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Abstract Healthy aging has emerged as a crucial
issue with the increase in the geriatric population
worldwide. Food-derived sulfur-containing amino
acid ergothioneine (ERGO) is a potential dietary sup-
plement, which exhibits various beneficial effects in
experimental animals although the preventive effects
of ERGO on aging and/or age-related impairments
such as frailty and cognitive impairment are unclear.
We investigated the effects of daily oral supple-
mentation of ERGO dissolved in drinking water on
lifespan, frailty, and cognitive impairment in male
mice from 7 weeks of age to the end of their lives.
Ingestion of 4~5 mg/kg/day of ERGO remarkably
extended the lifespan of male mice. The longevity
effect of ERGO was further supported by increase in
life and non-frailty spans of Caenorhabditis elegans
in the presence of ERGO. Compared with the control
group, the ERGO group showed significantly lower
age-related declines in weight, fat mass, and average
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and maximum movement velocities at 88 weeks of
age. This was compatible with dramatical suppression
by ERGO of the age-related increments in plasma
biomarkers (BMs) such as the chemokine ligand
9, creatinine, symmetric dimethylarginine, urea,
asymmetric dimethylarginine, quinolinic acid, and
kynurenine. The oral intake of ERGO also rescued
age-related impairments in learning and memory
ability, which might be associated with suppression
of the age-related decline in hippocampal neurogen-
esis and TDP43 protein aggregation and promotion of
microglial shift to the M2 phenotype by ERGO inges-
tion. Ingestion of ERGO may promote longevity and
healthy aging in male mice, possibly through multiple
biological mechanisms.

Keywords Healthy aging - Age-related
impairments - Hippocampal neurogenesis -
Ergothioneine - Frailty - Lifespan - Longevity - Anti-
aging

Introduction

Healthy aging has emerged as a crucial issue with the
recent increase in the geriatric population worldwide.
Aging manifests as a decline in physical and cogni-
tive functions and is accompanied by various changes
including chronically elevated systemic inflammation
[1]. In the brain, decreased neurogenesis, activated
microglia, and brain aggregate accumulation are
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accompanied by aging, and all of these events may
contribute to impaired cognitive and locomotor per-
formances [2-5]. Physical dysfunction also becomes
increasingly prevalent toward the end of life, and 45%
of people older than 85 years of age show frailty [6].
Therefore, the development of novel preventive strat-
egies and identification of food-derived substances
that can safely prevent the adverse effects of aging
have received much attention to overcome various
such age-related impairments.

The food-derived sulfur-containing amino acid
ergothioneine (ERGO) was recently hypothesized as a
putative longevity vitamin [7]. ERGO is absorbed into
systemic circulation through dietary intake mainly via
its specific transporter carnitine/organic cation trans-
porter OCTN1/SLC22A4 showing strong antioxidant
and anti-inflammatory effects [8, 9]. Interestingly,
ERGO levels in the systemic circulation are associ-
ated with several age-related various impairments.
For example, reduced plasma ERGO levels are asso-
ciated with increased risks of coronary disease, car-
diovascular mortality, and overall mortality [10]. In
the brain, lower plasma ERGO levels are associated
with decreased hippocampal volumes, reduced corti-
cal thickness, and cerebrovascular disease in demen-
tia [11, 12]. Blood ERGO levels are also decreased
in elderly individuals, individuals with mild cognitive
impairment, and patients with various diseases such
as Parkinson disease and frailty [13—15].

On the other hand, supplementation of ERGO
has been reported to show several beneficial effects
on animals and humans. Oral ERGO administration
exhibits a longevity-extending effect in Drosophila
melanogaster, and ERGO-containing Hericium eri-
naceus extract improves locomotor performance
during aging in mice [16, 17]. In the brain, repeated
oral administration of ERGO enhances learning and
memory ability in normal mice, whereas repeated
oral intake of ERGO-containing golden oyster mush-
room extract (GOME) tablets improves verbal mem-
ory in humans [18, 19]. Oral ingestion of GOME also
promotes hippocampal neurogenesis in mice and this
was reported to be compatible with the promotion of
neuronal differentiation by ERGO in primary cultured
neural stem cells (NSCs) [20, 21]. These beneficial
effects of orally administered ERGO may highlight
its potential as a dietary supplement to prevent aging
and age-related impairments such as frailty and cog-
nitive impairment. However, the preventive effects of
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ERGO on aging and age-related impairments in mice
are not clear.

In the present study, we investigated the preventive
effect of daily oral supplementation with ERGO on
lifespan, frailty, cellular and systemic senescence, and
cognitive impairment in mice from 7 weeks of age to
the end of their lives.

Methods
Animals

Four-week-old C57BL/6 J wild-type male mice were
purchased from Charles River Laboratories Japan
(Kanagawa, Japan). The pathogen-free mice were
acclimatized for 3 weeks before conducting the
experiments. The mice were housed at four males per
cage without replacement until they died of old age.
They were maintained at a temperature of 25+1 °C
and a humidity level of 60+5%, following a 12-h
light—dark cycle, with ad libitum access to food and
tap water. Basal diet 5755 (TestDiet, Richmond, IN,
USA), which contained less than 0.01 pg ERGO/g
chow, was used as the daily diet from 4 weeks of
age. This study was conducted in strict accordance
with the guidelines outlined in the National Institutes
of Health Guide for the Care and Use of Laboratory
Animals. The protocol was approved by the Commit-
tee on the Ethics of Animal Experiments of the Uni-
versity of Kanazawa (Permit Number: AP-183968),
and efforts were made to minimize the number of ani-
mals used and their suffering. All animal experiments
were performed in 2019-2021.

Oral intake of ERGO in mice

Daily oral intake of water containing ERGO
(0.055 mg/mL; Tetrahedron, Paris, France) or water
alone was started from 7 weeks of age, after 3-week
acclimatization, to the end of the mice’s lives. The
ERGO dose was estimated to be 4~5 mg/kg/day
based on the water intake and body weight.

Survival test in mice
In the survival test, 7-week-old mice were randomly

divided into control and ERGO groups (n =36 in each
group). The mice were undisturbed during the study
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and were inspected daily. Mice deemed unlikely to
live for more than another 24 h based on a symptom
checklist were euthanized for humane reasons, with
the day of euthanasia recorded as the best estimate
of the date of natural death for statistical purposes.
Date of death was also recorded for mice found dead.
No mice required removal for humane reasons such
as fighting wounds or other technical reasons (e.g.,
escape, accidental injury). In the control group, a
mouse was excluded from the analysis because it
exhibited malformation at the end of life.

Incucyte-based Caenorhabditis elegans life and
non-frailty spansassays

The Incucyte® S3 Live-Cell Analysis System (Sarto-
rius, Gottingen, Germany) was used for auto-monitor-
ing the life and non-frailty spans of C. elegans [22].
In brief, assay plates were prepared by adding 600
uL of nematode growth media (NGM) agar (without
peptone and CaCl2) containing 0.3% Tween20 and
Amphotericin B (1 pg/mL) and ampicillin (100 pg/
mL) and 2'-Deoxy-5-fluorouridine (120 pM) with or
without ERGO (5 or 10 mM) into 6-well dishes, to
which UV-killed freeze-dried E. coli OP50 was sub-
sequently added. For the assay, worms were synchro-
nized by hypochlorite treatment and hatch as L1 lar-
vae on the standard NGM agar plates. Postdauer L4
larvae were transferred to standard plates containing
floxuridine (FUdR) to evaluate egg-laying defects.
On day 3 after birth, worms were transferred to assay
plates. Plate images were captured every 12 h by
the Incucyte® S3 Live-Cell Analysis System in an
incubator maintained at 20 °C by using a 4 X objec-
tive lens in phase-contrast and green-fluorescence
channels. The images were acquired from each well
at set time intervals. Worm posture and position
were recorded in every frame, and the changes were
detected by the superposition of two serial images.
Worm posture changed over time and finally stopped
changing, indicating worm death. Before death, most
aged worms only moved their head or tail, which was
defined as frailty.

Experimental design for assessing age-related frailty
and cognitive impairment in mice

Seven-week-old male mice were randomly divided
into control (n=116) and ERGO groups (n=84).

Frailty was evaluated by body composition using
magnetic resonance imaging (MRI) and locomotor
abilities measured by the open field test (OFT), one
of the oldest and most widely used assays for rodent
behavior [23]. Cellular senescence and oxidative
stress were assessed by western blotting (WB) and
ELISA for representative markers (liver p16, SIRT6,
TBARS, and plasma CXCL9) [1, 24-26]. Systemic
senescence was evaluated by CE-MS for renal func-
tion, strongly associated with aging and inflammag-
ing markers (creatinine, urea, ADMA, SDMA, qui-
nolinic acid, kynurenine, and tryptophan) [27-30].
Cognitive impairment was determined using the novel
object recognition test (NORT), a commonly used
behavioral assay for investigating various aspects of
learning and memory in mice [31]. The mechanisms
underlying ERGO-induced cognitive enhancement
were assessed through immunohistochemistry (IHC)
in the mouse brain and some in vitro analyses. The
mice were weighed and underwent body-composition
analyses at 7, 24, 48, 78, and 88 weeks of age, OFT
at 7, 24, 48, and 88 weeks of age, and evaluation of
memory retention by the NORT at 24 and 88 weeks
of age (Supplementary Table 1). Three weeks after
OFT, they were euthanized for biochemical analysis
and histological examination.

Body-composition analysis

The EchoMRI body-composition analyzer (Echo
Medical Systems, Houston, TX, USA) was used to
assess body compartments [32]. The unanesthetized
mice were placed into a thin-walled plastic holder
(thickness, 1.5 mm; diameter, 4.7 cm), with a cylin-
drical plastic insert added to restrict movement.
The holder was then inserted into a tubular space
in the side of the analyzer. Within the analyzer, the
restrained mice were briefly subjected to a low-inten-
sity (0.05 Tesla) electromagnetic field to measure fat
and lean tissue masses, as well as total body water
content.

Open field test (OFT)

Behavioral experiments were performed using
the CompACT VAS/DV video-tracking system
(Muromachi Kikai, Tokyo, Japan) to investigate the
locomotor abilities of mice. In the OFT, mice were
left free to explore an empty arena of 50x50 cm
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for 5 min; the total movement time (s) and distance
(cm) and average and maximum movement velocities
(cm/s) were evaluated.

Measurement of plasma ERGO level

EDTA-2 K was added to each blood sample, and the
samples were centrifuged (1200 g, 10 min) to sepa-
rate the plasma. Isotope-labeled ERGO-d9 (Toronto
Research Chemicals, Toronto, Canada) was used as
the internal standard. Simple protein precipitation
with acetonitrile was used for sample preparation
before analysis. Plasma ERGO concentration was
analyzed by fast ultra-high-performance liquid chro-
matography-tandem mass spectrometry (UHPLC-
MS/MS). For detailed information, see the “Measure-
ment of plasma ERGO level” section in Supporting
Information.

Oxidative stress analysis

For the analysis of TBARS, 25 mg of liver tissue
was ground with 250 uL. of RIPA buffer and centri-
fuged at 1600 g for 10 min under 4 °C. In total, 100
uL of supernatant was collected and used for TBARS
analysis. The TBARS content (nmol/mg protein) was
detected using TBARS (TCA Method) Assay Kit
(Cayman Chemical, 700,870, Ann Arbor, MI, USA)
in accordance with the manufacturer’s instructions.

ELISA

Plasma CXCL9 concentration was detected using an
ELISA kit (Abcam, ab203364, Shanghai, China) in
accordance with the manufacturer’s instructions.

Western blotting analysis

The livers were removed and homogenized in RIPA
buffer in the presence of the Halt protease inhibitor
cocktail (Thermo Fisher Scientific, 78,429, Waltham,
MA, USA). The samples were allowed to solubilize
for 30 min on ice, and particulate matter was removed
by centrifugation at 14,000 g for 15 min at 4 °C. Ali-
quots of each lysate containing 20 pg of protein were
used for Western blotting analysis. For detailed infor-
mation, see the “Western blotting analysis™ section in
Supporting Information.
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Capillary electrophoresis time-of-flight mass
spectrometry measurement

Fifty microliters of plasma were added to 200 uL of
methanol containing internal standards (Solution
ID: H3304-1002, Human Metabolome Technolo-
gies [HMT], Tsuruoka, Japan) at 0 °C to inactivate
enzymes. The extract solution was thoroughly mixed
with 150 pL of Milli-Q water. The mixed solution
(300 pL) was centrifugally filtered through a Mil-
lipore filter with a 5-kDa cutoff to remove proteins.
The filtrate was dried using a vacuum centrifuge
and re-suspended in 50 pL of Milli-Q water for CE-
TOF-MS analysis.

Plasma biomarker analysis

Plasma BMs (creatinine, SDMA, urea, ADMA, qui-
nolinic acid, kynurenine, tryptophan) were measured
by the HMT Dual Scan package with CE-TOF-MS
based on methods described previously [33, 34]. For
detailed information, see the “Plasma biomarker anal-
ysis” section in Supporting Information.

Novel object recognition test

Each mouse was individually placed in an acrylic
chamber (30x30x30 cm) without any objects and
was allowed to explore for 5 min. On the next day,
each mouse was placed in the same chamber with two
identical objects located on a diagonal line. Mice were
allowed to explore the chamber for 5 min. The time
spent exploring each object was recorded. Twenty-
four hours later, one of the objects was replaced by a
novel object of a different shape at the same location
in the chamber. Each mouse was allowed to explore
the chamber under these conditions for 5 min. The
exploration time for each object was recorded. The DI
was calculated as follows: ([novel object exploration
time/total exploration time] — [familiar object explo-
ration time/total exploration time]) X 100.

Immunohistochemistry

Mice were deeply anesthetized with 5% isoflurane
(Pfizer, New York, NY, USA) and transcardially
perfused with chilled 4% paraformaldehyde (PFA)
in 0.02 M phosphate-buffered saline (PBS, pH 7.2),
after which the whole brain was quickly dissected.
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The brain was postfixed in 4% PFA overnight at
4 °C, washed with PBS, embedded in 4% low melt-
ing point agarose, and cut on a Neo LinearSlicer MT
(NLS-MT, Dosaka, Japan) into 100-um-thick sections
for immunostaining. For detailed information, see
the “Immunohistochemistry” section in Supporting
Information.

Preparation of brain cytosol containing HNMT

The brains of C57BL/6 J mice were homogenized
in 40 volumes of ice-cold potassium phosphate
buffer (200 mM, pH 7.8) using a teflon-glass dounce
homogenizer for 30~40 strokes in an ice bath. The
homogenates were then centrifuged at 105,000 g for
1 h. The supernatants were then transferred into a
dialysis tube (UC20-32-100, 14 K), dialyzed against
the potassium phosphate buffer at 4 °C with stirring,
and stored at—80 °C.

Radioenzymatic assay for HNMT

The HNMT enzymatic assay was performed as
described previously with minor modifications [35,
36]. For detailed information, see the ‘“Radioen-
zymatic assay for HNMT” section in Supporting
Information.

Enzymatic assay for recombinant human HNMT

An enzyme solution (0.1 M Tris—HCI buffer [pH 7.4]
containing 10 nM thHNMT [Novus Biologicals, Cen-
tennial, CO, USA] and 0.4 mg/mL BSA) and substrate
solution (0.1 M Tris—HCI buffer [pH 7.4] contain-
ing 10 pM histamine and 10 pM SAM with or with-
out ERGO) were separately preincubated at 37 °C for
5 min, and 25 pL of each solution was mixed together.
After 60 min of incubation at 37 °C, 40 uL of the reac-
tion buffer was mixed with 100 pL of acetonitrile con-
taining the internal standard 250 nM ERGO-d9 and
20 nM histamine-d4, followed by measurement of his-
tamine and methylhistamine using LC-MS/MS.

Measurement of histamine and methylhistamine by
LC-MS/MS

Concentrations of histamine and methylhistamine
were analyzed by LCMS-8040 (Shimadzu, Kyoto,
Japan), as described previously [36]. Chromatographic

separation was performed with a ZIC-cHILIC column
(150 mmx2.1 mm, 3 um; 120 A, Merck Millipore,
Billerica, MA, USA). For detailed information, see the
“Measurement of histamine and methylhistamine by
LC-MS/MS” section in Supporting Information.

Primary microglial culture

Cortical microglial cell culture was performed as
described previously [37], with minor modifications.
For detailed information, see the “Primary microglial
culture” section in Supporting Information.

Quantitative RT-PCR

Total RNA was extracted from PMG using ISOGEN
in accordance with the standard procedure. cDNA was
synthesized with ReverTra Ace (Toyobo, Osaka, Japan)
and amplified on a Mx3005P (Agilent Technologies,
Santa Clara, CA, USA) in a reaction mixture contain-
ing cDNA with relevant sense and antisense primers
(Table 1) and THUNDERBIRD SYBR qPCR Mix.
PCR was initiated by template denaturation at 95 °C for
15 min, followed by 40 cycles of amplification (dena-
turation at 95 °C for 10 s and primer annealing and
extension at 60 °C for 30 s). The expression levels of
mRNA were normalized to an internal standard (glycer-
aldehyde-3-phosphate dehydrogenase [gapdh]).

Statistical analysis

Lifespan curves of mice and C. elegans were plotted
using the Kaplan—Meier estimate, and the differences
were statistically analyzed using the log-rank test.
The datasets did not include removed mice. Other
data were reported as mean+standard error of the
mean (SEM). The differences between groups were
determined by Welch #-test. Significant differences
among three groups were determined using Dun-
nett’s test, while differences among means of four or
more groups were analyzed using a two-way analysis

Table 1 Primers used for real-time PCR

Genes  Sense primer (5'-3") Antisense primer (3'-5")

CD86  aggagattacagcttcagttactgtg — gcgttactatcccgetctaactt
CD206 tggtggaagaagaagtagectatc  ttgtttactgtcacaggtgtcate

gapdh  aactttggcattgtggaagg ggatgcagggatgatgttct
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of variance followed by Tukey’s multiple compari-
son test to determine the differences. For NORT, we
used the Welch #-test for comparison between groups.
P <0.05 was considered statistically significant.

Results

ERGO promoted the lifespan of C57BL/6 J mice and
Caenorhabditis elegans

Mice that received supplementary ERGO at 4~5 mg/kg/
day from 7 weeks of age survived significantly longer

Fig. 1 Oral intake of

(P<0.001, the log-rank test) than those in the control
group (Fig. 1a). For mice given ERGO, median and aver-
age survival ages increased by 16% and 21%, respec-
tively, and the average age at which 90% of the mice died
increased by 29% compared to that in the control group
(Table 2). The two groups showed no clear differences in
food and water intake (data not shown). Thus, ERGO sup-
plementation caused a long lifespan extension.

C. elegans is a well-established model organ-
ism for aging research [38]. Treatment with 10 mM
ERGO extended both the life and non-frailty spans
of C. elegans (P<0.01; Fig. 1b, P<0.05; Fig. Ic,
the log-rank test), supporting the longevity effect of

ERGO promoted lifespan 100
and non-frailty span. a
Survival curves for mice = 80
with daily intake of water 2
containing 0.055 mg/mL 3 g
ERGO (solid line, n=36) E
or water alone (dashed line, % 0]
n=35). b Lifespan and E
¢ non-frailty span curves 09_
for C. elegans cultured on 204 Control
agar with 5 mM (dashed — ERGO
line, n=46) and 10 mM 0 ‘ ‘ ‘ ‘
ERGO (solid line, n=36) or 0 200 400 600 800 1000
without ERGO (dotte.d line, Age (Days)
n=40). Significant differ-
ences between groups were b C
determined by using the _ 1o > 100 T
log-rank test. C. elegans, .g 80 ;_§ 80 .
Caenorhabditis elegans 2 s

5 60 £ 60

- o

= 40 2 40

% --- Control 3 --- Control

8 90| --5mMERGO 4 8 59l --5mMERGO

i — 10 mM ERGO E — 10 mM ERGO

0 i 01, i
0 5 10 15 20 25 0 5 10 15 20 25
Age (Days) Age (Days)
Table 2 Survival statistics for the effects of ERGO in mice
Group Log-rank P-value Median (days) Change in  Average (days) Change in ~ P90° (days) Change in P90¢
median® average®

Control 605 590 672
ERGO <0.001 704 16% 715 21% 868 29%

4Change in median was calculated as ([median for ERGO — median for control]/median for control) x 100
®Change in average was calculated as ([average for ERGO —average for control]/average for control) x 100
°P90 is the age at which 90% of the mice had died

dChange in P90 is presented as the percentage difference between ERGO and control groups
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ERGO, while the group treated with 5 mM ERGO
showed tendency toward improvements of both life
and non-frailty spans (Table 3).

ERGO attenuated age-related weight decline

To determine whether ERGO may affect age-asso-
ciated changes in body mass and composition, body
weight, fat mass, lean mass, and total water content
were evaluated in aging mice and found to gradually
increase with age until 78 weeks in both control and
ERGO group (Fig. 2a—d). On the other hand, both
body weight and fat mass at 88 weeks in the control
group were significantly lower than those at 78 weeks
(Fig. 2a, b), and this body weight loss could be pri-
marily attributable to fat loss because both of these
reductions exhibited a similar degree (~7 g). Interest-
ingly, such age-related declines in body weight and
fat mass at 88 weeks of age were significantly atten-
uated in the ERGO group than in the control group
(P<0.05; Fig. 2a, P<0.01; Fig. 2b). In addition,
total water content in the ERGO group was signifi-
cantly lower than that in the control group at 78 and
88 weeks of age (P<0.05; Fig. 2d). ERGO did not
affect lean mass (Fig. 2c).

ERGO attenuated age-related locomotor impairment
The effect of ERGO supplementation on physiologi-

cal aging was next examined by assessing locomotor
activity using the open field test (OFT) in mice. Total

Table 3 Survival statistics for the effects of ERGO in C. elegans

movement time and distance, and average and maxi-
mum movement velocities continuously decreased
during aging until 48 or 88 weeks in both control and
ERGO groups. However, such age-related declines in
the average and maximum movement velocities were
significantly attenuated at 88 weeks in the ERGO
group than in the control group (P <0.05; Fig. 2g, h).
The total movement time and distance did not differ
significantly between the groups (Fig. 2e, f).

ERGO suppressed oxidative stress and cellular
senescence

Plasma ERGO level in the control group was less
than 1 uM until 92 weeks, whereas that in the ERGO
group was>30 times that in the control (P<0.01;
Fig. 3a).

To investigate the antioxidant effects of ERGO,
the concentration of thiobarbituric acid-reactive sub-
stances (TBARS), a major marker of lipid peroxida-
tion, was measured in the liver [26]. TBARS level at
92 weeks was much higher than that at 28 weeks in
the control group (P<0.01; Fig. 3b), while ERGO
remarkably suppressed it at 92 weeks (P<0.01;
Fig. 3b). To investigate the anti-systemic inflamma-
tory effects of ERGO, the plasma levels of chemokine
(CXC motif) ligand 9 (CXCL9), an index of the
inflammatory clock of aging [1], were measured and
were noted to remarkably increase between 28 and
92 weeks of age in the control group (P<0.01), but
those in the ERGO group at 28 and 92 weeks were

Group Log-rank P-value  Median (days) ~Changein Average (days) Changein P90° (days) Change in P90
median?® average®

Lifespan

Control 14.5 14.0 22.0

5 mM ERGO <0.1 17.0 17.2% 15.5 10.6% 22.0 0.0%

10 mM ERGO  <0.01 19.0 31.0% 18.4 30.4% 23.5 6.8%
Non-frailty span

Control 12.5 11.4 19.0

5 mM ERGO <0.1 13.5 8.0% 12.6 10.6% 19.0 0.0%

10 mM ERGO  <0.05 15.5 24.0% 14.8 30.4% 20.5 7.9%

4Change in median was calculated as ([median for ERGO — median for control]/median for control) x 100

®Change in average was calculated as ([average for ERGO —average for control]/average for control) x 100

°P90 is the age at which 90% of the mice had died

dChange in P90 is presented as the percentage difference between ERGO and control groups

@ Springer



3896

GeroScience (2024) 46:3889-3909

Q

60

40

Body (9)

20

Tw 24w 48w

20

Fat (g)

o

30

20

Lean (g)

7w 48w 78w 88w

o
*
| %

30

20

Total water (mL)

7w 24w 48w 78w 88w

Fig.2 ERGO prevented frailty in mice. Age-dependent
changes in a body weight in mice with daily intake of water
containing 0.055 mg/mL ERGO (gray columns, n=16) or
water alone (white columns, n=32 and 16 for 7 weeks and
others, respectively). b Fat mass, ¢ lean mass, and d total water
content were measured by EchoMRI. To evaluate frailty, e total
movement time, f total movement distance, g average move-

significantly lower than those in the control group
(P<0.05; Fig. 3¢).

To explain the anti-aging effect of ERGO in
mice, expression levels of senescence-related
markers were examined in liver lysates [24, 25].
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ment velocity, and h maximum movement velocity were also
evaluated by OFT. Data represent mean+SEM. **P<0.01,
*P<0.05 versus corresponding control (Welch #-test);
P <0.01 versus control at ages 78 weeks (Tukey’s test).
TP <0.01, TP <0.05 versus control at 7 weeks of age (Tukey’s
test). OFT, open field test

The protein level of SIRT6 tended to decrease at
92 weeks compared to that at 28 weeks in the con-
trol group (P=0.067; Fig. 3d, e, Supplementary
Fig. 1a), whereas ERGO significantly prevented the
age-related decline in SIRT6 expression at 92 weeks
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Fig. 3 ERGO suppressed cellular senescence in mice. a The
plasma ERGO levels in mice with daily intake of water alone
(white columns, n=8, 8, and 6 for 11, 28, and 92 weeks,
respectively) or water containing 0.055 mg/mL ERGO (gray
columns, n=38 and 6 for 28 and 92 weeks, respectively) were
quantified using UHPLC-MS/MS. **P<0.01 versus corre-
sponding control (Welch #-test). b Hepatic concentration of
TBARS was measured in control (white columns, n=3 and
6 for 28 and 92 weeks, respectively) and ERGO groups (gray
column, n=6). **P <0.01 versus control group at 92 weeks
of age (Dunnett’s test). ¢ Plasma CXCL9 concentration was
measured in control (white columns, n=8, 8, and 6 for 11,
28, and 92 weeks, respectively) and ERGO groups (gray

(P <0.05; Fig. 3d, e, Supplementary Fig. 1a). More-
over, protein level of pl6, a major marker for cel-
lular senescence, tended to increase at 92 weeks
compared to that at 28 weeks in the control group
(P=0.054; Fig. 3d, f, Supplementary Fig. 1b),
while it was significantly suppressed by daily intake
of ERGO at 92 weeks (P <0.05; Fig. 3d, f, Supple-
mentary Fig. 1b).
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columns, n=8 and 6 for 28 and 92 weeks, respectively).
**P<0.01, *P<0.05 versus corresponding control (Welch
t-test); TTP<0.01 versus control at 11 weeks of age (Tukey’s
test). The protein levels of d, e SIRT6 and d, f p16 in the liver
lysates were quantified by western blotting analysis in control
(white columns, n=3 and 6 for 28 and 92 weeks, respectively)
and ERGO groups (gray columns, n=6). The intensity of each
band was normalized by that of p-actin. *P <0.05 versus con-
trol group at 92 weeks of age (Dunnett’s test). The bar graph
data represent mean+SEM. CXCL9, chemokine (CXC motif)
ligand 9; SIRT6, NAD*-dependent protein deacetylase sir-
tuin-6; TBARS, thiobarbituric acid-reactive substances

ERGO improved BMs in plasma

Plasma BMs for systemic aging were further ana-
lyzed using capillary electrophoresis time-of-flight
mass spectrometry (CE-TOF-MS) in the control and
ERGO groups. Creatinine, symmetric dimethylargi-
nine (SDMA), urea, and asymmetric dimethylarginine
(ADMA) are markers of renal function and ADMA
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may also be a marker of endothelial damage [27-29].
The levels of these markers in the control group
increased significantly between 28 and 92 weeks
(P<0.01; Fig. 4a—d), and ERGO dramatically sup-
pressed the age-related increments in these markers at
92 weeks (P <0.01; Fig. 4a—d). The kynurenine/tryp-
tophan ratio (KTR), a potential BM of inflammaging
[30], increased significantly between 28 and 92 weeks
in the control group (P<0.01; Fig. 4e), and ERGO
significantly suppressed the age-related increase in
KTR (P<0.01; Fig. 4e). Quinolinic acid and kynure-
nine levels increased significantly with age, and these
age-related increases were significantly suppressed in
the ERGO group (P <0.05; Fig. 4f, P<0.01; Fig. 4g).
However, tryptophan levels did not change signifi-
cantly with age and ERGO intervention (Fig. 4h).

Enhancement of object recognition memory by
ERGO

To investigate whether oral intake of ERGO improves
learning and memory in aging mice, a novel object
recognition test (NORT) was conducted. In the reten-
tion trials, the discrimination index (DI), which was
calculated to compare object recognition ability, was
significantly higher in the ERGO group than in the
control group at 24 and 88 weeks of age (P<0.05;
Fig. 5a), suggesting that oral intake of ERGO
enhanced object recognition memory.

ERGO improved age-related hippocampal
impairment

Immunohistochemistry (IHC) was performed using
coronal sections of the hippocampus, which is
involved in learning and memory. First, we evaluated
effects of ERGO on the age-related changes in neuro-
genesis in the hippocampal dentate gyrus (DG). The
Dcx*/NeuN* ratio, which was determined by divid-
ing the area of cells expressing the newborn neu-
ron marker Dcx by the area of cells expressing the
neuronal nuclei marker NeuN, decreased gradually
with aging, but the age-related decrease was signifi-
cantly suppressed by ERGO at 28, 52, and 92 weeks
(P<0.05; Fig. 5b, c). However, the NeuN* cell area
did not change significantly with aging and showed
no change with the ERGO intervention (Fig. 5b, d).
The number of cells expressing the NSCs marker
Nestin in the subgranular zone decreased with aging
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until 52 weeks and showed no significant change with
ERGO intervention (Supplementary Fig. 2d, e). The
number of puncta expressing the synapse marker
Synapsin 1 (Synl) also did not change significantly
with aging and the ERGO intervention (Supplemen-
tary Fig. 2f-1).

Thereafter, we evaluated the number and phenotype
of microglia in the hippocampal DG. CD86 and CD206
are markers for pro-inflammatory M1 microglia and
anti-inflammatory M2 microglia, respectively [39]. The
area of the CD86% microglia and that of Ibal* micro-
glia significantly increased between 28 and 92 weeks
(P<0.05; Fig. 5e, f, Supplementary Fig. 2a), while
ERGO significantly prevented the age-related incre-
ments in those markers at 92 weeks (P <0.05; Fig. Se, f,
Supplementary Fig. 2a). ERGO also increased the area
of CD206"% microglia (P <0.05; Fig. 5e, g). Thus, daily
ERGO intake shifted the microglial phenotype from the
pro-inflammatory M1 to anti-inflammatory M2. CD68
is a major marker for activated microglia [40]. The area
of CD68™ microglia in the DG remarkably increased
between 28 and 92 weeks of age in the control group
(P<0.05; Supplementary Fig. 2b, c), whereas ERGO
reduced the corresponding value at 92 weeks (P <0.05;
Supplementary Fig. 2b, c).

To evaluate the effect of ERGO on the age-related
accumulation of hippocampal aggregates, the TDP43*
area in the hilus was analyzed and significantly lower in
the ERGO group than in the control group at 92 weeks
of age (P<0.05; Fig. 5h, 1). While TDP43 is abundant
in the nucleus, its deposition in the cytoplasm increases
with age and is a pathological feature of several neuro-
degenerative diseases [41]. The ERGO group showed a
high frequency of overlapping signals of TDP43 and the
nuclear marker DAPI, but TDP43 in the control group
tended to leak and deposit into the cytoplasm (Fig. 5h).
In the perirhinal cortex (PRh), which is involved in
object recognition memory outside the hippocampus,
both aging and ERGO had no effect on the number of
Synl* puncta as well as the number of c-fos and cal-
bindin double-positive cells, which indicates activation
of nerve cells (Supplementary Fig. 3a-e).

ERGO directly inhibits histamine-metabolizing
enzyme and promotes polarization of
anti-inflammatory microglia

We hypothesized that ERGO may change micro-
glial phenotype by inhibiting HNMT because
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Fig. 4 ERGO suppressed age-dependent changes in sev-
eral plasma biomarkers. a The plasma levels of creatinine, b
SDMA, ¢ urea, d ADMA, e KTR, f quinolinic acid, g kynure-
nine, and h tryptophan were measured by CE-TOF-MS. The
white and gray columns represent the mice with daily intake
of water alone (n=10 and 5 for 28 and 92 weeks, respectively)

ERGO potentially inhibits the enzymatic activity of
histamine N-methyltransferase (HNMT) although
detailed inhibition analysis has not yet been exam-
ined [42]. We first examined the inhibitory effect
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and water containing 0.055 mg/mL ERGO (n=4), respectively.
Data represent mean+SEM. **P <0.01, *P <0.05 versus con-
trol group at 92 weeks of age (Dunnett’s test). ADMA, asym-
metrical dimethylarginine; KTR, kynurenine/tryptophan ratio;
SDMA, symmetric dimethylarginine

of ERGO on HNMT. ERGO inhibited activities of
HNMT in the mouse brain cytosol and recombi-
nant human HNMT (rhHNMT) in a concentration-
dependent manner (Fig. 6a, b). Lineweaver—Burk
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«Fig. 5 ERGO improved age-related hippocampal impairment.
a DI values for the training and retention trials were meas-
ured at 24 and 88 weeks of age. The white and gray columns
represent the mice with daily intake of water alone and water
containing 0.055 mg/mL ERGO, respectively (n=16 for each
group); **P<0.01, *P<0.05 versus corresponding control
(Welch t-test). b Immunohistochemical detection of the new-
born neuron marker Dcx (red) and neuronal nuclei marker
NeuN (green) in the DG. Scale bar, 100 pm. ¢ Dcxt/NeuN*
ratio, which was determined by dividing the area of Dcx™ cells
by the area of NeuN" cells and d area of NeuN™ cells in the
DG. *P<0.05 versus corresponding control (Welch r-test);
TP <0.01 versus control at 11 weeks of age (Tukey’s test). The
white and gray columns represent the control (n=6 and 4 for
11 weeks and others, respectively) and ERGO groups (n=4
for each group), respectively. e Immunohistochemical stain-
ing of the M1 microglial marker CD86 (green), M2 microglial
marker CD206 (blue), and microglial marker Ibal (red) in the
DG. Scale bar, 50 um. f Area of CD86" cells and g that of
CD206" cells in the DG. The white and gray columns repre-
sent the control (n=3 and 4 for 28 and 92 weeks, respectively)
and ERGO groups (n=4), respectively. *P <0.05 versus con-
trol group at 92 weeks of age (Dunnett’s test). h Immunohis-
tochemical staining of brain aggregate protein marker TDP43
(pink) and nuclear marker DAPI (blue) in the hilus. Scale bar,
20 um. i Area of TDP43" cells in the hilus at 92 weeks of age.
The white and gray columns represent the control (n=4) and
ERGO groups (n=4), respectively. *P<0.05 versus control
(Welch t-test). The bar graph data represent mean + SEM. Dcx,
doublecortin; DG, dentate gyrus; DI, discrimination index;
NORT, novel object recognition test; TDP43, TAR DNA-bind-
ing protein of 43 kDa

analysis revealed that ERGO competitively inhib-
ited thHNMT against histamine (Fig. 6¢). HNMT
expression in the brain has been reported at the
protein level in astrocytes and histaminergic neu-
rons and at the mRNA level in microglia [43, 44].
Evaluation of HNMT expression in the mouse
hippocampus by IHC revealed co-localization of
microglial marker and HNMT (Fig. 6d), and HNMT
expression at the protein level was also observed in
mouse primary cultured microglia (PMG) (Fig. 6e).
Interestingly, the addition of ERGO and the HNMT
inhibitor metoprine to mouse PMG significantly
increased the mRNA level of CD206 (P<0.05;
Fig. 6g), but not CD86 (Fig. 6f). Simultaneous
addition of ERGO and metoprine did not show an
additive effect, suggesting that both ERGO and
metoprine may mediate M2 microglial polarization
through HNMT inhibition (P <0.05; Fig. 6g).

Discussion

This study is the first to investigate the effects of
daily oral supplementation with ERGO on lifespan,
frailty, cellular and systemic senescence, and cogni-
tive impairment in mice. One of our most interesting
findings is that the ingestion of 4 ~5 mg/kg of ERGO
per day remarkably extended the lifespan of mice,
including significant lifespan benefits at the 90th per-
centile age (Fig. 1a). The significant increase in the
lifespan of mice and C. elegans by ERGO (Fig. 1)
is consistent with findings of an earlier report show-
ing a beneficial effect of ERGO on the lifespan of
Drosophila melanogaster [16]. Thus, ERGO may act
as a longevity-promoting vitamin regardless of spe-
cies. Regarding frailty, the clinical frailty phenotype
developed by Fried et al. [45] includes five measures:
four components of physical function (weakness,
poor endurance/exhaustion, slowness, and low activ-
ity) and unintentional weight loss. In recent years,
attempts have been made to translate the Fried frailty
phenotype into mice [46]. In the present study, there-
fore, we measured rodent behavior using OFT and
body composition to emulate three of the five Fried’s
criteria (slowness, low activity, and weight loss). As
a result, the age-related declines in weight, fat mass,
and average and maximum movement velocities in
the ERGO group were significantly lower than those
in the control group at 88 weeks of age (Fig. 2a, b, g,
h). Oral intake of ERGO also suppressed the incre-
ments in age-related plasma BMs such as creatinine,
SDMA, urea, ADMA, quinolinic acid, and kynure-
nine (Fig. 4a—d, f, g), and ERGO enhanced object rec-
ognition memory and improved learning and memory
ability in aged mice (Fig. 5a). Thus, daily intake of
ERGO would have several anti-aging benefits in nor-
mal mice.

In addition to its lifespan-promoting effect, oral
ingestion of ERGO improved frailty in mice (Fig. 2).
ERGO treatment also increased the non-frailty span
of C. elegans (Fig. 1c). In humans, ERGO lev-
els have been proposed as a potential BM of frailty
[15]. These findings may support a beneficial role
of ERGO in frailty. However, lean mass begins to
decrease before fat mass with aging in humans [47],
whereas in the present study, the mice did not show
an age-related decrease in lean mass (Fig. 2¢) but the
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Fig. 6 ERGO inhibited the histamine-metabolizing enzyme
and promoted polarization of anti-inflammatory M2 micro-
glia. a Dose-dependent inhibitory effect of ERGO (0, 10, 30,
60, 100, and 500 uM) on histamine metabolism in mouse brain
cytosol (20 pg/mL) and b the effect of ERGO (0, 10, 30, 100,
and 500 uM) on thHNMT (10 nM). ¢ Lineweaver—Burk plots
on the data of the inhibition of thHNMT by ERGO. Data rep-
resent mean+SEM (n=3). d Immunohistochemical detec-
tion of HNMT (green) and the microglial marker Ibal (red) in
mouse hippocampus. Scale bar, 5 um. e Immunocytochemical

age-related progressive loss of fat mass was observed
and predominantly accounted for the loss of body
mass (Fig. 2a, b). This is consistent with the find-
ings of a previous study using the same MRI method
[48]. It has also been reported that muscle mass only
minimally declines as mice age [49], but other reports
showed that muscle mass progressively decline in
male mice during aging [48, 50]. Thus, species-
related differences in age-related decline in lean/fat
mass may exist between mice and humans.
Senescence can be induced by various stresses
including DNA damage, telomere shortening, onco-
genic mutations, metabolic and mitochondrial
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tured microglia; thHNMT, recombinant human histamine
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dysfunction, and inflammation [51-53]. Interest-
ingly, age-related elevations in the plasma CXCLO9
and KTR were dramatically suppressed in the ERGO
group (Figs. 3c, 4e). CXCL9, an index of inflamma-
tory clock of aging, is associated with frailty, cellu-
lar senescence, and healthy lifespan [1]. On the other
hand, plasma KTR is robustly associated with aging
[30] and many diseases, including arthritis, neuropsy-
chiatric disorders, cancer, and inflammations [54].
KTR is also an indicator of the activity of indoleam-
ine 2,3-dioxygenase (IDO), an intracellular mono-
meric heme-containing enzyme controlling trypto-
phan breakdown in the kynurenine pathway [54].
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IDO activity is induced by CXCL9 [55]. Therefore,
ERGO may suppress the kynurenine pathway pos-
sibly via suppressing the CXCL9-induced activation
of IDO. In addition, cellular senescence, a cell fate
involving extensive changes in gene expression and
proliferative arrest, induces systemic inflammation
[56]. Since the age-related increase in protein levels
of pl16, a marker of cellular senescence, was lowered
in the ERGO group (Fig. 3f), ERGO may contribute
to the systemic anti-inflammatory effect through sup-
pression of cellular senescence, possibly attenuat-
ing accelerated aging. Furthermore, the age-related
decline in SIRT6 expression was suppressed in the
ERGO group (Fig. 3e). SIRT6 localizes to the cyto-
plasm and the nucleus and suppresses pl6 expres-
sion [57, 58]. Overexpression of SIRT6 extends the
lifespan and healthy aging of male and female mice
[59, 60]. Thus, the elevation of SIRT6 by ERGO
may also contribute to longevity. In addition, ERGO
lowered liver TBARS levels increase with aging
(Fig. 3b), suggesting that ERGO suppressed an age-
related increase in hepatic lipid peroxidation, possibly
through its radical-removal activity [9, 61].

Oral intake of ERGO also improves object rec-
ognition memory at both 24 and 88 weeks of age
(Fig. 5a). We hypothesized three potential mecha-
nisms underlying the ERGO-induced cognitive
enhancement. First, hippocampal neurogenesis may
be one such mechanism. Learning and memory abil-
ity is improved by promoting hippocampal neuro-
genesis [62]. Adult neurogenesis in the DG of the
hippocampus is known to decline markedly with age
in humans and mice [2, 63, 64], and in the present
study, ERGO suppressed the age-related decline in
hippocampal neurogenesis compared to the control
group (Fig. 5b, c). Previous studies have also shown
that oral ingestion of ERGO-containing GOME
promotes hippocampal neurogenesis in mice [20],
and exposure of primary cultured NSCs to ERGO
promotes neuronal differentiation in vitro [21]. In
humans, a positive correlation between hippocam-
pal volume and ERGO concentration has previously
been reported [11], which may also imply involve-
ment of ERGO in the hippocampal neurogenesis.
Hence, ERGO may improve cognitive function by
promoting hippocampal neurogenesis.

Another potential mechanism may involve the
regulation of microglial activation. Polarization to
the anti-inflammatory M2 microglial phenotype has

attracted attention as a treatment strategy for vari-
ous neurodegenerative diseases [65], while polari-
zation to the pro-inflammatory M1 is involved in
the onset and exacerbation of these diseases [39].
In the present study, ERGO significantly suppressed
both age-related increments in M1 and micro-
glia activation in DG, whereas ERGO remarkably
increased M2 microglia (Fig. Se-g, Supplementary
Fig. 2a-c). Previous study has also shown that expo-
sure to ERGO suppresses the activation of micro-
glia in vitro [37]. A specific transporter for ERGO,
OCTNI, is functionally expressed in microglia [37],
implying that ERGO may play an important role in
microglial function. Although these findings may
suggest promotion of microglial differentiation
into anti-inflammatory M2 by ERGO, the molecu-
lar mechanisms of action of ERGO are unknown.
The present study was the first to propose relevance
of the inhibitory action of ERGO to HNMT with
ERGO-induced M2 polarization. ERGO inhib-
ited HNMT in mouse brain cytosol with an ICs,
of 83.8 uM (Fig. 6a), and this value was compara-
ble with the previous result of molecular-targeting
assay (IC5,~46.2 uM; Katsube et al., 2022). Since
the plasma ERGO concentration was around 40 uM
(Fig. 3a), and it has previously been reported that
the brain-to-plasma concentration ratio is approxi-
mately two [20], ERGO concentration in the brain is
thought to be ~ 80 pM, suggesting that HNMT in the
brain is potentially inhibited by ERGO. However, a
limitation of this study is not to measure the actual
ERGO concentrations in the brain. Moreover, as
with ERGO, the HNMT inhibitor metoprine polar-
ized mouse PMG toward M2 (Fig. 6g). These find-
ings propose HNMT as one of the target proteins for
M2 polarization. HNMT is involved in histamine
metabolism, and therefore, its inhibition may lead
to increase in histamine concentration. Histamine
2/3 receptor agonists inhibit microglial activation
and alleviate perioperative neurocognitive disor-
ders in aged rats [66]. Therefore, further studies are
required to clarify possible involvement of hista-
mine and/or its receptor in M2 polarization. ERGO-
induced M2 polarization may also be involved in
the promotion of neurogenesis by ERGO since M2
microglia promote neurogenesis [67]. Therefore,
regulation of microglial activation by ERGO may
also be involved in neurogenesis, thereby improving
learning and memory.
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Third, ERGO may also influence the aggregates
of proteins such as TDP43 (Fig. 5h, i), which accu-
mulate with aging and are involved in the onset and
exacerbation of various neurodegenerative diseases
[68-70]. Because oxidative stress induces TDP43
aggregation [71], the antioxidant action of ERGO
may be involved in suppression of the aggregation
(Fig. 5h, i). In addition, the ERGO-induced micro-
glial M2 polarization may further suppress TDP43
aggregation since microglial activation is related
to the aggregation, and M2 microglia especially are
more efficient phagocytes for brain wastes than M1
microglia [35, 72, 73] TDP43 activates microglia
through NF-kB and NLRP3 inflammasome [70], and
the impaired microglial phagocytosis of dying neu-
rons may contribute to the formation of pathological
TDP43 [74]. Hence, the ERGO-induced neurogen-
esis, shifting of the microglial phenotype to M2, and
suppression of the TDP43 aggregation would also be
beneficial roles of ERGO in the brain in addition to
its antioxidative activity [75].

ERGO is a safe compound contained in various
foods consumed daily and is efficiently absorbed
from the gastrointestinal tract and distributed
into various organs, including the liver, kidney,
and brain through its primary membrane trans-
porter OCTN1, which is expressed ubiquitously [8,
76-79]. In the present study, ERGO showed anti-
aging activity in the liver, kidney, and brain. Thus,
the existence of a specific transporter for exogenous
ERGO in various organs implies that ERGO plays
multiple physiological roles in various organs and
may be useful for preserving physical and mental
health. In particular, the plasma levels of creatinine,
SDMA, urea, and ADMA, which are markers of
renal dysfunction were suppressed by daily ERGO
intake (Fig. 4a—d) [27-29]. This finding may be
compatible with the previous reports indicating that
ERGO modulates oxidative damage of the kidney in
rats and that decreased ERGO levels may contribute
to chronic kidney disease progression implying ben-
eficial roles of ERGO in the kidney [80, 81]. The
National Institute on Aging Interventions Testing
Program evaluates agents hypothesized to increase
healthy lifespan in genetically heterogeneous mice
(https://www.nia.nih.gov/research/dab/inter venti
ons-testing-program-itp). As of Cohort 11, C2017,
nine agents have shown significant extension of
median lifespan: acarbose, aspirin, canagliflozin,
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captopril, glycine, nordihydroguaiaretic acid, Pro-
tandim®, rapamycin, and 17a-estradiol [82-90].
Among them, food-derived components are Pro-
tandim® and glycine. Since Protandim® is a mix-
ture of five botanical extracts, its actual action is
unknown. Glycine requires a considerably high
dose (8% of the diet by weight) to exert its lifespan-
extending effects. In contrast, ERGO is a highly safe
single compound that is easily taken into the body
through OCTN1 and was shown to suppress the
aging of various organs, such as the kidney, liver,
and brain at low doses. Thus, ERGO may be supe-
rior to other life-extending foods, and its effects in
humans should be investigated in the future.

While the average lifespan of C57BL/6 J male
mice is 878+ 10 days [91], the lifespan of the con-
trol group in the present study was shorter. The Basal
diet® used in this study contained a significantly
smaller amount (<0.01 ug ERGO/g chow) of ERGO
than other typical diets (~0.2 ug ERGO/g chow) [20].
Therefore, ingestion of higher amounts of ERGO in
other diets may have improved the lifespan, which
was shortened due to the Basal diet® in the control
group. In addition, the higher fat content of the con-
trol diet (22.1% of energy comes from fat) compared
to most standard diets may induce more rapid aging.

In conclusion, ERGO extends the lifespan of mice
and C. elegans and attenuated frailty and brain aging
in mice, exerting preventive effects against aging and
various age-related disorders in mice. Thus, ERGO
may be an important vitamin-like compound leading
to healthy longevity. However, there were still limi-
tations of the present study in terms of restriction to
male mice, evaluation of cognition by a single test,
and measurement of the senescence marker only in
the liver and blood.
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