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Abstract
Motivation: Human Phenotype Ontology (HPO)-based phenotype concept recognition (CR) underpins a faster and more effective mechanism to 
create patient phenotype profiles or to document novel phenotype-centred knowledge statements. While the increasing adoption of large lan
guage models (LLMs) for natural language understanding has led to several LLM-based solutions, we argue that their intrinsic resource-intensive 
nature is not suitable for realistic management of the phenotype CR lifecycle. Consequently, we propose to go back to the basics and adopt a 
dictionary-based approach that enables both an immediate refresh of the ontological concepts as well as efficient re-analysis of past data.
Results: We developed a dictionary-based approach using a pre-built large collection of clusters of morphologically equivalent tokens—to ad
dress lexical variability and a more effective CR step by reducing the entity boundary detection strictly to candidates consisting of tokens be
longing to ontology concepts. Our method achieves state-of-the-art results (0.76 F1 on the GSCþ corpus) and a processing efficiency of 10 000 
publication abstracts in 5 s.
Availability and implementation: FastHPOCR is available as a Python package installable via pip. The source code is available at https:// 
github.com/tudorgroza/fast_hpo_cr. A Java implementation of FastHPOCR will be made available as part of the Fenominal Java library available 
at https://github.com/monarch-initiative/fenominal. The up-to-date GCS-2024 corpus is available at https://github.com/tudorgroza/code-for- 
papers/tree/main/gsc-2024.

1 Introduction
The effectiveness of utilizing ontology-encoded knowledge in 
rare diseases has been consistently demonstrated through 
data sharing (Taruscio et al. 2015, Boycott et al. 2022, 
Jacobsen et al. 2022), as well as in clinical variant prioritiza
tion and interpretation (Smedley et al. 2016, Clark et al. 
2018, Son et al. 2018) over the years. The Human Phenotype 
Ontology (HPO) (Robinson et al. 2008, K€ohler et al. 2019), 
maintained by the Monarch Initiative (Shefchek et al. 2020), 
stands out as the most comprehensive resource for computa
tional deep phenotyping and has emerged as the standard for 
encoding phenotypes in the rare disease domain. It serves this 
purpose for both defining diseases and profiling patients to 
assist in genomic diagnostics, comprising a set of over 16 500 
terms describing human phenotypic abnormalities.

HPO-based phenotype concept recognition (CR), i.e. auto
matic extraction of HPO terms from clinical notes or scientific 
publications, underpins a faster and more effective mechanism to 
create patient phenotype profiles or to document novel disease— 
phenotype or gene—phenotype associations. Lately, the 

increasing adoption of large language models (LLMs) for natu
ral language understanding has led to the development of 
models and tools that employ LLMs also for biomedical 
named entity recognition and CR. Examples of such 
approaches in the phenotype CR domain include PhenoTagger 
(Luo et al. 2021), PhenoBERT (Feng et al. 2023), or 
PhenoBCBERT (Yang et al. 2024).

The performance of these models has indeed surpassed tradi
tional dictionary or rule-based approaches (as well as the very 
few machine learning options—NeuroCR; Arbabi et al. 2019), 
with the underlying publications focusing exclusively on report
ing standard efficiency metrics to showcase state-of-the-art 
results. Unfortunately, given the resource-intensive requirements 
associated with fine-tuning, we lack an understanding of a real- 
world deployment of these models—since, to date, no publication 
has discussed a realistic management of the phenotype CR life
cycle. More concretely, we refer to the following aspects:

� HPO is updated on a monthly basis—and hence the pool 
of concepts is not only growing but also changing—with 

Received: 25 March 2024; Revised: 18 May 2024; Editorial Decision: 10 June 2024; Accepted: 19 June 2024 
© The Author(s) 2024. Published by Oxford University Press.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics, 2024, 40(7), btae406 
https://doi.org/10.1093/bioinformatics/btae406 
Advance Access Publication Date: 24 June 2024 
Original Paper 

https://orcid.org/0000-0003-2267-8333
https://orcid.org/0000-0002-0736-9199
https://github.com/tudorgroza/fast_hpo_cr
https://github.com/tudorgroza/fast_hpo_cr
https://github.com/monarch-initiative/fenominal
https://github.com/tudorgroza/code-for-papers/tree/main/gsc-2024
https://github.com/tudorgroza/code-for-papers/tree/main/gsc-2024


terms sometimes subsumed under others or made obso
lete—as depicted in Fig. 1. 

� The pool of scientific publications—if considering general 
research or the biomedical domain—grows significantly 
with every week, at a rate of several hundreds of entries 
every week. 

This leads to two major challenges, currently left untapped:

1) The need to maintain the version of HPO used by the 
phenotype CR approach up-to-date. 

2) The need to efficiently process content to augment previ
ously processed documents (publications, clinical notes, or 
other corpora) with new terms. Remarkably, the latter is a 
well-known challenge in the community, and yet has so far 
been largely ignored. How often would one consider 
re-processing PubMed, which currently stands at 36 million 
citations, on a monthly basis (or even the roughly 10% 
associated with medically relevant abstracts)? 

Large language models are resource intensive and, in princi
ple, fairly slow. They could indeed be retrained on a monthly 
basis to cater for HPO updates. However, both the retraining 
and the reanalysis would come at a significant cost. It is hence 
worth considering if the use of the computational resources 
required to achieve this is justifiable when the same operation 
can be performed using an insignificant fraction? In this arti
cle, we propose a solution that relies on the fundamental pil
lars of CR in order to cover its two underlying components— 
boundary detection and entity linking:

� Understanding the domain challenges—in the case of phe
notypes, lexical variability. 

� Understanding the target ontology—and hence processing 
the ontology terms appropriately for text mining. 

More concretely, we pre-built a large collection of clusters of 
morphologically equivalent tokens (a total of 573 507 
tokens)—to address lexical variability—and have used them 

to reduce the boundary detection step to spans containing 
only tokens belonging to ontology concepts.

Our method achieves both state-of-the-art results (0.76 
document-level F1 on the standard GSCþ corpus) and a 
processing speed that enables an effortless deployment in 
real-world applications by catering appropriately for the CR 
lifecycle: indexing a new HPO version takes �3 min, annotat
ing 10 000 publication abstracts takes �5 s (excluding I/O 
operations). Moreover, additional pre-processing steps can 
be added to our solution—e.g. extended synonymy—which 
could rely on existing LLMs or embeddings—without intro
ducing a significant impact on speed.

In addition to proposing a simple yet efficient approach, the 
contributions of this article also include: a discussion on the 
challenges associated with evaluating phenotype CR solutions, 
in general; and an up-to-date version of the GSC corpus.

2 Related work
As presented by all other works on the topic, there are two 
groups of approaches to phenotype CR: machine learning- 
based methods, in particular the latest approaches using deep 
learning, and “traditional” dictionary-based methods.

Machine learning-based approaches have dominated the 
last years in terms of achieving state-of-the-art results, al
though the availability of gold standard corpora to be used 
for training is significantly poorer than in other domains. A 
first such approach was developed by Arbabi et al. (2019)— 
NeuralCR—who employed a neural concept recognizer using 
a convolutional neural network-based neural dictionary 
model and tested it successfully on both scientific abstracts 
and medical notes. PhenoTagger (Luo et al. 2021) was the 
first method to combine dictionary tagging with a BioBERT- 
based tagger (Lee et al. 2019) to efficiently identify HPO con
cepts—including unseen synonyms and nested subconcepts. 
PhenoBERT (Feng et al. 2023) introduces a two-levels convo
lutional neural network module—building on NeuralCR’s 
method, which designed the CNN to take into consideration 
the hierarchical relationships between HPO terms—before 
applying BERT. Finally, PhenoBCBERT (Yang et al. 2024) is 

Figure 1. The evolution of the size of HPO in terms of number of concepts between December 2022 and February 2024. The line in the chart represents 
the growth in new terms being added to the ontology, which for this period was of 1303 terms, i.e. �7% increase.
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the latest approach in this category and uses BioþClinical 
BERT as its pretrained model.

The second category of approaches—dictionary-based— 
relies on creating and using inverted indexes from the tokens 
composing HPO concepts (usually both labels and syno
nyms), are relatively fast, and provide packaging options that 
enable deployment in resource-constrained environments, 
such as typical clinical practices. They achieve high precision 
at the expense of lower recall rates and tend to struggle with 
identifying concepts that consist of unseen tokens. The most 
representative tools in this category are: NCBO Annotator 
(Jonquet et al. 2009), OBO Annotator (Taboada et al. 2014), 
SORTA (Pang et al. 2015), Doc2HPO (Liu et al. 2019), 
ClinPhen (Deisseroth et al. 2019), and the Monarch Initiative 
annotator (Shefchek et al. 2020). As we discuss in the next 
section, we propose a solution fitting this category and aimed 
at addressing the challenges associated with recall. Note that 
our T-BLAT approach (Groza et al. 2023) is complementary 
to the solution described herewithin since it focuses on typo
graphic errors, however, the current proposal will been 
implemented as the base CR method in the Fenominal 
Java package.

3 Materials and methods
Our method relies—as any other dictionary method—on 
three steps, discussed in the following: dictionary creation, 
indexing of the ontology concepts, and CR (i.e. entity bound
ary detectionþ entity linkage).

3.1 Dictionary creation
This step aims to address the main challenge associated with 
phenotype CR: lexical variability. In most cases, lexical repre
sentations of phenotypes rely on common English words and 
hence can take various morphologically equivalent forms— 
e.g. short phalanx of the thumb, shorter phalanges of the 
thumbs, shortening of the phalanx of the thumb. This exam
ple refers to the same HPO concept and consists of tokens 
that require morphological consolidation in order to be iden
tified. It is important to note that applying lemmatization in 
this case will not result in an appropriate consolidation as the 
lemma of shorter is short, while the lemma of shortening is 
shorten. A similar challenge is encountered for tokens with 
different localized spellings—e.g. hypocalcemia—hypocalcae
mia or haemorrhage—hemorrhage.

Given the finite set of such lexical variations, we built a 
comprehensive vocabulary and performed global consolida
tion of all morphologically equivalent forms. The vocabulary 
was compiled from all proper words (i.e. tokens formed of 
letters only) in PubMed abstracts, SNOMED concept defini
tions, OMIM concept definitions, and GeneReviews pages. A 
total of 573 507 unique tokens were collected.

The consolidation process consisted of an initial grouping 
of all tokens sharing the same 4-letter prefix, followed by 
their re-clustering using OpenAI’s gpt-4.0 model. For each 
initial group, gpt-4.0 was prompted to “Group the words 
provided below in a comma separated list between triple ticks 
into groups denoting the same meaning.” The result was a set 
of 37 011 clusters of tokens. An example of such a cluster is: 
[short, shorter, shorten, shortening, … ]

3.2 Ontology indexing
The process of indexing the ontological concepts is depicted 
at a high level in Fig. 2. For each concept (listed on the left in 
the figure) we collect the labels and synonyms (labels are rep
resented in bold) and tokenize them—each resulting in a list 
of words. We then apply a blacklist word-based filter to re
move standard stop words (of, the, in, at, etc.), verbs (be, is, 
are, have, had, etc.), and conjunctions (and, or). The remain
ing tokens are replaced by the identifier of the cluster they 
correspond to (note: “C”-prefixed cluster IDs do not have a 
particular meaning; they are internal to the method, automat
ically generated when a version of the ontology is indexed 
and do not represent IDs of concepts from SNOMED or 
other ontologies). For example the synonym “Increased size 
of cranium” of HP: 0000256 (“Macrocephaly”) undergoes 
the following transformations: tokenization—[“increased,” 
“size,” “of,” “cranium”], filtering—[“increased,” “size,” 
“cranium”], consolidation—[C2, C26, C35]. To this last set 
we include the length of the original label/synonym after 
blacklist filtering—i.e. [C2, C26, C35–3]—to cater for the 
rare cases when the same cluster ID is present twice in the 
label/synonym. The final index consists strictly of associa
tions between ontological concepts and the cluster ID sets 
representing their label/synonyms (as shown on the right in 
the figure)—i.e. no other tokens or clusters are retained. 
Also, note that the original labels and synonyms are retained 
only to be returned to the user upon CR.

3.3 Concept recognition
As opposed to the traditional dictionary-based methods for 
CR, instead of first looking for candidates in the text by 
attempting to solve the entity boundary detection problem, 
we rely on the content of the index and annotate the target 
text with cluster IDs—as shown in Fig. 3. More concretely, 
the text is tokenized and each token is looked up in the index 
(created in the previous step) and, if found, is replaced with 
the corresponding cluster ID. Note that this operation has an 
associated complexity of O(n), where n is the number of 
tokens in the text. The gaps created by tokens that are not in 
our index will lead to forming candidates for entity linking. 
These are decomposed in a combinatorial manner from left 
to right and from right to left to ensure an appropriate cover
age of possibly nested concepts. For example, the candidate 
[C6894 C6075 C12497] will be decomposed into sub- 
candidates: C6894, C6075, C12497, [C6894 C6075], 
[C6075 C12497].

In the final step, all resulting candidates are looked up in 
the index using the cluster IDs as a set and the total length of 
the candidate. To optimize the matching of the candidates, 
each sets of cluster IDs corresponding to labels and synonyms 
are stored in the index as “signatures,” where a “signature” 
is a single string concatenating the cluster IDs in a lexico
graphical order ([C3425, C112, C59] is stored as C112- 
C3425-C59). Hence a match for the example above [C6894 
C6075 C12497] is computed simply by looking up in the in
dex the signature C12497-C6075-C6894. The entire 
candidate matching operation has an associated complexity 
of O(n), where n is the total number of candidates. This not 
only leads to a linear complexity, but also addresses the 
challenge of the order of tokens within the label—i.e. short 
phalanx versus phalanx shortening.
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3.4 Experimental setup
3.4.1 Tools
The comparative results discussed in the next section were 
achieved using the following tools and were reported initially 
in Groza et al. (2023):

� Doc2HPO—via API, with default parameters, during 
August 10–13, 2022, as per instructions provided at 
https://github.com/stormliucong/doc2hpo; 

� ClinPheno—MacOS download, version available on 
August 10, 2022 from http://bejerano. stanford.edu/clin 
phen/. Note that this link is no longer available. 

� Monarch Initiative Annotator—via API, with default 
parameters (match over five characters long), during 
August 10–13, 2022; 

� NCBO Annotator—via API, with default parameters, 
during August 10–13, 2022; 

� PhenoTagger—release v1.1 downloaded from https:// 
github.com/ncbi-nlp/PhenoTagger with models v1.1 
downloaded from https://ftp.ncbi.nlm.nih.gov/pub/lu/ 
PhenoTagger/models_v1.1.zip and installed as per the 
instructions available on August 10, 2022; runs were exe
cuted with default parameters. 

The results for PhenoBERT and PhenoBCBERT are reported 
as per the original publications. We will discuss in-depth the 
challenges associated with comparing these results in the fol
lowing sections.

3.4.2 Corpora
Two corpora were used to evaluate our solution and to com
pare the results against those achieved by other tools:

� GSCþ: a manually curated dataset that consists of 228 
manually annotated abstracts of scientific publications 
initially annotated and published by Groza et al. (2015), 
and subsequently refined by Lobo et al. (2017). For the 
results initially reported by Groza et al. (2015) the anno
tations were realigned to HPO version 02-2022 by replac
ing retired HPO IDs with the most up-to-date IDs 
specified via the alt_id property (operation that left no 
orphan annotations in the corpus); 

� BIOC-GS—the dev component of the corpus made avail
able through Track 3 of BioCreative VIII (454 entries), fo
cusing on extraction and normalization of phenotypes 
resulting from genetic diseases, based on dysmorphologi
cal examination (Weissenbacher et al. 2023). An example 
of an entry is: “ABDOMEN: Small umbilical hernia. Mild 
distention. Soft.”  

GSCþ covers 2773 HPO term mentions, with the minimum 
size of a document being 138 characters, the maximum size 
2417 characters and the average being �500 characters. 
BIOC-GS covers 783 HPO term mentions, with the minimum 
size of an entry being 13 characters, the maximum 225 char
acters, and the average �56 characters. Note that we chose 
the dev component of Track 3 because of its similarity in the 

Figure 2. High-level overview of the indexing process. Starting from the left, the labels and synonyms are tokenized, cleaned, and consolidated using the 
clusters of morphologically equivalent tokens. Sets of such cluster IDs are then serialized as representations of the ontology concepts in the index.

Figure 3. High-level overview of the concept recognition process. The text is tokenized and the tokens are looked up in the ontology index. The gaps left 
by the tokens absent from the index are used to identify candidates for entity linking.
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number of unique HPO IDs to GSCþ. We were unable to 
download the test component of Track 3 and hence the 
results reported here are not comparable to the results pub
lished by the Track’s organizers.

4 Results
4.1 Performance metrics
Concept recognition, as a task, is conceptually composed of 
two parts: boundary detection and entity linkage. Boundary 
detection refers to finding the spans of text that represent 
candidate-named entities, while entity linkage—given a target 
ontology—focuses on finding the best concept that matches 
the candidate named entity. The standard metrics used to re
port results in the literature are:

� Precision (P)—the ratio between the correctly identified 
positives (true positives) and all identified positives. 

� Recall (R)—the ratio between the predicted true positives 
and the actual annotation outcomes produced by the tool. 

� F1—the harmonic mean of Precision and Recall. 
F1¼2× P×R/(PþR). 

Based on the coverage of the task’s underlying components, 
the metrics are further refined as:

� Document-level—counting only on the presence/absence 
of the concept IDs in the given text (publication abstract 
or clinical note), and hence disregarding the boundary de
tection aspect, and 

� Mention-level—considering each individual mention of 
the concept in text and its associated position, thereby 
taking into account boundary detection. 

If appropriate for the corpus being tested, mention-level 
results are reported in addition to document-level results.

4.2 Experimental results
To date, most publications proposing a HPO-driven pheno
type CR solution report the experimental results using the 
GSCþ corpus and make reference to a certain version of the 
ontology. More concretely:

� PhenoTagger—published in 2021, uses the 2019 
November HPO release; 

� PhenoBERT—published in 2023, uses the 2019 
September HPO release—i.e. an earlier version that the 
one used by the much earlier published PhenoTagger; 

� PhenoBCBert—originally published as a pre-print in 
arXiv in August 2023—does not make reference to an 
HPO version. 

In our previous publication (Groza et al. 2023), we used the 
2022 February HPO release.

This leads to several challenges. Firstly, each model was 
trained on a different set of concepts and evaluated against 
the same benchmark. Secondly, subject to whether the corpus 
was brought up-to-date w.r.t. the version of ontology used 
for training (which is not mentioned in any of the publica
tions), the results may not be directly comparable. This is im
portant because concepts may be retired and subsumed under 
other concepts, with the original ID becoming an alt_id of 
the new concept, hence leading the corpus to point to virtu
ally non-existing concepts.

These challenges become evident when inspecting the ex
perimental results published by the top three deep learning 
approaches, listed in Table 1. The table denotes the version 
of the ontology employed and the other systems used for as
sessment. Please note that PhenoBCBert does not provide the 
HPO version information and we hence assumed a version 
closer to the publication date of the pre-print. Moreover, the 
authors only report document-level performance metrics. 
Finally, we included the results we achieved for PhenoTagger 
in Groza et al. (2023) only for illustration purposes because 
we used a version of HPO different to the one chosen by the 
PhenoTagger authors.

As it can be observed that no two reports list the exact same 
values. Indeed, the changes are not necessarily meaningful—i.e. 
0.01 to 0.05 (e.g. mention-level-F1 for PhenoTagger reported 
by PhenoTagger as 0.75 and by PhenoBERT as 0.7). They do, 
however, become relevant in the context of similar changes in 
values being reported as surpassing the state-of-the-art: e.g. 
document-level-F1 for PhenoTagger reported by PhenoTagger 
as 0.75 and by PhenoBERT as 0.73, while PhenoBERT itself 
achieving 0.74. Similarly, PhenoBCBert reports document-level- 
F1 for PhenoTagger as 0.74, while PhenoBCBert itself achieves 

Table 1. Experimental results across all HPO versions available in the literature on the GSCþ corpus.

2019-11 (PhenoTagger) 2019-09 (PhenoBERT) 2023-07 (PhenoBCBert) 2022-02 (T-BLAT)

Mention-level Document-level Mention-level Document-level Document-level Document-level

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

OBO Tagger 0.85 0.53 0.65 0.8 0.56 0.66 0.81 0.56 0.66
NCBO 0.72 0.46 0.56 0.66 0.5 0.57 0.77 0.52 0.62 0.66 0.49 0.56
ClinPhen 0.64 0.41 0.5 0.51 0.41 0.45 0.59 0.41 0.48 0.63 0.65 0.64
Doc2HPO 0.79 0.59 0.67 0.76 0.61 0.68 0.77 0.47 0.58 0.71 0.49 0.58 0.75 0.6 0.67 0.8 0.49 0.61
Monarch 0.79 0.61 0.69 0.75 0.6 0.67 0.82 0.5 0.62
NeuralCR 0.78 0.58 0.67 0.74 0.6 0.66 0.74 0.66 0.7 0.71 0.67 0.69 0.73 0.61 0.66
PhenoTagger 0.78 0.72 0.75 0.77 0.74 0.75 0.79 0.63 0.7 0.78 0.68 0.73 0.72 0.76 0.74 0.77 0.67 0.72
PhenoBERT 0.8 0.66 0.72 0.79 0.7 0.74
PhenoBCBERT 0.74 0.81 0.77
FastHPOCR  

(corpus not aligned)
0.71 0.69 0.7 0.74 0.71 0.72 0.71 0.69 0.7 0.74 0.71 0.72 0.74 0.71 0.72 0.74 0.71 0.72

FastHPOCR  
(corpus aligned)

0.8 0.69 0.74 0.82 0.71 0.76 0.8 0.69 0.74 0.82 0.71 0.76 0.81 0.71 0.76 0.81 0.71 0.76

Bold values denote the best in class F1 score, while italic values denote best in class Precision or Recall. 
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0.77. Remarkably, our own experiments are more aligned to 
PhenoBERT (in particular when considering the document- 
level-Recall) than to PhenoBCBert.

Given the lack of a uniform and deterministic platform to 
compute these results, it is impossible to conclude which of 
these reports have resulted from an experimental setup closer 
to the original. Unfortunately, this challenge is not specific 
only to the phenotype domain, but rather spread across all 
domains that use a fixed corpus and an evolving ontology— 
e.g. the exposome, social determinants of health, experimen
tal factors, etc.

In order to showcase the impact of both the version of the 
ontology, as well as the need for aligning the corpus to the 
latest set of HPO IDs, in Table 1 we list the results achieved 
by our solution across all HPO version used by the previous 
approaches and in both alignment settings. When the corpus 
is aligned to the HPO version (strictly in terms of resolving 
retired IDs to new ones) FastHPOCR matches or surpasses 
PhenoTagger and PhenoBERT:

� 0.76 document-level-F1 on 2019-11 versus 0.75 
document-level-F1 PhenoTagger 

� 0.76 document-level-F1 on 2019-09 versus 0.74 and 0.73 
document-level-F1, respectively, for PhenoBERT and 
PhenoTagger 

and fails to match PhenoBCBert 0.76 document-level-F1 on 
2023-07 (versus 0.77 document-level-F1 PhenoBCBert), al
though it does achieve a better precision 0.81 versus 0.74.

As expected, the results differ when alignment is missing, 
with all performance scores decreasing by 0.03–0.04, hence 
supporting the argument of including an increased transpar
ency of the experimental setup to foster reproducibility and 
an appropriate comparison of the results. Table 2 lists a sec
ond set of experiments performed on the BIOC-GS corpus we 
initially documented in Groza et al. (2023). Our approach 
surpasses PhenoTagger—document-level-F1 0.62 versus 
0.61—with an increase in recall from 0.52 to 0.57. We note, 
however, a drop in precision between the two approaches— 
from 0.74 for PhenoTagger to 0.67 for FastHPOCR. Reasons 
behind the lower value for precision include the annotation 
of nested entities—which are not marked in the gold standard 
(e.g. hernia as a nested entity within umbilical hernia) and in
correct candidate generation due to the format of the gold 
standard entries—e.g. in the entry NOSE: Broad and wide 
nasal bridge. FastHPOCR identifies NOSE Broad as an inva
lid candidate. In the context of the application domains men
tioned in Section 1, a higher recall is desirable for the clinical 
domain, since the patient profile creation is almost always ac
companied by a review step. A higher precision, however, is 
beneficial when considering literature annotation given the 

sheer amount of data being processed and the lack of human 
feedback on the outcomes.

We make a final note on the efficiency of our solution— 
from a resource usage perspective—to support the second 
challenge we have raised in Section 1—i.e. the evolution of 
ontologies leads to a need for reanalysis of the domain cor
pora (e.g. clinical notes or publications). Our solution 
requires �3 min to index a new HPO version, �5 s to anno
tate 10 000 abstracts (on average each abstract has �1400 
characters; excluding I/O operations) and �50 s to annotate 
100 000 abstracts on an AWS T3.medium machine (2 vCPU, 
4GB RAM). Given the linear relationship between time and 
number of abstracts, a complete reanalysis of PubMed 
(�30M abstracts) would take 4 h15 min on an extremely 
low-end machine and cost �$0.208.

5 Discussion
5.1 Error analysis
Concept recognition methods are usually affected by a rather 
consistent set of errors, some of which are more prevalent in 
the case of dictionary-based approaches such as ours. We per
formed a thorough error analysis against the annotations 
produced on the aligned GSCþ corpus with HPO version 
2019-09/2019-11 and listed below our findings.

Eight types of errors were found:

� Coordinated terms (�15%)—e.g. “oral, and ophthalmic 
anomalies” (target concept—Oral anomalies–HP: 
0031816) or “cleft lip and palate” (target concept—Cleft 
palate–HP: 0000175); 

� Non-contiguous representations (�6%): “dysplastic left 
kidney” (target concept—Renal dysplasia–HP: 0000089); 

� Lack of synonyms (�15%): “Developmental defects” (tar
get concept—Global developmental delay–HP: 0001263); 

� Lack of context (�28%): “Laughter” (target concept— 
Inappropriate laughter–HP: 0000748) or “lipomas” 
(target concept—Multiple lipomas–HP: 0001012); 

� False positives (�16%): “Hypotonia” (identified as 
Generalized hypotonia) or “Fell” (identified as Falls); 

� Incorrect boundary detection (�2%): False positives due 
to consecutive placement of tokens in text; 

� Incorrect degree of specificity (�7%): “Gingival papules” 
(target concept—Abnormality of the gingiva–HP: 
0000168) or “ovarian fibrosarcoma” (target concept— 
Abnormality of the ovary–HP: 0000137); 

� Missing annotations (�11%): True positives identified as 
false positives because the corpus is lacking the annotations. 

We anticipated some of the errors—such as the coordinated 
terms or the lack of synonyms—as we discuss in the Section 5.2. 
It is, however, important to note that our boundary detection 
approach does not lead to a significant number of errors. Most 
of the other types of errors—in particular those requiring con
text information—can be addressed via partial matching com
bined with context disambiguation (although this will most 
likely also increase the number of false positives).

Finally, we analysed changes in errors across the various 
versions of the ontology:

� 2019-09 to 2019-11: produced no changes; 
� 2019-11 to 2022-02: produced 13 changes: 

� One change in HPO ID (identified as false positive); 

Table 2. Experimental results on the BIO-GS corpus.

P R F1

PhenoTagger 0.74 0.52 0.61
ClinPheno 0.47 0.57 0.52
Doc2HPO 0.84 0.29 0.43
Monarch 0.47 0.46 0.46
NCBO 0.78 0.41 0.54
FastHPOCR 0.67 0.57 0.62

Bold values denote the highest score for the corresponding metric.
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� Five actual false positives due to new terms; 
� Seven correctly identified annotations—mostly be

cause of new synonyms; 
� 2022-02 to 2023-07: produced one change; 
� Missing annotation—HP: 0001756—Vestibular dysfunction. 

5.2 Limitations
Our dictionary-based solution suffers from the same limita
tions as all other similar approaches—as also shown in the er
ror analysis. Firstly, it is bound to the tokens we have 
captured and consolidated and is unable to identify synonyms 
and terms that have not been defined explicitly in the ontol
ogy or a priori in an extension of our approach. BERT-based 
approaches—with pre-computed embeddings on large cor
pora—have a higher chance of filling this gap. An appropri
ate study would, however, be required to quantify the impact 
of these unseen synonyms on the performance metrics.

Secondly, our current matching strategy relies on identifying 
contiguous spans of text where punctuation and coordination 
breaks continuity. A complementary matching strategy would 
be required to enable identification of coordinated terms (e.g. 
“short and broad toes”—leading to short toes and broad toes) 
or non-canonical structures (e.g. “the stature is short”—lead
ing to short stature). The results published by the BERT mod
els showcase a lack of ability to address this challenge. 
However, GPT-based solutions that combine prompt engineer
ing for named entity recognition with a subsequent entity link
ing step can provide a successful solution.

Finally, a limitation associated with CR in general is the 
lack of a context-dependent disambiguation, which is partic
ularly relevant—in the case of phenotypes—for terms that 
contain common English words—e.g. “Negativism” (possibly 
encountered often as the token “negative” in publications) or 
“Blindness” (carrying several context-dependent meanings— 
i.e. double-blind review versus blind spots versus the patient 
was blind). Similar to the challenge above a disambiguation 
module applied as a post-processing step would lead to posi
tive results, including a solution built using LLMs to verify 
the relevance of the extracted phenotypes from a medical per
spective to the original context.

5.3 Updated GSC corpus
Given the significant number of changes in the ontology since 
the last update of the GSCþ corpus, we proceeded with align
ing it to HPO version 2024-02 and made it available at: 
https://github.com/tudorgroza/code-for-papers/tree/main/gsc- 
2024. Table 3 lists the differences between the two corpora. 
Notably, we introduced 137 new annotations and increased 
the coverage of unique phenotype concepts to 486 from 433. 
In practice, 21 concepts were removed (via subsumption un
der other concepts) and 74 new concepts added. The overall 
profile of the corpus has not changed, as depicted in Fig. 4.

A re-run of the evaluation experiments using the 2024-02 
version of HPO on the updated corpus has yielded signifi
cantly improved results: 0.94 P, 0.78 R, and 0.85 F1 (men
tion-level), and 0.96, 0.79, 0.87 P, R, and F1, respectively 
(document-level).

6 Conclusion
The phenotype CR field is under active development and will 
continue to produce novel approaches, underpinned both by 
the improvements brought to LLMs but also by an increasing 
use of HPO in conjunction with EHR data. While most of the 
novel methods will focus on machine learning techniques, in 
this article we showed that “traditional” dictionary-based 
approaches can be employed efficiently and at speed to cater for 
the continuous evolution of HPO and for re-analysis (refresh) of 
the previously analysed data with new (or updated) concepts.

Our proposal relies on a collection of clusters of morphologi
cally equivalent tokens aimed at addressing lexical variability 
and on a closed-world assumption applied during CR to find 

Table 3. Comparison between the GSCþ corpus and the new GSC 
2024 corpus.

GSCþ GSC 2024

Total annotations 2773 2910
Total non-pheno annotations 503 503
Total concepts 454 507
Unique non-pheno concepts 21 21
Unique pheno concepts 433 486

Figure 4. High-level comparison between the GSCþ corpus and the new GSC 2024 corpus, using the top level HPO abnormalities as reference.
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candidates and perform entity linking. The solution produces 
state-of-the-art results augmented by an incomparable speed— 
10 000 publication abstracts in 5 s. To address some of the limi
tations associated with dictionary-based methods in general, we 
intend to develop a series of post-processing modules to intro
duce context-disambiguation and partial matching.
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