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Abstract

Background: Bile acids mediate gut-liver cross-talk through bile acid

receptors. Serum, hepatic, and microbial bile acid metabolism was evaluated

in HCV-compensated chronic liver disease.

Methods: Patients underwent liver biopsy; portal and peripheral blood were

obtained before (HCVi), and 6 months after sustained virologic response

(SVR), splenic blood was obtained only after SVR. The fecal microbiome and

liver transcriptome were evaluated using RNA-Seq. Twenty-four bile acids

were measured in serum, summed as free, taurine-conjugated bile acids

(Tau-BAs), and glycine-conjugated bile acids.

Results: Compared to SVR, HCVi showed elevated conjugated bile acids,

predominantly Tau-BA, compounded in HCVi cirrhosis. In the liver, tran-

scription of bile acids uptake, synthesis, and conjugation was decreased with

increased hepatic spillover into systemic circulation in HCVi. There was no

difference in the transcription of microbial bile acid metabolizing genes in

HCVi. Despite an overall decrease, Tau-BA remained elevated in SVR

Abbreviations: BSH, bile salt hydrolase; CA, cholate; CDCA, chenodeoxycholate; DCA, deoxycholic acid; GHC, glycohycholate; GPCR, G-protein–coupled receptor;
HCVi, patients infected with hepatitis C virus; HCV-Cirr, HCVi cirrhotics; HCVi-NC, HCVi non-cirrhotics; MetaHIT, Metagenomics of the Human Intestinal Tract;
NLRP3, NLR family pyrin domain-containing 3; RNA-Seq, ribonucleic acid Sequencing; S1PR2, spingosine-1-phosphate receptor 2; sCD, soluble cluster of
differentiation; SVR, sustained virologic response; SVR-Cirr, SVR cirrhotics; SVR-NC, SVR non-cirrhotics; Tau-BA, total taurine-conjugated bile acids; T/G, ratio of
total taurine-conjugated bile acids to total glycine-conjugated bile acids; TBMA, tauro-beta-muricholate; TBMCA, tauro-beta-muricholate; UDCA, ursodeoxycholate;
WGCNA, weighted gene co-expression network analysis; 7-HOCA, 7-alpha-hydroxy-3-oxo-4-cholestenoate.
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cirrhosis, mainly in splenic circulation. Only conjugated bile acids, predom-

inantly Tau-BA, correlated with serum proinflammatory markers and hepatic

proinflammatory pathways, including NLRP3 and NFKB. Among hepatic

bile acid receptors, disease-associated conjugated bile acids showed

the strongest association with hepatic spingosine-1-phosphate receptor

2 (S1PR2).

Conclusions: Enhanced expression of hepatic S1PR2 in HCVi and

HCVi-cirrhosis and strong associations of S1PR2 with Tau-BAs suggest

pathological relevance of Tau-BA-hepatic S1PR2 signaling in chronic liver

disease. These findings have therapeutic implications in chronic liver

diseases.

INTRODUCTION

The liver is an immunometabolic organ located at
the nexus of bile acid–mediated microbial-host
crosstalk.[1] Despite an inordinate amount of study,
bile acids remain relatively underexplored in humans.
In addition to their fundamental role as master
regulators of energy metabolism, bile acids, like the
liver, are at the intersection of metabolism, immunity,
and inflammation.[2,3]

Bile acids are an ideal medium to explore the
interplay between the gut microbiome and the host in
chronic liver disease. Most of our current understand-
ing of the gut-liver axis and bile acid perturbations has
been derived from studies exploring individual aspects
of this multicompartment system, typically in animal
models.[4]

Increasing clarity is now being derived about the
highly specific immunometabolic functions of bile acids
and their relevant receptors, enabling opportunities to
modulate bile acid metabolism for better therapeutic
targeting of diseases of the gut-liver axis.[5,6] Despite
recent studies on the therapeutic relevance of bile acid
receptors in humans, the pathophysiological under-
pinnings of these receptors in liver disease are not fully
elucidated.[7]

There is extensive literature on bile acid alterations in
metabolic and cholestatic disorders where eradication
of the underlying etiology remains challenging.[2] Advent
of direct-acting antiviral therapy for HCV infection
affords a unique opportunity to evaluate the bile acid
circuit in chronic liver disease before and after
elimination of the trigger to identify themes that may
extend to non-HCV liver disease etiologies.

The primary objective of this study was to provide a
more complete understanding of the role of bile acids in
chronic liver disease by integrating multiple compart-
ments of the gut-liver axis. To this end, we performed a
detailed characterization of the bile acid profile in the

systemic and portal circulation and the major organs
relevant to host bile acid metabolism, that is, the liver
and the fecal microbiome in patients with HCV with
compensated liver disease (HCVi) with re-evaluation
after the sustained virologic response (SVR). To
expand on the role of bile acids in liver disease
progression, circulatory bile acid alternations were
integrated with the liver transcriptome and with markers
of liver disease severity.

We recently described alterations in the hepatic
peroxisome, mitochondrial function, and microbial
energy metabolism in HCVi liver disease.[8] In this
manuscript, we have extended the knowledge of
metabolic perturbations in chronic liver disease by
exploring a diverse range of bile acids in serum and
hepatic bile acid genes on a transcriptional level. This
analysis has revealed a circulatory predominance of
taurine-conjugated bile acids (Tau-BAs) and a con-
comitant decrease in hepatic bile acid synthesis in
HCVi liver disease. Only by direct evaluation of splenic
serum we identified the relevance of conjugated
primary bile acids circulating in the splenic vein in
SVR cirrhosis. By integrating the hepatic bile acid
receptors with liver disease severity and serum bile
acids, we have emphasized the pathological and
therapeutic relevance of conjugated bile acid-hepatic
spingosine-1-phosphate receptor 2 (S1PR2) signaling
and its link to hepatic and systemic inflammation in
HCVi liver disease.

METHODS

Patient selection and sample collection

For full details, please refer to the Methods section
previously published.[8] In brief, of the initially assessed
36 patients seen at the National Institutes of Health
Clinical Center, 30 patients (the accrual ceiling) were
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eligible and agreed to participate in the study. All
research was conducted in accordance with the
Declarations of Helsinki and Istanbul; all patients
signed informed consent for participation in an NIDDK
Institutional Review Board–approved protocol
(NCT02400216). Of 30 patients consented, 29 patients
with chronic hepatitis C completed phase one evalua-
tion (HCVi). One patient was excluded due to HCC. All
patients achieved SVR after 12 weeks of treatment with
sofosbuvir/velpatasvir. Of 29 patients, 23 completed
posttreatment evaluation (SVR) (Table 1). All patients
underwent sampling of the portal and peripheral blood,
feces, and liver tissue at both time points (Figure 1). In
addition, splenic vein samples were obtained from 20

patients with SVR. All authors had access to data,
reviewed, and approved the final manuscript.

Liver tissue samples and RNA-Seq
analysis

Liver biopsy samples were scored in a blinded
manner by a hepatopathologist, Dr David
Kleiner.[9,10] Patients were stratified using Ishak
fibrosis score from liver biopsies corresponding to
HCVi and SVR time points. Ishak fibrosis score = 0–4
were characterized as noncirrhotic (HCVi non-
cirrhotics [HCVi-NC], n = 16; SVR-NC, n = 14) and

TABLE 1 Patient characteristics

HCVi SVR Wilcoxon paired test (HCVi vs. SVR)

Number of subjects (n) 29 23 22

Age; median (IQR) 59 (54.5–62) 58 (48–67) —

Gender; Males, n (%) 18 (62.1) 14 (61) —

Race; n (%)

Caucasian 19 (65.5) 15 (65.2) —

African American 5 (17.2) 5 (21.7) —

Asian 2 (6.8) 1 (4.3) —

Hispanic 3 (10.3) 2 (8.7) —

HCV genotype; n (%)

1a 10 (34.5) — —

1b 8 (27.5) — —

2a/c 1 (3.4) — —

2b 5 (17.2) — —

3a 4 (13.8) — —

4 1 (3.4) — —

Histological and laboratory parameters, median (IQR)

log HCV RNA (IU/mL) 6.4 (5.75–6.88) Undetectable —

Ishak fibrosis score 4 (2–6) 3 (0–6) 0.2483

HAI inflammatory score 8 (7–10) 3 (2–3) <0.0001

Direct portal pressures (mm Hg) 19 (12–25) 19 (12–22) 0.9488

Laboratory parameters, median (IQR)

ALT (IU/L) 85 (46.0–145.5) 21 (17–29) <0.0001

AST (IU/L) 72 (34.5–109.5) 24 (21–28) <0.0001

ALP (IU/L) 81 (73.0–108.5) 76 (63–106) 0.1172

GGT (IU/L) 113 (35.5–169.0) 33 (20–43) 0.0001

Albumin (g/dL) 4.1 (4.0–4.4) 4.3 (4.1–4.5) 0.0532

Total bilirubin (mg/dL) 0.6 (0.5–0.8) 0.4 (0.3–0.6) 0.0020

Platelet count (×109 /L) 165 (116.0–201.5) 170.5 (140.8–195.8) 0.3331

PT-INR 1.07 (0.99–1.13) 1.09 (1.01–1.17) 0.0083

BMI (kg/m2) 27.3 (24.4–31.4) 27.7 (23.8–31.1) 0.2313

Note: Twenty-nine patients infected with HCV were assessed at the initial time point, that is, HCVi cohort. Twenty-three patients completed evaluation at the second
time point, 6 months after sustained virologic response, that is, SVR cohort. Of these, 22 patients were included in the paired analysis between the 2 time points, 2-
sided Wilcoxon matched-pairs signed rank test.
Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; GGT, gamma-glutamyl trans-
ferase; HAI, hepatic activity index; HCVi, HCVi, patients infected with HCV; PT-INR, prothrombin time-international normalized ratio; SVR, sustained virologic
response.
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Ishak fibrosis score = 5–6 as cirrhotics (HCVi-
cirrhotics [HCVi-Cirr], n = 13; SVR cirrhotics [SVR-
Cirr], n = 9). Ribonucleic acid sequencing (RNA-Seq)
analysis was performed as described,[8] and analysis
on liver transcriptome had HCVi, n = 27 (HCVi-Cirr, n
= 12 and HCVi-NC, n = 15) and SVR, n = 23 (SVR-
Cirr, n = 9 and SVR-NC, n = 14). For paired analysis
on liver transcriptomics, n = 22 due to data filtering
as described.[8]

Bile acid measurement

Metabolon conducted the global metabolomics assays
serum at both time points using ultra-performance liquid
chromatography-mass spectrometry as described.[8,11]

Twenty-four bile acids were measured in peripheral and
portal serum in HCVi (n = 29) and peripheral, portal,
and splenic serum in SVR (n = 23 for peripheral and
portal serum, n = 20 for splenic serum). For paired
analysis, n = 23. For all serum bile acid analyses,
we performed log transformation and imputation of

missing values, if any, with the minimum observed
value for each compound. The final unit for serum bile
acids is “relative quantification” as defined.[8] Relative
differences in bile acid composition were assessed
based on HCV status and cirrhosis.

Grouping of serum BA based on conjugation
and hydroxylation

BA was summed up into groups based on conjugation
and hydroxylation into conjugated or free BA and
primary or secondary BA, respectively. Primary BA
includes the sum of free chenodeoxycholate (CDCA)
and cholate (CA); glycine, taurine, and sulfated con-
jugates of CDCA and CA; hyocholate; tauro-beta-
muricholate (TBMCA); and glycochenodeoxycholate
glucuronide. Secondary BA includes the sum of free
deoxycholic acid (DCA) and ursodeoxycholate (UDCA)
and glycine, taurine, and sulfated conjugates of DCA,
UDCA, and LCA. Total Free includes the sum of CDCA,
CA, DCA, UDCA, and hyocholate. Total glycine

SVR liver disease
(cirrhotics and non-cirrhotics)

Splenic vein
(SVR only)

Peripheral

Peripheral, portal, and
splenic serum analysis:

Liver transcriptome
analysis:

Gut microbiome
transcriptome analysis:

• Bile salt hydrolase
• Bile acid inducible genes
• Pathways for microbial
  metabolism

• Bile acid synthesis
• Bile acid conjugation
• Bile acid transport
• Bile acid receptors
• Pathways for inflammation,
  immunity, and metabolism

• 24 bile acids
• FGF19
• Cytokines
• Chemokines
• Immune cells

n=29

n=23

DAA therapy

Initial evaluation

Follow up evaluation

HCV liver disease
(cirrhotics and non-cirrhotics)

Portal vein

F IGURE 1 Study design. Patients with compensated liver disease were assessed before (HCVi) and 6 months after HCV clearance with
direct-acting antiviral therapy (SVR). To evaluate bile acids in the gut-liver axis, a comprehensive sampling of the portal and peripheral blood,
feces, and liver tissue was performed at both time points. Splenic vein samples were obtained from 20 patients with SVR. Liver and microbial
RNA-Seq analyzed genes critical for hepatic primary bile acid metabolism and signaling, and microbial secondary BA metabolism. Abbreviations:
DAA, direct-acting antiviral; HCVi, patients infected with HCV; SVR, sustained virologic response.
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includes the sum of glycochenodeoxycholate, glyco-
cholate, glycodeoxycholate, glycoursodeoxycholate,
glycolithocholate, and glycohycholate (GHC). Total
taurine includes the sum of taurochenodeoxychate,
tricarboxylic acid cycle intermediates, taurodeoxycho-
late, tauroursodeoxycholate, and TBMCA. Total sul-
fated includes the sum of glycodeoxycholate sulfate,
glycodeoxycholate sulfate, glycolithocholate sulfate,
taurolithocholate 3-sulfate, glycocholenate sulfate, and
taurocholenate sulfate.

Immune markers

Serum markers were measured in HCVi and SVR as
described.[8] Each assay was conducted following the
respective manufacturer’s protocols. All assays were
performed in duplicate.

Flow cytometry

EDTA anticoagulated peripheral, portal, and splenic
blood samples were processed for flow cytometry as
described.[8]

16S rRNA and RNA-Seq analysis on the
fecal microbiome

HCVi and SVR fecal samples were collected and flash-
frozen with storage at −80°C. Methods of obtaining 16S
rRNA and RNA-Seq are as described.[8] Briefly, for
RNA-Seq analysis, the MetaHIT Consortium database
of over 3 million distinct nucleic acid sequences was
used as a reference. In total, 889,668 individual
nucleotide sequences from MetaHit were aligned to
the samples’ trimmed reads using Bowtie in Partek Flow
(Version 10.0) (Computer software, Partek Inc. 2020).
The distinct nucleotide sequences were then summa-
rized into microbial Kyoto Encyclopedia of Genes and
Genomes Ortholog genes or Clusters of Orthologous
Groups genes. Sequences were aligned using BLAST
(Basic Local Alignment Search Tool) (https://blast.ncbi.
nlm.nih.gov/Blast.cgi) to determine microbial species of
origin if >99% similarity. Due to data filtering, analysis
on microbial transcriptome had HCVi, n = 26 and SVR,
n = 23.

Statistical analysis

Statistical analysis was performed using GraphPad
Prism 8.0 (GraphPad Software Inc) and R software
(versions 3.5.0 and 4.0.2). Statistical, bioinformatics,
dimensionality reduction (WGNCA), and enrichment
analyses were performed as described.[8,12–14]

RESULTS

Patients with HCVi underwent liver biopsy with portal
vein cannulation at two time points: HCVi (n = 29) and
6 months after SVR (n = 23) (Figure 1, Table 1). Using
ultra-performance liquid chromatography-mass
spectrometry, 24 bile acids were measured in
peripheral and portal serum in HCVi, and in
peripheral, portal, and splenic serum in SVR
(Supplemental Figure S1, http://links.lww.com/HC9/
A951). Bile acid composition was evaluated by com-
bining individual bile acids based on conjugation and
hydroxylation (Figure 2A). To assess bile acid
alterations based on cirrhosis, patients were stratified
by fibrosis at HCVi and SVR time points.

Conjugated bile acids are elevated in HCVi
and cirrhosis

Compared to SVR, portal and peripheral total bile acids
were elevated in HCVi (FDRp < 0.1) (Figure 2B). While
there was no difference in free bile acids, HCVi showed
higher glycine-conjugated bile acids, Tau-BAs, and
sulfated bile acids (Figure 2C). By comparing relative
proportions, we identified higher ratios of Tau-BA/
glycine-conjugated bile acid (T/G) and primary/
secondary bile acids (Figure 2D). Unexpectedly, 2
atypical triple-hydroxylated primary bile acids, TBMCA
and GHC were profoundly elevated in HCVi (eg, portal
TBMCA fold-change of 9.1) (Figure 2D, Supplemental
Table S1, http://links.lww.com/HC9/A975). TBMCA is
thought to be murine-specific, but its presence in
humans has been described.[15,16] Moreover, elevated
TBMCA and GHC have been noted in disorders of the
gut-liver axis in humans.[17–19]

Furthermore, within HCVi, liver injury was most
strongly associated with higher conjugated bile acids,
especially Tau-BA, when correlated with liver disease
severity markers and stratified by cirrhosis (Spearman
rank, unadjusted p < 0.05) (Figure 2E, Supplemental
Figures S2A, B, http://links.lww.com/HC9/A952).

Our findings extend the known concept of elevated
conjugated bile acids in liver disease by showing the
predominance of taurine-conjugated and atypical hydro-
philic bile acids in HCVi, compounded in cirrhosis.
These alterations may be a compensatory response as
conjugated bile acids are less toxic and easier to
eliminate.[20,21]

Hepatic bile acid metabolism is reduced
with enhanced systemic spillover in HCVi

Next, to understand if serum bile acid alterations are
related to hepatic bile acid synthesis or metabolism in
HCVi, we assessed the hepatic transcriptome from
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paired liver biopsies in HCVi and SVR. Gene set
enrichment analysis was performed on differentially
expressed genes using gene sets from the Kyoto
Encyclopedia of Genes and Genomes (DeSeq2, FDRp
< 0.1). HCVi showed significant alterations in hepatic
bile acid synthesis and transport compared to SVR
(Figure 3A, Supplemental Table S2, http://links.lww.
com/HC9/A975). Specifically, HCVi showed decreased
hepatic gene expression for bile acid uptake by
hepatocytes (mEH, OATPs, and NTCP), primary bile
acid synthesis across classic (CYP7A1), alternative
(CYP7B1), 24-hydroxylase and 25-hydroxylase path-
ways, bile acid conjugation (BAAT and SLC27A5), bile
acid detoxification (BAUGT2B4 and CYP3A4), and bile
acid secretion into bile canaliculi (MRP2) (Figures 3A,
B, Supplemental Figure S3, http://links.lww.com/HC9/
A953). Decreased hepatic uptake and synthesis were
coupled with increased bile acid secretion into the
systemic circulation (OST-alpha and OST-beta). Serum
7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) has
been suggested as a surrogate biomarker for the rate of
bile acid synthesis in the liver. Reduced hepatic bile
acid synthesis in HCVi was supported by the measure-
ment of serum 7-HOCA with lower peripheral 7-HOCA
levels in HCVi compared to SVR (Supplemental Figure
S4, http://links.lww.com/HC9/A954).

Microbial bile acid metabolism is not
altered in HCVi

Next, we explored changes in microbial bile acid
transformation in HCVi. Unlike most studies evaluating
microbial composition,[22] we explored microbial func-
tion and composition using metatranscriptomics and
16S rRNA analysis, respectively. Microbial RNA
sequences were aligned to MetaHIT Consortium and
889,668 nucleotide sequences were captured and
annotated using Clusters of Orthologous Groups.
Compared to SVR, there was no difference in
microbial deconjugation gene expression microbial
bile salt hydrolase (BSH) or microbial primary to
secondary bile acid conversion genes Bai (bile acid–
inducible genes) in HCVi (data not shown). Further-
more, bile acids showed no significant associations
with microbial genes to explain the elevated serum-
conjugated primary bile acids in HCVi.

By direct assessment of hepatic and microbial
transcriptomics, we have shown how elevated sys-
temic conjugated primary bile acids in HCVi are
not driven by de novo hepatic bile acid synthesis

or microbial bile acid transformation, at least in
compensated liver disease. Enhanced expression of
hepatocyte bile acid exporters into the systemic
circulation (OST-alpha and OST-beta) suggests
hepatic spillover as an explanation for the elevated
serum bile acids.

Bile acids in splenic serum play a role in
chronic liver disease after SVR

Assessment of portal and splenic blood in SVR allowed us
to explore circulating primary bile acids from the gut and
spleen, respectively. Intriguingly, SVR-Cirr showed per-
sistent elevation in primary bile acids compared to SVR
non-cirrhotics (SVR-NC), and these changes were most
predominant in splenic serum (Figures 4A–C). As tissue
macrophages play a role in the alternative pathway of bile
acid synthesis, we explored a possible link between serum
bile acids and macrophage activity.[23] Splenic primary
Tau-BA showed the strongest association with higher
splenic soluble cluster of differentiation (sCD163)
(macrophage activation marker), IL6 (macrophage-
derived proinflammatory cytokine), and peptidoglycan
(microbial cell wall marker, phagocytosed predominantly
by macrophages) in SVR (Figure 4D). None of these
associations was noted in portal blood and was less
pronounced in the peripheral circulation. The pathological
relevance of splenic macrophage activity was further
exemplified by the strongest association of hepatic
fibrosis and direct portal pressure with splenic sCD163 in
SVR (Supplemental Figure S5, http://links.lww.com/HC9/
A955).

Studies have shown a shift in bile acid synthesis from
the classic to the alternative pathway and elevated
taurine-conjugated primary bile acids across liver disease
etiologies.[20,21] By direct evaluation of splenic blood after
SVR, we have uncovered a role of the spleen in bile acid
metabolism. Splenic macrophage activity and elevated
primary bile acids in the splenic circulation may have
pathological relevance in cirrhosis even after SVR.

Taurine-conjugated bile acids are strongly
linked to hepatic bile acid receptors in
HCVi

We next explored the hepatic bile acid receptors to
elucidate the downstream effects of serum bile acid
alterations in HCVi. Bile acids mediate immunometa-
bolic effects through bile acid binding nuclear and

triple-hydroxylated BA, that is, TBMCA and GHC. Two-sided Wilcoxon matched-pairs signed rank test (HCVi vs. SVR, n = 22). Column bar graph,
median with IQR. FDRp value + =0.05–0.1, *0.05–0.01, **0.01–0.001, ***0.001–0.0001, ****< 0.0001. (E) Only conjugated, not free BA
correlated with liver disease severity markers in HCVi (n = 29). Heatmap with two-sided Spearman correlation. unadjusted p value + =0.05–0.1,
*0.05–0.01, **0.01–0.001, ***< 0.001. Abbreviations: BA, bile acid; GHC, glycohycholate; HCVi, patients infected with HCV; SVR, sustained
virologic response; TBA, total bile acid; TBMCA, tauro-beta-muricholate.
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F IGURE 3 Reduced hepatic bile acid synthesis with enhanced peripheral spillover in HCVi. (A) Hepatic “Bile Secretion” pathway visualized using
PathView R package. Gene set enrichment using GAGE R and KEGG pathways database on differentially expressed genes (FDRp < 0.1) from
DeSeq2, highlighted blue for fold-change >0 and red for fold-change <0 in HCVi versus SVR (n = 22). (B) Decreased hepatic BA synthesis genes
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G-protein–coupled receptors (GPCRs) that have vary-
ing affinity for bile acids based on hydroxylation and
conjugation.[5] Serum bile acids were correlated with
hepatic expression of nuclear bile acid receptors (FXR,
LXR alpha, LXR beta, VDR, CAR, and PXR) and GPCR
(TGR5, S1PR2, CHM2, CHM3, and FPR1) in HCVi
(Figure 5A, Supplemental Figure S6, http://links.lww.
com/HC9/A956, Supplemental Figures S7A, B, http://
links.lww.com/HC9/A957). Distinct associations were
found between hepatic bile acid receptors, including
FXR, S1PR2, and conjugated bile acids.

Hepatic S1PR2 has pathological implications
in HCVi liver disease

Conjugated primary bile acids strongly correlated with
enhanced hepatic expression of S1PR2, TGR5, and
FPR1 (microbial sensing product) (Figure 5A,
Supplemental Figures S7A, B, http://links.lww.com/HC9/
A957). Among all hepatic GPCRs, the strongest associ-
ations were noted between conjugated bile acids and
hepatic S1PR2, a unique bile acid receptor that exclu-
sively binds to conjugated bile acids, not free bile acids.[6]
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BA, bile acid; SVR, sustained virologic response; SVR-Cirr, SVR cirrhotics; SVR-NC, SVR non-cirrhotics.

10 | HEPATOLOGY COMMUNICATIONS

http://links.lww.com/HC9/A956
http://links.lww.com/HC9/A956
http://links.lww.com/HC9/A957
http://links.lww.com/HC9/A957
http://links.lww.com/HC9/A957
http://links.lww.com/HC9/A957


Conjugated bile acid-S1PR2 interaction influences hepatic
inflammation and fibrosis through multiple downstream
signaling pathways.[6] Hepatic S1PR2 was the only GPCR
with a direct association with the 2 disease-associated bile
acids, TBMCA and GHC. Further highlighting the patho-
logical relevance of hepatic S1PR2, it was 1 of 2 GPCRs
with higher expression in HCVi compared to SVR, and the
only GPCR with higher expression in HCVi-Cirr compared
to HCVi-NC (Figures 5B, C). Lastly, hepatic S1PR2 was
the only GPCR that correlated with increased markers of
hepatic injury and dysfunction (Figure 5D). Our findings
suggest a mechanism of immune modulation by
conjugated bile acids through a putative role for hepatic
S1PR2 in liver disease pathogenesis.

Conjugated bile acids linked to circulatory
and hepatic inflammation

To explore the immunological role of conjugated bile
acids, we correlated bile acids with serum immune
markers and hepatic inflammatory pathways (Figure 6A,
Supplemental Table S3, http://links.lww.com/HC9/A975).
In HCVi, portal and peripheral-conjugated, not free, bile
acids showed a positive association with markers of
macrophage activation, gut dysbiosis, intestinal barrier
dysfunction, proinflammatory cytokines/chemokines, and
vascular injury. This is consistent with previous studies in
inflammatory bowel disease and colitis, whereby higher
luminal exposure to taurine bile acids has been linked to
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antimicrobial effects and colonic inflammation in
obesity.[24,25] The strongest association of immune mark-
ers with peripheral bile acids suggests an intrahepatic and/
or posthepatic source of these immune mediators.

Conjugated bile acids mediate immunological effects
through nuclear factor kappa-light-chain-enhancer of
activated B cells (NFkB)[6] and NLR family pyrin
domain-containing 3 inflammasome (NLRP3).[26] By
exploring the hepatic transcriptome, we have identified
similar concepts in HCVi liver disease. Compared to
SVR, HCVi showed higher expression of 3 of 5 NLRP3
inflammasome genes and 48 of 101 genes in the NFkB
signaling pathway (Figure 6B, Supplemental Figure S8,
http://links.lww.com/HC9/A958). Most hepatic genes in
NLRP3 and NFKB pathways were strongly linked to
conjugated, not free bile acids (Figure 6C,
Supplemental Figure S9, http://links.lww.com/HC9/
A959). These findings corroborate a role for conjugated
bile acids in hepatic inflammation through a conjugated
bile acid-hepatic S1PR2 axis in HCVi liver disease.

Conjugated bile acids linked to hepatic
pathways for immunity and metabolism

To explore the complete extent of hepatic functions
linked to circulatory bile acids in HCVi, we performed
WGCNA on hepatic genes and correlated hepatic
coexpressed modules with serum bile acids (Figure 7A,
Supplemental Figure S10, http://links.lww.com/HC9/
A960). Serum-conjugated bile acids, especially Tau-
BA, were linked to 6 hepatic coexpressed modules.
These hepatic modules were not only enriched in bile
acid metabolism genes, including S1PR2, FXR, and
BAAT, but also hepatic pathways related to immunity,
inflammation, fibrogenesis, and hepatic energy metabo-
lism (Figures 7B, C, Supplemental Table S4, http://links.
lww.com/HC9/A975). This agnostic approach has dem-
onstrated the pathological relevance of conjugated bile
acids, especially Tau-BA, in HCVi liver disease.

DISCUSSION

Longitudinal assessment of bile acids across multiple
circulatory compartments before and after SVR has
uncovered elevated Tau-BAs in HCVi and cirrhosis.
Integration of serum bile acids with the liver and

microbial transcriptome has extended the knowledge
of bile acids in liver disease pathogenesis. Demonstra-
tion of an immunometabolic role for Tau-BAs through
hepatic bile acid receptor S1PR2 suggests S1PR2 as a
therapeutic target in HCVi liver disease.

Detailed serum bile acids analysis has reinforced
previous findings of elevated conjugated bile acids,
especially Tau-BAs in HCVi, compounded in cirrhosis.
A shift toward taurine conjugation rather than glycine is
consistent with prior findings across liver disease
etiologies.[21,27,28] Persistently elevated taurine bile acids
in SVR cirrhosis emphasize the relevance of taurine bile
acids in chronic liver disease independent of HCV.

Simultaneous evaluation of the hepatic transcriptome
has revealed concomitant downregulation of hepatic bile
acid uptake, synthesis, conjugation, and secretion into
bile canaliculi in HCVi. This may be an attempt to limit
intrahepatic bile acid–mediated injury, as postulated.[28]

Bile acid perturbations in relation to the gut microbiome
in liver disease have been widely studied and have
predominantly focused on microbial composition.[22] By
directly exploring the microbial metatranscriptome, we
found no relation between serum bile acids and microbial
bile acid deconjugation and dehydroxylation genes. Thus,
the gut microbiome is unlikely responsible for elevated
serum-conjugated primary bile acids in HCVi. Previous
studies suggesting altered BSH activity in liver disease
have done so by mostly extrapolating BSH expression
from microbial composition.[27,29] Smirnova et al,[30] how-
ever, did demonstrate increased BSH activity in NAFLD
from microbial metatranscriptome which may be due to
distinct disease etiologies.

Alternative pathways for bile acid synthesis have
long been known to contribute to serum bile acids.[31,32]

A shift from classic to alternative pathways of intra-
hepatic bile acid synthesis may contribute to circulating
bile acids in chronic liver disease.[23,33,34] Unlike
previous studies, the hepatic alternative pathway
cannot account for primary bile acids in our HCVi
cohort, given the reduced hepatic expression of
CYP7B1, a major alternative pathway gene.[32]

Bile acid metabolism is emerging as an important
concept beyond its synthesis in the liver and derange-
ments in liver diseases. Bile acid precursors synthesized
through alternative pathways are believed to flow to the
liver from extrahepatic sites.[35,36] Bile acid metabolism
genes have been found in extrahepatic macrophages
and immune cells, highly abundant in the spleen.[37]

F IGURE 5 Hepatic bile acid receptors, especially S1PR2, strongly linked to conjugated BA and liver disease severity in HCVi. (A) Correlation
heatmap of serum BA subgroups (y axis) with mRNA expression of hepatic G-protein–coupled BA receptors (GPCR) in HCVi (n = 27). Two-sided
Spearman correlation. Unadjusted p value + = 0.05–0.1, *0.05–0.01, **0.01–0.001, ***<0.0001. (B) Among hepatic GPCR, only S1PR2 and
FPR1 showed enhanced expression in HCVi. Two-sided Wilcoxon matched-pairs signed rank test. HCVi versus SVR (n = 22). Column bar graph,
median with IQR. FDRp value + =0.05–0.1, *0.05–0.01, **0.01–0.001, ***0.001–0.0001, ****< 0.0001. (C) Only S1PR2 showed elevated hepatic
expression in HCVi-Cirr; 2-sided Mann-Whitney U test, HCVi-Cirr (n = 13) versus HCVi-NC (n = 16), interleaved scatter with bars graph, median
with IQR, unadjusted p value + =0.05–0.1, *0.05–0.01, **0.01–0.001, ***0.001–0.0001, ****< 0.0001, and (D) among hepatic GPCR (x axis),
S1PR2 correlated with liver disease severity markers (y axis). Same parameters as panel A. Abbreviations: BA, bile acid; GPCR, G-protein–
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These concepts are important as we have shown how
primary bile acids remain elevated in SVR cirrhosis and
show a strong association with macrophage activity,
predominantly in splenic circulation. The pathological
relevance of the spleen in the context of bile acid
alterations is a field of limited research.[38] Our study
cannot conclude that the spleen may be a source of
elevated bile acids in SVR cirrhosis, given the absence of
splenic biopsies for transcriptomics analysis. However,
our findings strongly encourage the study of splenic
immunology in relation to bile acids in liver disease.[39]

Alternatively, these concepts can be explored further
through studies on human-derived bone marrow cells.

Evaluation of serum bile acids and hepatic transcrip-
tome has identified distinct bile acid receptors in liver
disease as potential therapeutic targets. Only through an
unbiased approach have we identified the pathological
relevance of an under[35,36]-appreciated G-protein–coupled
bile acid receptor, S1PR2. This bile acid receptor is unique
as it exclusively binds to conjugated bile acids.[6] Not only
did we find the strongest associations between hepatic
S1PR2 and disease-associated Tau-BAs, but S1PR2 was
the only bile acid receptor with enhanced hepatic
expression in HCVi as a whole cohort and in cirrhosis
within HCVi. These are important findings as conjugated
bile acid-hepatic S1PR2 signaling is being studied in the
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F IGURE 6 Conjugated bile acids linked to circulatory immune markers and enhanced hepatic inflammation. (A) Correlations of serum BA
grouped by conjugation with serum markers of macrophage activation, gut barrier dysfunction, dysbiosis, inflammation, and vascular injury in HCVi.
Cells colored blue or orange for Spearman correlation coefficient when unadjusted p< 0.05 (n = 29). Exact p values in Supplemental Table S3, http://
links.lww.com/HC9/A975. (B) Hepatic NLRP3 inflammasome genes in HCVi compared to SVR. Two-sided Wilcoxon matched-pairs signed rank test
(n = 22). Column bar graph, median with IQR. FDRp value + =0.05–0.1, *0.05–0.01, **0.01–0.001, ***0.001–0.0001, ****< 0.0001. (C) Correlation
heatmap of hepatic NLRP3 pathway genes (y axis) with portal and peripheral grouped BA (x axis), 2-sided Spearman correlation (n = 27). unadjusted
p value + =0.05–0.1, *0.05–0.01, **0.01–0.001, ***0.001–0.0001, ****< 0.0001. Abbreviations: BA, bile acid; HCVi, patients infected with HCV;
NLRP3, NLR family pyrin domain-containing 3 inflammasome; SVR, sustained virologic response;
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context of cholestasis, lipid metabolism, hepatic encephal-
opathy, and carcinogenesis.[6,40,41]

Despite similar beneficial effects on energy metabo-
lism, hepatic S1PR2 and TGR5 have opposing effects on
inflammation.[6] Hepatic S1PR2 exhibits proinflammatory
effects, and its manipulation in mouse models has led to
endothelial and stellate cell activation, elevated portal
pressures, immune cell adhesion, macrophage polariza-
tion to M1 phenotype, and NFkB activation. These
concepts are highly relevant in liver disease patho-
genesis but havemostly been explored in animal models.
Our findings from human samples have revealed that the
conjugated bile acid-hepatic S1PR2 signaling may, in
fact, be the mechanism explaining the link between
conjugated bile acids, systemic immune signatures, and
hepatic inflammation through NLRP3 and NFKB signal-
ing in HCVi. Furthermore, longitudinal analysis after HCV
clearance with a subsequent decrease in conjugated bile
acids and hepatic S1PR2 expression strengthens the
role of conjugated bile acid-hepatic S1PR2 in host
response to HCV-induced stress. Therapeutic implica-
tions of these findings in HCVi and non-HCVi liver
disease etiologies are supported by S1PR2 inhibition
as a therapeutic target in cholestasis, fibrosis, and

inflammation across metabolic and cholestatic liver
diseases.[7,40,42] The role of S1PR2 is increasingly being
recognized even beyond liver diseases in colorectal
tumorigenesis and vascular inflammatory disorders,
again emphasizing the potential therapeutic importance
of S1PR2, which is worthy of further study.[43,44]

While a longitudinal cohort study, most of the findings
remain associative without a control cohort and require
validation in experimental models. HCV was chosen as
a model as it is possible to cure HCV, making the SVR
non-cirrhotic cohort, in essence, an imperfect control
group. A further limitation was the lack of splenic blood
in HCVi, as the concept of studying splenic blood only
arose immediately before the evaluation of the SVR
cohort. Even though only studied at the second time
point, bile acid analysis in the splenic vein uncovered
biological associations with pathological relevance in
liver disease pathogenesis. Another significant omis-
sion was the direct study of biliary bile acids and luminal
microbes, which could explain the absence of a link
between liver disease and microbial bile acid metabo-
lism. Lastly, the number of patients in the various
subgroups is small. Each patient was to be deeply
pedigreed, and the nature of the study was invasive,
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thus limiting the ability to study large numbers of
patients.

CONCLUSIONS

In summary, we have shown elevated serum-conjugated
bile acids in HCVi liver alongside a decrease in hepatic
bile acid synthesis in HCVi compared to SVR. These
findings have been described to varying extents across
liver diseases, including NAFLD, suggesting a common-
ality and broader applicability.We have further elucidated
the importance of splenic biology in the liver, especially in
the context of bile acid metabolism in cirrhosis even after
SVR. Examining the interplay between serum bile acids
and hepatic bile acid receptors has demonstrated that
Tau-BAs are most biologically active in HCVi and may
play a role in liver disease pathogenesis through S1PR2-
mediated hepatic inflammation. By integrating circulatory
and transcriptional signals relevant to bile acid metabo-
lism, we have allowed for the possibility of refinement in
therapy, targeting of biological pathways, and minimiza-
tion of side effects in the treatment of liver disease.[4,5,45]
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