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Abstract
Objective: Air	 pollutants	 have	been	 reported	 to	 have	 a	 potential	 relationship	with	
amyotrophic	lateral	sclerosis	(ALS).	The	causality	and	underlying	mechanism	remained	
unknown despite several existing observational studies. We aimed to investigate the 
potential	causality	between	air	pollutants	(PM2.5,	NOX, and NO2)	and	the	risk	of	ALS	
and elucidate the underlying mechanisms associated with this relationship.
Methods: The	 data	 utilized	 in	 our	 study	 were	 obtained	 from	 publicly	 available	
genome- wide association study data sets, in which single nucleotide polymorphisms 
(SNPs)	were	employed	as	the	instrumental	variantswith	three	principles.	Two-	sample	
Mendelian	randomization	and	transcriptome-	wide	association	(TWAS)	analyses	were	
conducted	to	evaluate	the	effects	of	air	pollutants	on	ALS	and	identify	genes	associ-
ated	with	both	pollutants	and	ALS,	followed	by	regulatory	network	prediction.
Results: We	observed	that	exposure	to	a	high	level	of	PM2.5	(OR:	2.40	[95%	CI:	1.26–
4.57],	p = 7.46E-	3)	and	NOx	(OR:	2.35	[95%	CI:	1.32–4.17],	p = 3.65E-	3)	genetically	in-
creased	the	incidence	of	ALS	in	MR	analysis,	while	the	effects	of	NO2 showed a similar 
trend	but	without	sufficient	significance.	In	the	TWAS	analysis,	TMEM175	and	USP35	
turned	out	to	be	the	genes	shared	between	PM2.5	and	ALS	in	the	same	direction.
Conclusion: Higher	exposure	to	PM2.5	and	NOX might causally increase the risk of 
ALS.	Avoiding	exposure	to	air	pollutants	and	air	cleaning	might	be	necessary	for	ALS	
prevention.
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1  |  INTRODUC TION

Amyotrophic	lateral	sclerosis	(ALS)	is	a	rare	but	fatal	neurodegen-
erative	 disease	with	 an	 annual	 incidence	 of	 1–2.6/100,000	 per-
sons.1,2	The	lifetime	risk	of	ALS	is	estimated	to	be	1	in	400,	and	less	
than	10%	of	patients	survive	beyond	10 years.3,4	ALS	manifests	as	
upper motor neuron and lower motor neuron dysfunction, result-
ing in progressive muscle weakness, atrophy, spasticity, paralysis, 
and respiratory failure.5–7	 In	ALS,	available	 treatments	only	pro-
long	 life	expectancy	and	maximize	 the	quality	of	 life.	Therefore,	
there is an urgent need to prevent and manage this devastating 
disease.	ALS	can	be	classified	into	two	main	categories:	sporadic	
ALS	(sALS)	and	familial	ALS	(fALS).	The	majority	of	ALS	cases	are	
sporadic, meaning they occur without a clear family history, while 
about	10%	of	 cases	are	 fALS.8	Although	 studies	of	genetic	vari-
ation	 in	 fALS	 help	 us	make	 significant	 strides	 in	 uncovering	 the	
underlying mechanism,8,9	 most	 cases	 of	 ALS	 are	 sporadic	 with	
no clear factors, which may be triggered by the combination of 
genetic predisposition, environmental exposure, and the passage 
of time. This widespread agreement is known as the gene- time- 
environment hypothesis.

Research into the environmental exposome has shed light on 
factors potentially associated with amyotrophic lateral sclerosis 
(ALS).	A	meta-	analysis	has	summarized	ALS's	environmental	risk	fac-
tors, including exposure to heavy metals, organic chemicals, electric 
shocks, and physical injuries.10 While this analysis did not explore 
air	 pollution's	 impact	 on	 ALS,	 the	 significance	 of	 air	 pollutants	 is	
increasingly	 recognized	 in	various	diseases,	 including	 respiratory11 
and cardiovascular diseases,12 as well as neurological disorders.13,14 
Therefore,	air	pollution's	connection	to	ALS	merits	closer	investiga-
tion in the context of these findings.

The	causality	between	atmospheric	pollution	and	ALS	remained	
unknown despite multiple observational studies. For example, a 
study	by	Meinie	et	al.	from	the	Netherlands	involving	917	ALS	pa-
tients	and	2662	controls	found	a	positive	association	between	pro-
longed exposure to air pollutants from traffic sources and a higher 
chance	of	developing	ALS.15	A	recent	Bayesian	hierarchical	analysis	
study	similarly	confirmed	a	highly	positive	correlation	between	ALS	
and elemental carbon concentration.16	But	these	studies	above	were	
limited by the inherent defects of observational studies, such as con-
founders and reverse causation, making it difficult to establish the 
causality. There is a pressing need to establish a causal relationship 
between	air	pollution	and	ALS.

We	propose	a	two-	sample	Mendelian	randomization	(TSMR)	to	
address this issue to investigate the potential causality between 
air	pollution	and	ALS.	The	fundamental	principle	of	Mendelian	ran-
domization	 (MR)	 relies	on	 the	 instrumental	variants	 (IVs)	 analysis	
to	make	causal	estimates.	Three	assumptions	are	required	for	MR:	
(i)	IVs	are	strongly	associated	with	the	exposure;	(ii)	IVs	are	not	as-
sociated	with	confounders	from	exposure	to	outcome	and	(iii)	IVs	
act on the outcome only via the exposure. It is usually implemented 
using	single	nucleotide	polymorphisms	(SNPs)	as	IVs,	which	follow	
Mendel's	 laws	of	 random	assortment	of	genotypes	 in	 the	natural	

world	to	mimic	the	design	of	a	randomized	controlled	trial.	Treating	
genetic variants as instrumental variables, which are presumed to 
be	allocated	randomly	before	birth,	minimizes	the	potential	 influ-
ence	of	environmental	factors.	Moreover,	as	these	genetic	variants	
are established well before the onset of the disease, issues per-
taining to residual confounding and reverse causation, commonly 
encountered in conventional observational studies, are effectively 
addressed.17,18

With	 genome-	wide	 association	 studies	 (GWAS)	 providing	 ex-
isting	 summary	 statistics,	MR	has	been	extensively	 applied	across	
diverse	 research	domains.	Several	earlier	 studies	employed	MR	to	
look into the connection between air pollution and different health 
outcomes.19–31	Yi	et	al.,	for	example,	conducted	a	TSMR	analysis	re-
porting a causal link between air pollution and neurodegenerative 
disorders	 (Alzheimer's	 disease	 and	 Parkinson's	 diseases).24 Wang 
et al. demonstrated the causal evidence that air pollution might 
cause	multiple	cancer	types	by	MR.20	However,	the	causal	relation-
ship and underlying biological mechanisms between air pollution 
and	ALS	remains	 largely	unexplored.	Herein,	we	performed	TSMR	
with	existing	GWAS	data	to	assess	our	hypotheses	that	air	pollution	
exposure	may	be	causally	linked	to	ALS.	Furthermore,	we	conducted	
TWAS	analysis	based	on	the	results	of	our	MR,	managing	to	explore	
possible mechanisms.

2  |  METHODS

The flowchart of the study is shown in Figure 1.

2.1  |  Data sources

The	data	utilized	in	our	study	were	obtained	from	publicly	avail-
able	genome-	wide	association	study	(GWAS)	data	sets	and,	there-
fore,	 do	 not	 require	 ethical	 approval	 or	 informed	 consent.	 All	
included	GWAS	data	 sets	 consisted	of	participants	of	European	
ancestry	 (Table S1),	 with	 no	 restrictions	 on	 gender,	 income,	 or	
education.

GWAS	of	exposure	 to	air	pollutants	 (PM2.5,	NOX, NO2)	were	
obtained	from	the	UK	Biobank	(www. ukbio bank. ac. uk).32 The level 
of	air	pollutants	in	the	UK	was	estimated	using	a	land-	use	regres-
sion	model	 for	 the	 annual	 average	 2010.	 The	mean	 PM2.5	 con-
centration	was	 9.99 ± 1.06 μg/m3,	 ranging	 from	8.17	 to	 21.31 μg/
m3.	The	GWAS	included	423,796	individuals	and	9,851,867	SNPs.	
The mean NO2	 concentration	 was	 26.71 ± 7.58 μg/m3, ranging 
from	 12.93	 to	 108.49 μg/m3, and the mean NOX concentration 
was	 44.11 ± 15.53 μg/m3,	 ranging	 from	 19.74	 to	 265.94 μg/m3. 
The	 GWAS	 for	 NO2 and NOx	 included	 456,380	 individuals	 and	
9,851,867	SNPs.

The	GWAS	 for	ALS	were	obtained	 from	 the	 latest	 and	 largest	
meta- analysis by van Rheenen et al.,33	which	included	27,250	cases	
with	familial	or	sporadic	ALS	and	110,881	control	subjects.	The	par-
ticipants	of	these	GWAS	were	all	European	descent	from	European	

http://www.ukbiobank.ac.uk
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countries	and	 the	United	States.	The	ALS	cases	 in	 this	 large-	scale	
meta- analysis were derived from independent cohorts and diag-
nosed by the EI Escorial criteria.

2.2  |  Selection of instrumental variants

Three	principles	were	followed	to	select	IVs	in	this	study.34	First,	IVs	
were required to exhibit strong and independent correlations with 
the	 corresponding	 exposure.	 As	 there	 were	 few	 SNPs	 under	 the	
threshold of 5e- 8, we set a stringent threshold of p < 1e-	6	to	identify	
SNPs that demonstrated a strong correlation with the exposures of 

interest as in previous studies.17	Next,	we	employed	the	PLINK	algo-
rithm, with LD <0.001 and <10 MB	distance	from	the	index	variant,	
to	perform	clumping	and	select	independent	IVs.	Additionally,	SNPs	
with F statistics <10 were excluded to guarantee the robustness of 
the	IVs.	Second,	IVs	were	required	to	be	unrelated	to	potential	con-
founding	factors	such	as	body	mass	index	(BMI),	blood	pressure,	and	
smoking behavior. We conducted SNP lookups in the PhenoScanner 
database	 (http:// pheno scann er. medsc hl. cam. ac. uk)	 to	 exclude	 any	
SNP with known associations with these confounding factors. Last, 
IVs	were	expected	to	be	independent	of	the	outcome	and	exert	their	
influence solely through exposure. Thus, SNPs with a significant cor-
relation with the outcome were excluded.

F I G U R E  1 .	Flowchart	and	study	design	of	TSMR	and	TWAS.	SNPs	from	publicly	available	GWAS	data	sets	were	selected	as	IVs	based	on	
their	strong	correlation	with	the	exposure	and	independence	from	confounding	factors.	These	IVs	were	required	to	influence	the	outcome	
solely	through	exposure,	ensuring	the	credibility	of	the	MR	analysis.	Furthermore,	the	GWAS	data	were	converted	into	TWAS	format	to	
identify	gene	transcripts	associated	with	air	pollutants	and	ALS.	The	figure	was	created	by	Biore	nder.	com.	GWAS,	genome-	wide	association	
study;	IVs,	instrumental	variants;	SNP,	single	nucleotide	polymorphism;	TSMR,	two-	sample	Mendelian	randomization;	TWAS,	transcriptome-	
wide association.

http://phenoscanner.medschl.cam.ac.uk
http://biorender.com


4 of 10  |     LI et al.

2.3  |  Statistical analyses

2.3.1  |  Two-	sample	Mendelian	randomization	
(TSMR)

For	the	TSMR,	random	effects	inverse	variance	weighting	(IVW)	was	
used as the primary method.76	 IVW	entailed	 a	weighted	 regression	
of	 IV	 effects	 on	 the	 outcome,	 assuming	 a	 constrained	 intercept	 of	
zero,	thus	offering	optimal	statistical	power.	However,	in	the	presence	
of	horizontal	pleiotropy,	 the	outcome	could	be	 influenced	by	causal	
pathways other than the exposure itself.35	Hence,	we	employed	the	
additional	 methods	 (weighted	 median,	 MR-	Egger,	 and	 Mendelian	
Randomization	Pleiotropy	RESidual	Sum	and	Outlier	 [MR-	PRESSO]),	
which	 demonstrated	 relative	 robustness	 against	 horizontal	 pleiot-
ropy, although with a partial sacrifice of statistical power.36,77–79 The 
weighted	median	approach	selected	the	median	of	MR	estimates	for	
causal	estimation,	while	MR-	Egger	regression	allowed	for	estimating	
the	intercept	as	a	measure	of	average	pleiotropy.	MR-	PRESSO	allowed	
for	identifying	the	potential	pleiotropic	IVs	and	re-	estimation	after	ex-
cluding these outliers.37	TSMR	analysis	was	performed	to	assess	the	
effects	of	air	pollutants	on	ALS.	To	account	 for	multiple	 testing,	 the	
p-	value	below	the	Bonferroni-	corrected	threshold	of	1.67E-	2	(0.05/3)	
was deemed as statistically significant.80

Sensitivity analyses were conducted to evaluate the robustness 
of	the	findings,	including	tests	for	heterogeneity	and	horizontal	plei-
otropy.	Heterogeneity	was	assessed	using	Cochran's	Q test, while 
horizontal	pleiotropy	was	examined	through	MR-	PRESSO	and	MR-	
Egger intercept test.34,81	Although	based	on	different	assumptions,	
these tests fundamentally measured the extent to which the impact 
of one or more instrumental SNPs was exaggerated, not only through 
the	hypothesized	pathway	but	also	through	other	unaccounted-	for	
causal pathways.

All	 statistical	 analyses	 were	 performed	 using	 R	 software.	 The	
“TwoSampleMR”	package	in	R	was	utilized	for	data	extraction,	SNP	
clumping,	harmonization,	and	TSMR.82

2.3.2  |  Transcriptome-	wide	association	(TWAS)	
analysis and joint/conditional tests

To	 conduct	 transcriptomic	 imputation,	 we	 employed	 the	 FUSION	
method,38	which	 involved	 converting	GWAS	 data	 into	 TWAS	 for-
mat. In this approach, a linear model based on expression quanti-
tative	trait	loci	was	utilized	to	predict	gene	expression	levels	using	
the	 RNA-	seq	 of	 Genotype-	Tissue	 Expression	 version	 8	 (GTEx	 v8)	
(N = 183),39	 CommonMind	 Consortium's	 (N = 452),	 and	 splicing	
(N = 452)	 reference40 as the reference panels of brain. Genes that 
exhibited	significant	associations	with	ALS	were	first	selected.	Then,	
among	 these	 ALS-	associated	 genes,	 the	 genes	 showed	 significant	
associations with air pollutants and were identified as potential 
mechanisms	of	air	pollution	to	ALS.	Bonferroni	correction	was	con-
ducted	 to	account	 for	multiple	TWAS	tests.	The	p-	value	 in	TWAS	
below	0.05	but	higher	 than	 the	Bonferroni-	corrected	p- value was 
deemed to be a suggestive association.

To	 test	 how	much	GWAS	 signal	 and	TWAS	 genes	 remain	 in	 a	
locus	after	 the	association	of	 the	significant	genes	 in	TWAS	 is	 re-
moved,	we	performed	joint/conditional	tests	in	FUSION	by	FUSION.
post_process	and	FUSION.assoc_test.

2.3.3  |  Protein	interaction	and	network	prediction

We	used	GeneMANIA	 (http:// genem ania. org/ )	 to	 predict	 the	 pro-
tein–protein	 interaction	 (PPI)	 of	 the	 genes	 that	 are	 significant	 in	
TWAS	analysis.41 Detailed information on the included data sets in 
GeneMANIA	is	described	somewhere	else.41

3  |  RESULTS

After	a	strict	filter,	14,	20,	and	19	SNPs	were	selected	as	the	IVs	for	
PM2.5,	NO2, and NOX	(Tables S2–S4).	The	F- statistics were all above 
10, showing strong robustness for the representation of the exposures.

We	 found	 that	 exposure	 to	 the	 higher	 level	 of	 PM2.5	 geneti-
cally	increased	the	risk	of	ALS	(IVW,	OR:	2.40	(95%	CI:	1.26–4.57),	
p = 7.46E-	3)	(Figure 2, Figure S1).	MR	PRESSO	confirmed	this	effect	
of	PM2.5	on	ALS	(OR:	2.40	[95%	CI:	1.44–4.02],	p = 8.73E-	3).	This	
trend	was	also	demonstrated	in	MR	Egger	and	weighted	median,	al-
though	without	significance	(p > 0.05).	Besides,	higher	exposure	to	
NOX was also found to genetically associate with a higher risk of 
ALS	(IVW,	OR:	2.35	[95%	CI:	1.32–4.17],	p = 3.65E-	3)	(Figure 2 and 
Figure S2),	with	validation	of	MR	PRESSO	method	(OR:	2.35	[95%	CI:	
1.60–3.45],	p = 9.60E-	4).	However,	the	effects	of	NO2 tended to be 
insignificant	(p > 0.05)	(Figure 2 and Figure S3).

Altogether,	our	analyses	suggested	a	causal	link	between	higher	
exposure	to	PM2.5,	NOX,	and	 increased	risk	of	ALS,	whereas	NO2 
had	no	causal	effects	on	ALS.

For	 the	 sensitivity	 analyses,	 both	MR	 PRESSO	 and	MR	 egger	
showed	 no	 significant	 pleiotropy	 in	 all	 TSMR	 analyses	 (p > 0.05)	
(Table 1).	Both	MR	egger	and	IVW	in	Cochran's	Q	test	also	showed	no	
significant	heterogeneity	in	all	TSMR	(p > 0.05)	(Table 1).	Therefore,	
our	selected	IVs	and	TSMR	results	showed	great	robustness.

To investigate the potential mechanism of air pollutants- 
inducing	ALS,	we	conducted	a	TWAS	analysis.	In	total,	eight	genes	
were	 significantly	 associated	 with	 ALS	 in	 TWAS	 and	 exhibited	
the	 same	 direction	with	 PM2.5/NOX	 among	 the	 panels	 of	 9130	
genes	(p < 5.48E-	6,	0.05/9130)	(Table 2 and Table S5).	For	PM2.5,	
USP35	and	TMEM175	were	significantly	associated	with	the	phe-
notype	 of	 higher	 exposure	 to	 PM2.5	 (p < 6.23E-	3,	 0.05/8).	 The	
joint/conditional	 tests	 showed	 that	 USP35	 and	 TMEM175	were	
independently	and	strongly	associated	with	ALS	and	PM2.5	in	the	
corresponding	 locus	 (Figure 3).	After	excluding	these	two	genes,	
the	GWAS	 signal	 dropped.	These	 results	 suggested	 that	 air	 pol-
lutants	might	induce	ALS	through	pathways	related	to	USP35	and	
TMEM175.	Then,	we	performed	PPI	analysis	to	 identify	the	pro-
tein	potentially	interacting	with	USP35	and	TMEM175	(Figure 4).	
USP35	was	predicted	to	interact	with	CASKIN1,	VWCE,	SMURF2,	
TNIP2,	 SSBP1	 and	 TANGO2,	 suggesting	 its	 involvement	 in	

http://genemania.org/


    |  5 of 10LI et al.

diverse	cellular	functions.	In	contrast,KRT81,	PDE2A,	ABHD17A,	
PCDH8,	PCDHA11,	AJAP1,	FBXL15,	NUDT16L1,	MON1A,	SSBP4,	
PPP1R11	and	HAGHL	were	predicted	to	interact	with	TMEM175.	
Specifically,	MCOLN1	and	SLC22A23	have	been	predicted	to	 in-
teract	with	both	USP35	and	TMEM175,	highlighting	their	potential	
role in mediating interactions between these proteins.

Meanwhile,	 for	NOX,	USP35	 and	TMEM175	only	 showed	 sug-
gestive	 association	 in	 the	 TWAS	 analysis.	 Interestingly,	 C9orf72,	
as	the	identified	risky	gene	for	ALS,	showed	significant	association	

with	ALS	(p = 9.41E-	33)	and	suggestive	association	with	both	PM2.5	
(p = 2.31E-	2)	 and	NOX	 (p = 2.61E-	2),	 indicating	 that	 C9orf72	might	
also	exert	certain	effects	from	air	pollutants	to	ALS.	ALS5	(SPG11),	
another	causative	gene	for	ALS,	showed	trends	of	association	with	
exposure	to	PM2.5	(p = 0.14)	and	NOX	(p = 0.26)	(Table S5).

4  |  DISCUSSION

We	 used	 TSMR	 to	 investigate	 potential	 causal	 links	 between	 air	
pollution	 (including	 PM2.5,	 NOX, and NO2)	 and	 ALS.	 We	 found	
that	higher	exposure	 to	PM2.5	and	NOX might be causally associ-
ated	with	increasing	the	risk	of	ALS.	The	relationship	between	NO2 
and	ALS	showed	a	little	positive	trend	but	did	not	prove	statistically	
significant.	We	also	revealed	that	USP35	and	TMEM175	potentially	
played	important	roles	in	air	pollutants-	inducing	ALS.

PM2.5	 is	an	airborne	particle	 in	 the	atmosphere	with	a	diame-
ter	of	2.5 μm or less that can be breathed by people.42	PM2.5	was	
conventionally considered to lead to many respiratory diseases after 
inhaling.43,44 Recently, mounting evidence increasingly suggests that 
exposure	 to	PM2.5	 also	 impaired	 the	 central	 nervous	 system.45,46 
With a diameter of <2.5 μm, this fine particulate matter can reach 

F I G U R E  2 Forest	plots	illustrating	the	
two-	sample	Mendelian	randomization	
(TSMR)	estimates	of	the	effects	of	air	
pollutants	(PM2.5,	NOX, and NO2)	on	
the risk of amyotrophic lateral sclerosis 
(ALS).	Each	circle	represents	an	individual	
instrumental	variant	(IV)	with	the	
corresponding	odds	ratio	(OR)	and	95%	
confidence	interval	(CI)	indicated	by	the	
horizontal	line.	The	p- value indicates the 
statistical significance of the association 
between	exposure	and	ALS	risk.	IVW	
(inverse	variance	weighting)	was	used	
as the primary method, with additional 
methods	(weighted	median,	MR-	Egger,	
and	Mendelian	Randomization	Pleiotropy	
RESidual	Sum	and	Outlier	[MR-	PRESSO])	
employed as supplementary analyses.
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3.65×10-3

5.57×10-1

5.11×10-2

1.08×10-1

6.71×10-1

1.64×10-1

8.73×10-3

9.60×10-4

7.75×10-2

Pval

Pval

TA B L E  1 Sensitivity	analyses	for	two-	sample	Mendelian	
randomization.

Exposure

Heterogeneity Pleiotropy

Method p Value Method p Value

PM2.5 MR	Egger 0.68 MR	Egger 0.84

PM2.5 IVW 0.76 MR	PRESSO 0.78

NOX MR	Egger 0.91 MR	Egger 0.85

NOX IVW 0.94 MR	PRESSO 0.95

NO2 MR	Egger 0.70 MR	Egger 0.98

NO2 IVW 0.77 MR	PRESSO 0.78
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the brain from the nasal cavity via two main pathways: directly pene-
trating olfactory epithelium or entering the circulation after traveling 
deep	into	the	lungs	and	traversing	the	blood–brain	barrier	(BBB).47,48 
First,	PM2.5	can	cause	mitochondrial	dysfunction,	traditionally	con-
sidered	one	of	ALS's	four	major	pathophysiological	mechanisms,	in-
cluding	elevated	production	of	 reactive	oxygen	 species	 (ROS)	 and	
reduced mitochondrial membrane potential.49,50 The former affects 
the	electron	transport	chain's	electron	transfer,	whereas	the	latter	
promotes	oxidative	 stress,	 resulting	 in	neuron	 cell	 death	 and	BBB	
dysfunction.48	Several	studies	suggested	that	PM2.5	exposure	may	
aggravate	 ALS	 and	 other	 neurodegenerative	 diseases	 by	 causing	
neuroinflammation, oxidative stress, mitochondrial dysfunction, 

and neuronal damage.51–53	 A	 meta-	analysis	 including	 26	 studies	
conducted reported a significant association between long- term 
PM2.5	 exposure	 and	 stroke,	 dementia,	 Alzheimer's	 disease,	 ASD,	
and	Parkinson's	disease.54 For the first time, we have identified sig-
nificant	causality	between	exposure	to	PM2.5	and	the	occurrence	of	
ALS,	built	upon	population-	based	genetic	analyses.

NOX is a group of gases primarily emitted from combustion pro-
cesses, such as emissions from vehicles and industry, which are widely 
reported to have detrimental effects on human health.55 Currently, 
several observational studies reported that long- term exposure 
to NOX	was	 associated	with	 a	 higher	 risk	 of	ALS.	However,	 there	
is still a lack of causality inference and experimental investigation, 

TA B L E  2 TWAS	results	for	shared	genes	between	ALS	and	air	pollutants.

ID Chr Start End

ALS PM2.5 NOX

TWAS.Z TWAS.P TWAS.Z TWAS.P TWAS.Z TWAS.P

USP35 11 77,899,857 77,925,757 4.66 3.17E−06 2.91 3.59E−03 2.35 1.90E−02

TMEM175 4 926,261 952,443 −4.73 2.24E−06 −2.82 4.79E−03 −2.53 1.15E−02

C9orf72 9 27,546,542 27,573,864 −11.92 9.41E−33 −2.27 2.31E−02 −2.23 2.61E−02

RQCD1 2 219,433,302 219,461,158 4.63 3.59E−06 1.73 8.44E−02 1.18 2.38E−01

GPX3 5 150,399,998 150,408,554 −6.00 1.97E−09 −1.11 2.69E−01 −1.32 1.88E−01

GGNBP2 17 36,544,887 36,544,888 4.81 1.50E−06 0.62 5.35E−01 0.73 4.67E−01

MYO19 17 34,851,598 34,891,305 −5.13 2.94E−07 −0.26 7.94E−01 −0.95 3.43E−01

RANBP10 16 67,806,651 67,806,652 4.56 5.11E−06 0.22 8.26E−01 0.66 5.11E−01

Abbreviations:	ALS,	amyotrophic	lateral	sclerosis;	TWAS,	transcriptome-	wide	association.

F I G U R E  3 Joint/conditional	plots	of	TWAS.	All	the	genes	in	the	locus	were	shown	in	the	top	panel.	The	genes	that	show	a	marginal	
association	with	TWAS	are	marked	in	blue,	while	the	genes	that	exhibit	a	joint	significance	are	highlighted	in	green.	The	lower	panel	displays	
a	Manhattan	plot	illustrating	the	GWAS	data	before	(gray)	and	after	(blue)	conditioning	on	the	green	genes.	The	GWAS	signals	dropped	after	
conditioning	the	predicted	expression	of	TMEM175(A,B)	and	USP35(C,D).	GWAS,	genome-	wide	association	study;	TWAS,	transcriptome-	
wide association.

ZNF141
ABCA11P

ZNF721

PIGG PDE6B
ATP5I
MYL5

MFSD7
PCGF3

LOC100129917
CPLX1

GAK
TMEM175

DGKQ

SLC26A1
IDUA

FGFRL1
RNF212

TMED11P

SPON2
LOC100130872

CTBP1−AS
CTBP1

CTBP1−AS2
MAEA

UVSSA

CRIPAK
NKX1−1

0.4 0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

5

chr 4 physical position (MB)

−l
og

10
(P

−v
al

ue
)

ZNF141
ABCA11P

ZNF721

PIGG PDE6B
ATP5I
MYL5

MFSD7
PCGF3

LOC100129917

CPLX1

GAK

TMEM175

DGKQ
SLC26A1

IDUA

FGFRL1

RNF212
TMED11P

SPON2
LOC100130872

CTBP1−AS
CTBP1

CTBP1−AS2
MAEA

UVSSA

CRIPAK
NKX1−1

0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

2.0

chr 4 physical position (MB)

−l
og

10
(P

−v
al

ue
)

AQP11
CLNS1A

RSF1

AAMDC
INTS4

KCTD14

NDUFC2−KCTD14
RNU6−83P

THRSP
NDUFC2

ALG8

KCTD21−AS1
KCTD21

USP35

GAB2

NARS2
TENM4

77.4 77.6 77.8 78.0 78.2 78.4

0

1

2

3

4

5

chr 11 physical position (MB)

−l
og

10
(P

−v
al

ue
)

AQP11
CLNS1A

RSF1

AAMDC
INTS4

KCTD14

NDUFC2−KCTD14
RNU6−83P

THRSP
NDUFC2

ALG8

KCTD21−AS1
KCTD21

USP35

GAB2

NARS2
TENM4

77.4 77.6 77.8 78.0 78.2 78.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

chr 11 physical position (MB)

−l
og

10
(P

−v
al

ue
)

(A) TMEM175 (ALS)

(B) TMEM175 (PM2.5)

(C) USP35 (ALS)

(D) USP35 (PM2.5)



    |  7 of 10LI et al.

although NOX	 exposure	 is	 associated	 with	 numerous	 ALS-	related	
pathways,56 such as oxidative stress57 and neuronal death.58,59 In 
this study, we reported for the first time that NOX might be causally 
associated	with	ALS	risks.

Our investigation of the transcriptomic relationship between air 
pollutants	and	ALS	revealed	that	TMEM175	and	USP35	might	inter-
mediate	from	PM2.5	to	ALS.	TMEM175	is	a	 lysosomal	 ion	channel	
that assists in the digestion of abnormal proteins and mitochondrial 
homeostasis.	 Dysfunction	 of	 TMEM175	was	 correlated	with	mul-
tiple neurologic disorders.60	For	example,	deficiency	 in	TMEM175	
could	cause	neuron	death,	motor	 impairment,	and	Parkinson's	dis-
ease.61	In	the	brain	of	ALS,	the	level	of	TMEM175	was	also	reported	
to be abnormally decreased, which was consistent with our results.62 
Meanwhile,	the	downstream	of	TEME175,	including	homeostasis	of	
protein	and	mitochondria,	 is	the	typical	pathophysiology	of	ALS.56 
However,	 the	 biological	 effects	 of	 TMEM175	 exerted	 in	 ALS	 and	
how	PM2.5	influences	the	function	of	TMEM175	need	to	be	further	
explored in the laboratory.

USP35	is	an	enzyme	of	the	deubiquitinase	family,	which	removes	
ubiquitin	molecules	and	regulates	protein	homeostasis.	 In	ALS,	deu-
biquitinase plays a pivotal role in the pathogenesis. The deubiquiti-
nase could regulate proteotoxicity and control the protein quality, thus 
influencing	the	development	of	ALS.	 Inhibiting	deubiquitinase	could	
protect	against	proteotoxicity	from	ALS.63	Besides,	USP35	could	reg-
ulate	PARK2-	mediated	mitophagy	and	mitochondria	quality	control.64 
Defects	in	mitochondria	function	are	related	to	multiple	ALS	patho-
logic activities, including neuronal calcium homeostasis, autophagy, 
and axonal degeneration.56	 Additionally,	 the	 proteins	 we	 predicted	
that	interacted	with	USP35	have	also	been	reported	in	ALS.	For	ex-
ample,	SMURF2	was	reported	to	be	immunopositive	in	ALS	and	co-	
localize	with	TDP-	43,	a	known	causative	protein	of	ALS.65

C9orf72,	widely	regarded	as	the	most	common	genetic	cause	of	
ALS,66	was	significant	in	our	ALS	TWAS	analysis.	The	mechanisms	of	
C9orf72	inducing	ALS	were	well	elucidated	in	previous	studies.56,66 
Our	TWAS	analysis	 found	 that	 the	C9orf72	expression	 is	 sugges-
tively	associated	with	PM2.5	and	NOX.	Unfortunately,	it	did	not	pass	
Bonferroni's	correction.	Considering	the	importance	of	C9orf72	in	
ALS,	this	suggestive	evidence	should	not	be	neglected.	It	is	reported	
that	 PM2.5	 may	 have	 an	 unclear	 mechanism	 for	 DNA	 methyla-
tion,67,68 which acts as a gene silencer to suppress the production of 
certain	DNA	pieces,	such	as	the	C9orf72	expansion.69,70 Thus, one 
potential	 epigenetic	 explanation	 is	 that	PM2.5-	related	demethyla-
tion	of	C9orf72	expansion	induces	the	expression	of	RNA	foci	and	
DPR expression. Further exploration is needed to elucidate whether 
air	pollutants	could	 influence	the	 level	or	function	of	C9orf72	and	
the underlying mechanisms involved.

ALS5	 (SPG11)	 is	 the	 major	 gene	 causing	 autosomal	 recessive	
ALS.71	We	found	trends	in	the	association	of	ALS5	with	PM2.5	and	
NOX. Considering air pollutants might affect levels of multiple pro-
teins,72 induce genetic mutations,73	and	potentially	cause	ALS,	stud-
ies	with	 large	sample	sizes	 in	the	future	might	shift	this	trend	 into	
significance.

Limitations of our study should be taken into consideration. 
First, our findings need more experimental validation. Second, the 
data sets in this study consisted of European populations, limiting 
the	generalizability	to	other	ethnics.	Last,	as	a	context-	dependent	
and	environment-	related	GWAS,	the	IVs	of	air	pollutants	might	not	
be the perfect proxy for intrinsic measurement. The LD- score ratio 
of	53%–63%	in	air	pollutants	GWAS	(collected	from	the	IEU	data-
base)	can	be	 interpreted	as	certain	proportion	of	signals	 in	 these	
GWAS	coming	from	potential	confounders,	likely	from	population	
structure,	 rather	 than	polygenic	signals	 (Table S6).	Three	 reasons	

F I G U R E  4 Protein–protein	interaction	
plot	for	USP35	and	TMEM175.
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underlay	this	potential	 limitation:	(1)	while	the	IVs	of	air	pollution	
were	statistically	significant	 in	 the	UK	Biobank	data	set,	 their	bi-
ological significance and transferablity needs to be further vali-
dated;	(2)	the	measurement	of	air	pollutant	exposure	in	the	GWAS	
is based on participant home address and may contain bias from 
home	address	change	across	lifetime;	(3)	the	air	pollutants	GWAS	
are likely confounded by imperfectly corrected latent population 
structure	which	has	been	previously	shown	to	affect	GWAS	in	the	
UK	Biobank	in	spite	of	stringent	corrections74 and is strongly cor-
related with participant location. These issues could probably re-
strict	the	relevance	and	independence	assumptions	of	MR	analysis	
to a certain degree.75

To	summarize,	our	study	has	established	a	causal	relationship	be-
tween	exposure	to	air	pollutants	and	ALS	using	MR	analysis	based	
on	 the	 largest	and	 latest	GWAS.	Our	 findings	suggest	 that	PM2.5	
and NOX	exposure	is	associated	with	an	increased	incidence	of	ALS,	
while NO2 exposure did not have a statistically significant effect. 
Through transcriptome- wide association studies, we identified that 
TMEM175	and	USP35	might	 intermediate	from	PM2.5	to	ALS,	 re-
lated to the homeostasis of proteome and mitochondria.

Our study contributes to a growing body of evidence that en-
vironmental exposures, such as air pollution, may play a role in the 
development	of	ALS.	These	findings	highlight	the	need	for	further	
research to validate our results and explore potential preventive 
measures for this devastating disease.
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