducted in 35 min
highlighting its value within a healthcare setting for rapid
diagnostic applications.

Integration of Bioinformatics and machine learning
Bioinformatics and machine-learning approaches have shown
incredible aid towards processing and interpretation of biological
data. In current biomedical research wet experimentation and
bioinformatics analytics are equally pivotal – with large complex
datasets needing increasingly sophisticated management and
analysis systems to gain biotic knowledge for therapeutic and
diagnostic applications. This is true of all disease states, but
especially so for cancer due to its complex and multifaceted
nature. The introduction of evolutionary supervised AI learning
methods is key to improving early-stage cancer diagnosis and
therapeutic decisions, collectively aiding towards heightened rates
of remission and overall survival. One such evolutionary learning
method is CancerSig [67] which followed a bi-objective combina-
torial genetic algorithm, with the end goal of identifying the
miRNA signatures that could aid in early-stage detection of

cancers. This was represented as: C(n, m), where ‘m’ is a cancer
stage-specific miRNA signature and ‘n’ is a pool of 7,117 candidate
miRNAs from 4,667 patients with 15 cancer types, including HCC,
obtained from The Cancer Genome Atlas (TCGA). The pan-cancer
analysis of miRNA signatures collectively proposed that three
miRNAs (let-7i-3p, miR-362-3p and miR-3651) could discriminate
between tumour and non-tumour samples and extensively
contributed to stage predictions amongst 8 of the 15 cancer
types analysed.
Other combined machine learning and bioinformatics

approaches have been described as a means of identifying
potential diagnostic pancreatic cancer-specific miRNA biomarkers
[68]. The study analysed serum-derived miRNA expression profiles
from three datasets (independent) obtained from the Gene
Expression Omnibus (GEO) database. Collectively, three machine-
learning algorithms (Support Vector Machine-Recursive Feature
Elimination, Least Absolute Shrinkage and Selection Operator
regression analysis, and Random Forest) identified three key
candidate miRNAs (miR-4648, miR-125b-1-3p, and miR-3201)
which displayed promise as diagnostic biomarkers due to
exhibiting altered differential expression patterns. The combined
model described exhibited notable performance and accuracy in
both training and validation processes, with reported AUC values
of 0.926 and 0.935, respectively.
While the promise of such approaches is putative, limitations of

deep learning models within the cancer field exist. Such
limitations include the lack of large phenotypically characterised
open-source datasets often as a result of high processing costs
and restricted sample availability. Furthermore, storage of tumour
samples is typically within formalin-fixed paraffin-embedded
(FFPE) blocks which commonly results in RNA degradation [69]
and DNA crosslinking [70], thus making samples unsuitable for
profiling and data production. AI uncertainty also needs to be
considered, with most approaches resulting in point-estimate
(predictive) methods, which could, when applied to the clinic,
result in overconfident predictions and inaccurate diagnosis.
Bayesian approaches, such as the recently reported Epistemic
Invariance in Cancer Classification (EpICC) [71], could however
help resolve this. Despite such limitations, the invaluable
implications of (often combined) computational techniques holds
great hope for accurately and promptly predicting the presence,
and stage, of cancers including imperceptible neoplasm.

CURRENT CHALLENGES AND RECOMMENDATIONS IN THE USE
OF MICRORNAS FOR EARLY CANCER DETECTION
As described, miRNAs meet key characteristics of being deemed
promising candidate clinical biomarkers due to their stable
properties and ubiquity within a plethora of readily accessible
biofluids, obtained via non- and minimally invasive means.
Storage of biofluids is an important consideration when consider-
ing biomarkers, however, miRNAs have been reported to be
considerably stable in a variety of biofluids, including blood, CSF,
urine, saliva, and lacrimal fluid held at room temperature for short-
term storage up to 96 h [72], and long-term storage for months at
a time at low (−20 °C) and ultralow (−80 °C) temperatures [73, 74].
Furthermore, routine laboratory processes such as freeze-thaw
cycles are commonly reported to not adversely affect miRNA
quality [75, 76]. Conversely, technical considerations in terms of
processing are frequently reported constraints when considering
freely circulating miRNAs within blood samples. Studies have
reported variations of miRNA concentrations in samples due to
contamination by haemolysis during processing [77], as well as
altered miRNA profiles as a result of platelet activation [78] –
although the extent of this could be affected by donor age,
gender, and race [79]. Upon consideration of the wider application
of cancer biology this effect may not be particularly disruptive as
known erythrocyte and platelet-derived miRNAs could be omitted
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from screening profiles, should a large enough pool of miRNA
signatures be explored. However, when using samples for
cardiovascular biomarkers, for example acute myocardial infarc-
tion where platelets play a fundamental pathophysiological role,
this could diminish diagnostic value extensively [80].
While aforementioned donor age, gender and race are reported

to potentially affect haemolysis rates and platelet activation
cascades, physiological variables could also have an impact on
miRNA concentrations, thus questioning the validity of “healthy
control” samples used within studies. A number of studies have
explored variables including age [81], gender [82], and BMI [83, 84]
with findings suggesting altered expression profiles of particular
miRNAs in comparison to counterparts. Although there is an
increasing number of research outputs, there is a lack of
consistent evidence of which miRNAs are associated with
particular confounding factors, thereby highlighting the necessity
for further research.
Circulating miRNAs concentrations are considerably lower than

those within cells and tissues, presenting challenges in accurate
detection and quantification. Current gold-standard approaches,
including NGS, enable relatively low miRNA input values, whereas
other recently developed novel approaches as discussed above
have the ability to detect attomolar ranges [66]. This attempts to
circumnavigate low concentrations, however due to the hetero-
genous nature of cancer, the variability of miRNA expression
amongst populations, individuals, tissues, and cells as well as the
dynamic nature of miRNA regulation, there is an absence of
unanimously agreed robust internal controls. This creates a
challenge that can only be truly overcome by combining several
factors including agreed consensus amongst the scientific
community (aligned under internationally recognised SOPs) for
testing, consistent validation studies, and crucially open-access
data-sharing repositories.
Lastly, while there are an ever-increasing number of techniques

being reported to profile and quantify stable miRNAs obtained
from biofluids, there is yet to be an optimised standard for cancer
biomarker discovery within clinical settings. Furthermore,
although there is a pressing need for accurate diagnostic tests,
there is also a growing view within the scientific community that a
turning point from the lack of sensitive and specific screening
tests to increasingly sensitive detection methods can, in fact, make
it difficult to distinguish between clinically insignificant changes
and lesions that could result in aggressive, life-threatening,
cancers. This issue, while not yet reported within the field of
miRNA biomarkers, is something that needs to be carefully
observed moving forward.

CONCLUSION
Early detection of cancer is vital in attempts to mitigate the
growing burden of the disease, with the ambition of increasing
patient remission and overall survival rates. However, despite this
pressing need, a myriad of challenges exist when considering
imperceptible cancers including the asymptomatic nature of many
tumours, comorbidities, and a lack of sensitive and specific
screening tests. MiRNAs present as promising early diagnostic
cancer biomarkers, with highly sensitive and specific diagnostic
signatures being well reported within the literature for a variety of
difficult-to-diagnose cancers such as NSCLC and HCC, as well as
being able to accurately discern between patients with pancrea-
titis and pancreatic cancer. The field of diagnostics continues to
drive forward with enhanced detection of miRNAs being reported.
Commercial platforms such as Nanostring’s nCounter ® microRNA
assay as well as Next Generation RNA Sequencing (RNAseq)
outperform what was once considered the gold-standard method,
RT-qPCR, in terms of sensitivity and specificity, with other novel
sensing technologies offering even greater sensitivity and LOD
rates as well as heightened multiplexing capabilities. Additionally,

the integration of bioinformatics and machine learning, such as
the evolutionary supervised AI learning method CancerSig, enable
further identification of promising miRNA signatures via predictive
modelling in a scalable and reproducible automated means. Yet,
despite the promise of miRNAs as cancer biomarkers, challenges
exist when considering their clinical application. Many of these
challenges, although being intrinsic in nature, could be circumna-
vigated however, via united collaborative efforts within the
scientific community, sharing datasets through open-source
platforms, applying standardised protocols, and fully embracing
technological advances.
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