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Abstract
Super-enhancers are unique gene expression regulators widely involved in cancer development. Spread over large DNA 
segments, they tend to be found next to oncogenes. The super-enhancer c-MYC locus forms long-range chromatin looping 
with nearby genes, which brings the enhancer and the genes into proximity, to promote gene activation. The colon cancer-
associated transcript 1 (CCAT1) gene, which is part of the MYC locus, transcribes a lncRNA that is overexpressed in colon 
cancer cells through activation by MYC. Comparing different types of cancer cell lines using RNA fluorescence in situ 
hybridization (RNA FISH), we detected very prominent CCAT1 expression in HeLa cells, observed as several large CCAT1 
nuclear foci. We found that dozens of CCAT1 transcripts accumulate on the gene locus, in addition to active transcription 
occurring from the gene. The accumulating transcripts are released from the chromatin during cell division. Examination of 
CCAT1 lncRNA expression patterns on the single-RNA level showed that unspliced CCAT1 transcripts are released from the 
gene into the nucleoplasm. Most of these unspliced transcripts were observed in proximity to the active gene but were not 
associated with nuclear speckles in which unspliced RNAs usually accumulate. At larger distances from the gene, the CCAT1 
transcripts appeared spliced, implying that most CCAT1 transcripts undergo post-transcriptional splicing in the zone of the 
active gene. Finally, we show that unspliced CCAT1 transcripts can be detected in the cytoplasm during splicing inhibition, 
which suggests that there are several CCAT1 variants, spliced and unspliced, that the cell can recognize as suitable for export.
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Introduction

The regulation of gene expression in eukaryotes is complex 
and includes different levels of regulation including epige-
netic, transcriptional, translational, and post-translational 
control (Willemin et al. 2024; Wang et al. 2023). Enhancers 
are non-coding regulatory elements that enhance the tran-
scription of associated genes when bound by specific tran-
scription factors and are not necessarily in proximity to the 
gene body. Rather, they can be found upstream, downstream, 

or within the coding region and are brought into the vicinity 
of the promoter through genome folding (Deng et al. 2012). 
Super-enhancers (SE) are a class of regulatory sequences 
with enrichment for the binding of activators of transcription 
factors within the sequence (Pott and Lieb 2015). SEs tend to 
spread over large DNA regions and are found to be enriched 
next to genes with known oncogenic functions (Loven et al. 
2013; Hnisz et al. 2013; Jia et al. 2020).

SEs can drive the expression of oncogenic long non-
coding RNAs (lncRNAs) with tumor-promoting functions. 
For instance, the lncRNA urothelial cancer-associated 1 
(UCA1), which is driven by a SE, is overexpressed in ovar-
ian cancer and leads to tumorigenesis through YAP activa-
tion (Lin et al. 2019). LINC01503 lncRNA is located at a 
SE, and the binding of the transcription factor TP63 to the 
SE locus activates the expression of LINC01503. This acti-
vation leads to squamous cell carcinoma development, and 
the lncRNA levels are correlated with the shorter survival 
time of patients (Xie et al. 2018). The lncRNA LIMD1-AS1, 
which is also activated by a SE, is upregulated in glioma 
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through its activation of CDK7, which contributes to cell 
proliferation (Chen et al. 2023).

A well-known SE that can express various lncRNAs 
in different types of cancers is the SE at the MYC locus 
(Pott and Lieb 2015; Xiang et al. 2014; Iaccarino 2017). 
The c-MYC (MYC) oncogene is known to be upregulated 
in 50–60% of all tumors, while its overexpression can 
be achieved by a variety of mechanisms. The MYC gene 
is located at the 8q24 locus, an area containing different 
enhancers that are known to be involved in diverse types 
of cancers. The enhancers are organized in topologically 
associating domains (TADs), while the binding of CTCF and 
cohesion proteins to the TADs contributes to their stability 
(Pombo and Dillon 2015; Dixon et al. 2016; Dekker et al. 
2023). Several studies have identified that the long-range 
chromatin looping at the MYC locus, which leads to MYC 
hyperactivation, plays a critical role in cancer progression 
(Huppi et al. 2012; Lancho and Herranz 2018). A major fac-
tor in MYC upregulation that leads to cancer development 
is the binding of MYC to active binding sites on nearby 
enhancers, which results in high transcriptional activity (Lin 
et al. 2012; See et al. 2022).  MYC binding to enhancers 
activates protein-coding genes and lncRNAs, which can 
indirectly regulate gene expression (Wang et al. 2020b). 
Those ncRNAs, which are known as super-enhancer-derived 
ncRNAs, play a critical role in tumorigenesis, metastasis, 
drug resistance, and more (Peng et al. 2019; Ge et al. 2019; 
Lee et al. 2020).

Two of the many lncRNAs expressed from the MYC 
locus are PVT1 and CCAT1. Plasmacytoma variant trans-
location 1 (PVT1) lncRNA is located on chromosome 
8q24.21 and 53 kb downstream of the MYC locus (Parolia 
et al. 2018). PVT1 is overexpressed in various types of 
cancer (Liu et al. 2015; Kong et al. 2015; Zhang et al. 
2018; Li et al. 2024). Through its interaction with MYC, 
PVT1 promotes progression, invasion, metastasis, and 
chemoradiotherapy resistance in different tumors (Shi-
geyasu et al. 2020; Ansari et al. 2019). Colon cancer-
associated transcript 1 (CCAT1), also known as CCAT1-S 
or as cancer-associated region long non-coding RNA-5 
(CARLo-5), was first discovered to be overexpressed in 
patients with colorectal cancer (CRC), while the highest 
expression was observed in the small intestine and esoph-
agus (Nissan et al. 2012). CCAT1 maps to chromosome 
8q24.2 and contains 2795 nucleotides. The transcript has 
two exons and an intron that is spliced. CCAT1 has two 
isoforms: CCAT1-L with an extended second exon, and 
5L-CCAT1 with an extended 5′UTR. The dysregulation 
of CCAT1 expression affects tumorigenesis and clinical 
manifestations such as tumor size, metastasis, invasion, 
and patient survival (Wang et al. 2019; Zhan and Xian 
2023).

One of the reasons for CCAT1 upregulation is its location 
at the SE and its interaction with MYC. A DNA loop between 
the MYC promoter and the enhancer locus 335 kb upstream 
of MYC (MYC-335) has been demonstrated (Ahmadiyeh 
et al. 2010). More specifically, the CCAT1-L gene is located 
515 kb upstream of MYC, and CCAT1-L transcripts have a 
functional role in chromatin looping at the MYC locus. DNA 
fluorescence in situ hybridization (DNA FISH) experiments 
confirmed that the MYC gene and the CCAT1 gene are co-
localized in the tissues of CRC patients (Xiang et al. 2014). 
Further studies have identified high expression of CCAT1 in 
breast cancer, lung cancer, osteosarcoma, and other types of 
cancers (Chen et al. 2016; Lai et al. 2018; Liu et al. 2019, 
2023; White et al. 2014; Alaiyan et al. 2013). At present, 
the exact role of CCAT1 in cancer development is unknown.

The expression of the RNAs from the MYC locus has not 
been studied on the single-molecule RNA level. We found 
that the CCAT1 lncRNA is highly detectable in HeLa cells, 
particularly in comparison to other cell lines that are known 
to overexpress CCAT1 but have less detectable transcript lev-
els. We, therefore, examined CCAT1 expression patterns in 
HeLa cells and found that the large observed foci of CCAT1 
transcription were formed due to transcript accumulation at 
the gene locus. In addition, we found that CCAT1 transcripts 
are post-transcriptionally spliced, and this occurs shortly 
after their release from the gene. Interestingly, under splic-
ing inhibition conditions, unspliced transcripts were also 
found in the cytoplasm, suggesting that these transcripts are 
a variant that the cell can recognize as suitable for export.

Materials and methods

Cell culture

HeLa and RKO cells were maintained in high-glucose 
Dulbecco’s modified Eagle’s medium (DMEM) (Biologi-
cal Industries, Beit-Haemek, Israel) containing 10% fetal 
bovine serum (FBS; HyClone Laboratories, Logan, UT, 
USA), 100 IU/mL penicillin, and 100 μg/mL streptomy-
cin (Biological Industries). Cells were grown at 37 °C and 
5%  CO2. HT-29 and HCT116 were maintained in McCoy's 
5A Medium (Biological Industries) containing 10% FBS, 
100 IU/mL penicillin, and 100 μg/mL streptomycin. For 
transcription inhibition, cells were grown on coverslips and 
incubated at 37 °C for 2, 3, and 4 h with either actinomy-
cin D (ActD) (5 µg/mL, Sigma-Aldrich, Rehovot, Israel) 
or 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) 
(25 µg/mL, Sigma-Aldrich) before fixation for 20 min in 
4% paraformaldehyde (PFA). For splicing inhibition, cells 
were grown on coverslips and incubated at 37 °C for 1 or 6 h 
with pladienolide B (PLB) (0.5 µM, Santa Cruz Biotechnol-
ogy, Dallas, TX, USA) before fixation for 20 min in 4% PFA.
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Total RNA purification

Total RNA was produced using TRI Reagent (Sigma-
Aldrich), and DNA was removed using the TURBO 
DNA-free kit (Invitrogen) according to the manufacturer's 
instructions. Synthesis of complementary DNA (cDNA) 
was performed using the RevertAid™ First Strand cDNA 
Synthesis Kit (Fermentas/Thermo Fisher Scientific), by 
taking 1  μg RNA for each sample. Semi-quantitative 
reverse transcription polymerase chain reaction (RT-PCR) 
was performed using an Eppendorf thermocycler amplifi-
cation for 20–35 cycles (depending on the saturation level 
of the genes amplified) using 1 min denaturation at 94 °C, 
1 min annealing at 50 °C, 1 min extension at 72 °C; and 
72 °C for 10 min for final extension. The following prim-
ers were used:

CCAT1 forward: TCC ATC TGG AGC ATT CAC TG
CCAT1 reverse: AGC CAT ACA GAG CCA ACC TG
c-MYC forward: AAT GAA AAG GCC CCC AAG GTA 

GTT ATCC 
c-MYC reverse: GTC GTT TCC GCA ACA AGT CCT 

CTT C
PVT1 forward: GCT GTC AAA GAG GCC TGA AG
PVT1 reverse: ACA TTT CCT GCT GCC GTT TT
18S forward: TGT GCC GCT AGA GGT GAA ATT 
18S reverse: TGG CAA ATG CTT TCG CTT T

RNA fluorescence in situ hybridization (RNA FISH)

Cells were seeded on 18 mm coverslips and fixed for 
20 min in 4% PFA, then washed in 70% ethanol overnight. 
Coverslips were then washed twice with 10% formamide 
for probes purchased from Stellaris or fluorescent light-
up aptamer (FLAP) probes (Tsanov et al. 2016) diluted 
in 4× saline-sodium citrate (SSC). For single-molecule 
FISH (smFISH) on endogenous transcripts, fluorescence-
labeled DNA probes targeting the c-MYC exon sequence 
(570 nm, ~10 ng probe, Stellaris), CCAT1 intron sequence 
(670 nm, ~10 ng probe, Stellaris), CCAT1-L sequence 
(570 nm, ~10 ng probe, FLAP), CCAT1-5L (570 nm, 
~10 ng probe, FLAP), PVT1 exon sequence (570 nm, 
~10 ng probe, FLAP) were hybridized overnight at 37 °C 
in a dark chamber in 10% formamide. The next day, cells 
were washed twice with 10% formamide diluted in 4× 
SSC for 30 min at 37 °C and then washed with 1× phos-
phate buffered saline (PBS). To reduce photobleaching, 
the slides were mounted in GLOX (catalase, glucose oxi-
dase) buffer (pH 8.1 mM, 2× SSC, 0.4% glucose) sup-
plemented with 3.7 ng of glucose oxidase (Sigma-Aldrich 
G2133-10KU) and 1 μL catalase (Sigma-Aldrich 3515) 
prior to imaging.

RNA FISH and immunofluorescence

For smFISH on endogenous transcripts, fluorescence-labeled 
DNA probes targeting the CCAT1 exon sequence (570 nm, 
10 ng, Stellaris) and the CCAT1 intron sequence (670 nm, 
10 ng, Stellaris) were hybridized overnight at 37 °C in a 
dark chamber in 10% formamide together with the primary 
antibody, anti-SRRM2 (rabbit, Abcam, ab122719). The next 
day, cells were washed with 10% formamide, and a second-
ary antibody (Alexa Fluor 488 goat anti-rabbit IgG; Abcam) 
was added for 30 min at 37 °C, followed by washing with 
1× PBS. To reduce photobleaching, the slides were mounted 
in GLOX buffer.

Quantitative RNA FISH

Following RNA FISH experiments, three-dimensional (3D) 
stacks of cells were acquired using a wide-field fluorescence 
microscope at 60× magnification. Specifically, 51 z-planes 
were acquired for each cell with 300 nm steps. After the 
acquisition, the images underwent deconvolution using 
Huygens software and were transferred to Imaris software 
(Oxford Instruments, Abingdon, UK) for image processing. 
In Imaris, the signal of each RNA spot was evaluated using 
“spot object” and the transcription site was designated using 
“surface object.” To calculate the number of free CCAT1 
transcripts during mitosis vs. interphase, each spot was 
counted, following the average calculation for each group. 
To measure the distances of the RNAs from the transcription 
site, spots in the Cy5 channel were analyzed under “shortest 
distance from surface.”

To calculate the number of single CCAT1 transcripts at 
the transcription site, the sum of the fluorescence intensity 
of transcription sites was measured using the Imaris “sur-
face tracker.” Next, the common value for the fluorescence 
signal of single transcripts was measured using the Imaris 
“spot tracker” and defined as a single RNA molecule. Then, 
the mean intensity of a single transcript was multiplied by 
the number of pixels covered by the transcription site. This 
value was extracted from the sum of intensity at the tran-
scription site  (TS).

Fluorescence microscopy

Wide-field fluorescence images were obtained using the 
cellSens system based on an Olympus IX83 fully motor-
ized inverted microscope (60× UPlanXApo objective, 1.42 
NA) fitted with a Prime BSI scientific complementary 

TS intensity

Single transcript intensity
= RNA number per TS
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metal–oxide–semiconductor (sCMOS; Teledyne) driven by 
CellSens software. Images were then created using the FIJI 
software package.

Statistical analysis

The experiments presented were carried out at least three 
times. Statistical analysis was performed using GraphPad 
Prism 10  software. For quantification of CCAT1 unspliced 
transcripts in interphase versus mitotic cells, data were ana-
lyzed with independent-samples t-tests. For quantification of 
CCAT1 transcripts at the transcription site, proximity to the 
transcription site, location of introns in the cytoplasm, per-
centage of transcription sites per cell, and semi-quantitative 
RT-PCR data were analyzed using one-way ANOVA, fol-
lowed by Tukey's post hoc analysis. Treatment groups for 
which all values were constant (0% cells) were analyzed 
separately from other treatments using one-sample t-tests 
against a constant mean value of zero. Finally, a false discov-
ery rate (FDR) correction was applied to adjust for multiple 
testing.

Results

CCAT1 lncRNA is highly abundant in the nucleus 
of HeLa cells

The MYC 8q24 locus has been demonstrated to express 
cancer-specific lncRNAs, including CCAT1 and PVT1 
(Xiang et al. 2014; Jin et al. 2019). CCAT1 is located 515 kb 
upstream of the MYC locus, and PVT1 is 53 kb downstream 
of MYC (Jin et al. 2019). We examined whether the three 
genes could be transcriptionally active at the same time by 
detecting their active transcription sites using RNA FISH 
probes designed to hybridize with their cognate endog-
enous RNAs. The expression of these genes was tested in 
four human cancer cell lines. We tested various colorec-
tal cancer (CRC) cell lines, as it is known that CCAT1 is 
expressed in CRC: HT-29 colorectal adenocarcinoma cells, 
RKO colon carcinoma cells, and HCT116 colorectal carci-
noma cells (McCleland et al. 2016; Yang et al. 2019; Kam 
et al. 2014). We also decided to include a different type of 
cancer cell type, HeLa cervical cancer adenocarcinoma cells 
(Chen et al. 2021; Li et al. 2023). As expected, the active 
transcription sites of MYC and CCAT1 were found in all 
colorectal cell lines and were in close proximity (Fig. 1a). 
Surprisingly, HeLa cells had very large CCAT1 transcription 
foci relative to the other cell lines. MYC mRNAs were also 
abundant. Testing PVT1 lncRNA expression and CCAT1 
yielded similar results, namely that PVT1 was expressed 
in all cells, and the highest signal was observed in HeLa 
cells (Fig. 1b). Altogether, we found that the MYC locus was 

transcriptionally active and that CCAT1 expression seemed 
to be the highest of the three genes expressed from this 
locus. Notably for HeLa cells, the cells typically exhibited 
3–4 active transcription sites expressing these genes. Indeed, 
chromosome 8 usually appears in three copies in HeLa cells, 
while chromosome translocation is also common (Landry 
et al. 2013). When we tested the expression of all three genes 
using three different probes, we found that CCAT1, c-Myc, 
and PVT1 active genes were co-localized (Fig. 1c). Although 
CCAT1 lncRNA showed the strongest signal at the micros-
copy level, we wanted to determine whether the expression 
levels of CCAT1 were indeed relatively high. Semi-quanti-
tative RT-PCR showed that MYC expression levels in HeLa 
cells were much higher than those of CCAT1 (Fig. 1d). This 
finding implies that the strong CCAT1 signals observed in 
the microscopy images at the gene locus do not mean that 
CCAT1 is expressed at remarkably high expression levels. 
Rather, the lncRNA might be accumulating at the active 
gene locus, as it is known that many lncRNAs associate with 
chromatin and with their own gene loci (Calandrelli et al. 
2023).

CCAT1 accumulates at the active gene locus

To test the hypothesis that the large size of the CCAT1 site 
of transcription is due to lncRNA accumulation at the locus, 
we examined how transcription inhibition affects the size of 
these transcription sites. Namely, if the enlarged size of the 
transcription site is due to transcript accumulation, then after 
treatment with a transcription inhibitor, the signal should 
not disappear, as would be expected from a normal active 
gene under transcription inhibition conditions (Brody et al. 
2011; Darzacq et al. 2007). First, we used the transcription 
inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole 
(DRB), which inhibits the CDK9 kinase (kinase subunit of 
positive transcription elongation factor) (Bensaude 2011) to 
inhibit RNA polymerase II (Pol II) transcription. Even after 
4 h of treatment with DRB, CCAT1 transcription sites were 
still observed (Fig. 2a). However, the percentage of visible 
transcription sites per cell was dramatically decreased after 
DRB inhibition, and ~35% of the cells did not show any 
visible active genes (Fig. 2b). To confirm that the DRB treat-
ment was effective, immunofluorescence against the SRRM2 
protein was performed in parallel. As expected (Rino et al. 
2007; Spector and Lamond 2011), nuclear speckles that were 
marked by SRRM2 and that usually have an irregular shape 
were transformed into rounded structures due to transcrip-
tion inhibition. Many genes are known to associate with 
nuclear speckles when transcriptionally active (Faber et al. 
2022; Kim et al. 2020; Belmont 2021). However, no associa-
tion between the nuclear speckles and CCAT1 transcription 
sites was detected under normal or DRB-treated conditions. 
Similarly, when the transcription inhibitor actinomycin 
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Fig. 1  CCAT1 lncRNA is highly abundant in nuclei of HeLa cells. 
Detection of a CCAT1 lncRNA (exon; green) with MYC mRNA 
(orange) or with b PVT1 lncRNA (orange) by RNA FISH in HT-29, 
RKO, HCT116, and HeLa cells. Large foci are the active genes and 
small dots are the single RNAs. Hoechst DNA stain is in blue. Boxed 
areas are enlarged. c RNA FISH in HeLa cells of MYC (orange), 
CCAT1 (exon; green), and PVT1 (purple) RNAs. Scale bars, 10 µm. 

d Expression levels of CCAT1, MYC and PVT1 RNAs in HeLa cells 
measured by semi-quantitative RT-PCR. The 18S gene was used as 
a housekeeping gene. Data were analyzed using one-way ANOVA, 
followed by Tukey's post hoc analysis. A significant difference was 
found in the relative expression levels between MYC to CCAT1 and 
PVT1. **P < 0.01, ***P < 0.001
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D (ActD) was applied, a similar but stronger effect was 
observed, as no visible CCAT1 transcription sites were 
observed in ~60% of the cells (Fig. 2c,d). The persistence of 
the CCAT1 transcription sites after transcription inhibition, 
rather than completely disappearing as would be expected, 
indicated that lncRNA accumulation was occurring at the 
site of transcription. Since introns are prominently detected 
at the site of transcription (Cote et al. 2024; Darzacq et al. 
2007; Mor et al. 2010), we examined whether the intron and 
exon sequences of CCAT1 overlapped at these foci. Indeed, 
using RNA FISH probe sets against the CCAT1 exons or 
intron, we found that the intron sequences were most promi-
nent at these foci. The latter were reduced in size when cells 
were treated with the transcription inhibitors (Supplemen-
tary Figure S1a, b), implying that these foci are most likely 
the sites at which CCAT1 is transcribed. This means that 
under regular conditions, the active CCAT1 genes produce 
CCAT1 transcripts, and a subpopulation of these transcripts 
remains associated with the gene locus.

Since we speculated that CCAT1 transcripts were accu-
mulating at the gene locus, we assumed that during cell divi-
sion, these transcripts would dissociate from the chromo-
some. Also, active transcription sites were not expected to 
be seen since the rates of transcription decrease dramatically 
during cell division (Hartl et al. 1993; Palozola et al. 2017). 
Indeed, no CCAT1 transcription sites were observed dur-
ing cell division (Supplementary Figure S2), and no accu-
mulation of CCAT1 transcripts was observed on metaphase 
chromosomes (Fig. 3a). Rather, many CCAT1 transcripts 
were now seen throughout the mitotic cell. The number 
of free CCAT1 transcripts in cells during metaphase was 
counted and compared with the number of free transcripts 
in cells during interphase. A large increase in free CCAT1 
transcripts in the cell was observed (Fig. 3a, b). This indi-
cates that during interphase, CCAT1 transcripts accumulate 
at the locus, and during mitosis, they are released from the 
chromosomes. We could now quantify the number of CCAT1 
transcripts that were associated with the locus in cells during 
interphase. First, the numbers of CCAT1 loci were counted 
(n = 300 cells), which showed that ~50% of the cells con-
tained at least three active sites of transcription (Fig. 3c). 
Next, the estimated number of CCAT1 transcripts associ-
ated with a single transcription site was calculated using the 

single CCAT1 transcript average intensity (Fig. 3d). Since 
the CCAT1 loci were not uniform in size, they were divided 
into several different subgroups. Large transcription sites 
contained ~40 transcripts, moderate-sized had ~10 tran-
scripts, and the small ones contained less than 5 transcripts. 
Therefore, a cell that had three large loci would amount to 
a total of ~120 CCAT1 transcripts associated with the gene 
loci. This number is within the range of the average num-
ber of CCAT1 transcripts measured in the metaphase cells 
(Fig. 3b; ~150 transcripts). Altogether, these numbers cor-
relate well, as there are also free CCAT1 transcripts in the 
nucleoplasm and cytoplasm of interphase cells.

CCAT1 transcripts undergo post‑transcriptional 
splicing

We next wanted to examine whether the transcripts associ-
ated with the CCAT1 gene loci were spliced transcripts in all 
cell lines expressing CCAT1. Using the RNA FISH probe 
sets against the CCAT1 exons or intron, the intron signal 
overlapped with the site of transcription in HT-29, RKO, 
HCT116, and HeLa cells (Fig. 4a). Typically, intron signals 
are seen predominantly on sites of transcription, since much 
of the splicing occurs co-transcriptionally. Here, all tran-
scription site signals contained intron signals, suggesting 
that the associated CCAT1 lncRNAs were unspliced at this 
stage. However, unspliced transcripts were also detected in 
the nucleoplasm of the HeLa cells (Fig. 4a, Supplementary 
Figure S1a, b). In general, the vast majority of the CCAT1 
transcripts in the cells were spliced RNAs, and the unspliced 
transcripts were mostly found near the site of transcription. 
Unspliced transcripts were nuclear only. This was sugges-
tive of post-transcriptional splicing occurring after release 
from the transcription site. Since unspliced RNAs can accu-
mulate in nuclear speckles (Gordon et al. 2021; Mor et al. 
2016), we examined whether there was an association of 
unspliced CCAT1 transcripts with nuclear speckles. RNA 
FISH applied to CCAT1 unspliced transcripts and staining 
for SRRM2, a core nuclear speckle protein, showed no asso-
ciation between the two (Fig. 4b).

Next, we focused on the location of the CCAT1 unspliced 
transcripts in the nucleus. Spliced CCAT1 transcripts were 
dispersed over the entire nucleus, while unspliced tran-
scripts were localized mostly next to the site of transcrip-
tion (Fig. 5a). Next, we measured the distance of CCAT1 
unspliced transcripts from the gene foci (Fig. 5b). When 
calculating the distance of unspliced CCAT1 transcripts from 
the gene locus, we found that most transcripts were located 
less than 3 μm from the transcription site, and less than 16% 
of the unspliced transcripts were located more than 6 μm 
from the locus (Fig. 5c). In addition, to test whether the 
other CCAT1 isoforms CCAT1-L and 5L-CCAT1 were also 
post-transcriptionally spliced, RNA FISH was performed 

Fig. 2  CCAT1 lncRNAs accumulate on the gene locus. The transcrip-
tion inhibitors a DRB or c ActD decreased CCAT1 detection at the 
site of transcription, but small foci were still observed (4 h of treat-
ment). CCAT1 (exon; gray) was detected together with anti-SRRM2 
(magenta) that marks nuclear speckles. Hoechst DNA stain is in 
blue. Boxed areas are enlarged. Scale bars, 10 µm. b The percentage 
of CCAT1 transcription foci per cell after treatment with DRB or d 
ActD. A minimum of n = 50 cells were selected for each analysis. 
Data were analyzed using one-way ANOVA, followed by Tukey's 
post hoc analysis. *P < 0.05, **P < 0.01, ****P < 0.0001

◂
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using probes that detect either CCAT1-L or CCAT1-5L only, 
together with probes directed to the intron. We observed 
that CCAT1-L and CCAT-5L expression overlapped with 
the intron signal in the nucleoplasm, and as observed with 
the CCAT1 common isoform, the unspliced transcripts were 
localized close to the transcription site (Supplementary Fig-
ure S3). The presence of CCAT1-L and CCAT1-5L unspliced 
transcripts in proximity to the gene loci confirms that the 
post-transcriptional splicing is common to the three differ-
ent isoforms. Taken together, these findings suggest that 
the splicing of CCAT1 is post-transcriptional and occurs 
soon after release from the gene and before the transcripts 

diffuse away from the gene. This finding is consistent with 
the recently published evidence demonstrating that highly 
transcribed genes are post-transcriptionally spliced (Cote 
et al. 2024).

Unspliced CCAT1 transcripts are exported 
to the cytoplasm during splicing inhibition

It was previously demonstrated that splicing inhibition can 
lead to the accumulation of unspliced transcripts at the site 
of transcription and in nuclear speckles (Cote et al. 2024). 
These transcripts are retained in the nucleus and are not 

Fig. 3  CCAT1 transcripts are released from chromosomes during cell 
division. a Detection of CCAT1 RNAs by RNA FISH in cells at inter-
phase (left) and metaphase (right). The top panels show original, with 
zoomed images presented at high signal intensity (boxes). The bottom 
panel shows analyzed images (Imaris). White spots show the CCAT1 
RNA. Large pink dots are sites of transcription. Scale bar, 3  μm. b 
The total number of CCAT1 RNAs counted in interphase versus met-

aphase cells. Data were analyzed with independent-samples t-tests. c 
The distribution of CCAT1 transcription sites per cell under steady-
state conditions. d Transcription foci were divided into subgroups 
according to their size. Each group contained different numbers of 
transcripts. A minimum of n = 50 cells were selected for each statisti-
cal analysis. ****P < 0.0001
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Fig. 4  CCAT1 unspliced transcripts are present in the nucleoplasm of 
HeLa cells and do not localize with nuclear speckles. a RNA FISH 
detection of CCAT1 exon (pink) and CCAT1 intron regions (green). 
HeLa cells displayed high levels of unspliced CCAT1 transcripts at 
the sites of transcription and low levels of unspliced transcripts in the 

nucleoplasm. HT-29, HCT116, and RKO cells showed low levels of 
CCAT1 introns (unspliced transcripts) at the site of transcription. b 
CCAT1 active genes and nucleoplasmic transcripts were not associ-
ated with nuclear speckles marked by anti-SRRM2 (cyan). Hoechst 
DNA stain is in blue. Boxed areas are enlarged. Scale bars, 10 µm
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exported to the cytoplasm. We did not find any accumu-
lation of CCAT1 unspliced transcripts in nuclear speckles 
under regular conditions (Fig. 4b), and so we examined 
their fate under conditions of splicing inhibition. We used 

pladienolide B (PLB), a splicing inhibitor that binds to the 
SF3B1 subunit of the U2 small nuclear ribonucleoproteins 
(snRNP) and blocks spliceosome activity (Effenberger et al. 
2017). When PLB was added to HeLa cells, the presence 

Fig. 5  Unspliced CCAT1 transcripts are found in close proximity to 
the active gene. a CCAT1 spliced and unspliced RNA was detected 
in untreated cells and analyzed by Imaris; CCAT1 exon spots (cyan) 
and CCAT1 intron spots (red). Large pink dots are sites of transcrip-
tion. b Distances of CCAT1 unspliced RNAs from the active genes 
in untreated cells are color-coded. Pink spots show the unspliced 
transcripts located less than 3 μm from the active gene; green spots 
between 3 to 6 μm; and white spots more than 6 μm. Large pink dots 

are sites of transcription. c Measurements of the distances of CCAT1 
unspliced transcripts from the active genes. Data were analyzed 
with a one-way ANOVA, followed by Tukey's post hoc analysis. 
**P < 0.01, ****P < 0.0001. A minimum of n = 50 cells were selected 
for statistical analysis. Scale bar, 3 μm. d Schematic illustration of the 
measured distances of unspliced CCAT1 transcripts from the active 
genes
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of CCAT1 at the gene locus was reduced already after 1 h 
(Fig. 6a). After 6 h of treatment with PLB, CCAT1 transcrip-
tion sites not only did not show any visible accumulation of 
unspliced transcripts, but in a considerable percentage of the 
cells the large loci disappeared (Fig. 6b). Surprisingly, in 
some cells, unspliced transcripts appeared in the cytoplasm 
(Fig. 6a, c). As a control, we examined another transcript, the 
MKI transcript that encodes Ki-67, under splicing inhibition 
conditions, and unspliced MKI mRNAs were not detected 
in the cytoplasm (Supplementary Figure S4). Additionally, 
unspliced CCAT1 transcripts did not appear to be associ-
ated with nuclear speckles (Fig. 6a). Quantification of the 
unspliced transcripts showed that ~40% of the introns were 
found in the cytoplasm during splicing inhibition, while the 
rest were in the nucleus. We postulated that following splic-
ing inhibition, CCAT1 transcripts, which normally are highly 
transcribed, undergo nuclear export despite intron retention. 
Taken together, these findings might suggest that CCAT1 at 
steady-state conditions is post-transcriptionally spliced and 
that the unspliced version is not detected as an aberrant RNA 
with a splicing defect but might be a normal candidate for 
export under certain conditions.

Discussion

Super-enhancers are large clusters of enhancers spread 
over large DNA regions that regulate gene expression via 
a variety of mechanisms. Similar to typical enhancers, SEs 
can be located far away from their associated gene, and in 
such cases, genome folding brings the enhancer into close 
proximity to the gene promoter, where their interactions are 
mediated through transcription activators and the transcrip-
tional initiation complex, to control gene expression (Deng 
et al. 2012; Ye et al. 2020). SEs display enrichment of bind-
ing sites for transcription factors and activators relative to 
a typical enhancer (Whyte et al. 2013; Pott and Lieb 2015). 
SEs in cancer cells have been shown to display different 
expression patterns and enhancer usage relative to healthy 
cells (Loven et al. 2013). Therefore, SEs are considered key 
regulators of oncogene expression in different tumors (Tang 
et al. 2020).

The MYC locus is a tumor type-specific super-enhancer 
that expresses different super-enhancer-derived ncRNAs 
(Hnisz et al. 2013; Amjadi-Moheb et al. 2021). Within the 
course of our research, we focused on the expression of the 
CCAT1 lncRNA at the MYC locus. CCAT1 is upregulated in 
CRC already in the early phase of tumorigenesis as well as at 
late stages of the disease, and hence, CCAT1 can be used as a 
potential biomarker for screening, diagnosis, and prognosis 
for patients with CRC (Mizrahi et al. 2015; Xiao et al. 2021). 
In the current study, we examined lncRNA localization in 
human cell lines on the single RNA level and characterized 

CCAT1 expression, with an emphasis on its detection at 
the site of transcription in HeLa cells, which showed very 
prominent sites of CCAT1 transcription. We were surprised 
to observe this significant upregulation of CCAT1 in HeLa 
cells, since CCAT1 is mostly correlated with colon cancer 
(Mizrahi et al. 2015; Shang et al. 2020). However, CCAT1 
is also expressed in ovarian cancer (Wang et al. 2020a). We 
found that CCAT1 was highly detectable relative to other 
cell lines that express CCAT1; several large sites of tran-
scription were observed and high numbers of transcripts 
were detected in the nucleus and cytoplasm (Fig. 1a, b). We 
assumed that the large foci were transcription sites since 
active transcription sites contain the highest number of tran-
scripts when examined by RNA FISH, and the overlapping 
with the MYC and PVT1 transcription sites strengthened this 
assumption. The relative RNA expression levels of MYC in 
HeLa cells were twofold higher than CCAT1 levels, while 
the PVT1 levels were similar to CCAT1 (Fig. 1d).

To verify that the foci were indeed sites of transcrip-
tion, we used transcription inhibitors. Following treatment 
with DRB or ActD, the CCAT1 foci were still observed to 
a certain extent (Fig. 2a, c), although the number of cells 
exhibiting these foci decreased significantly. Also, the intron 
and exon signals predominantly co-localized at these foci, 
as would be expected from transcription sites that are the 
areas that contain most intronic sequences. The fact that the 
foci did not completely disappear, as would be expected of 
transcription sites during transcription inhibition, suggested 
that in addition to transcription, there is an accumulation of 
the lncRNAs on their gene locus. The accumulation of lncR-
NAs on chromatin is known (Guo et al. 2020; Schlackow 
et al. 2017; Calandrelli et al. 2023). The treatment with 
ActD had a stronger effect on transcription site disappear-
ance (Fig. 2b, d). This effect may be due to the ActD inhibi-
tion mechanism, which functions through intercalation into 
GC-rich sequences and prevents RNA polymerase progres-
sion. The intercalation of ActD into the double helix may 
interrupt the binding of CCAT1 to chromatin, which subse-
quently reduces foci size. Therefore, we speculate that the 
large transcription sites observed are formed due to CCAT1 
transcript accumulation on the gene locus and not due to an 
unusually high transcription rate modulated by RNA Pol II 
activity. These results correlate with previous studies show-
ing that lncRNAs can modulate gene expression locally by 
accumulation at or near their site of transcription (Kopp and 
Mendell 2018; Gil and Ulitsky 2020). lncRNA accumula-
tion on chromatin can be associated with its regulation or 
function. One of the earliest examples of RNA accumulation 
is the lncRNA XIST (Brockdorff et al. 1992; Brown et al. 
1991), a key regulator of X inactivation, which mediates the 
silencing of the inactive X chromosome through the subse-
quent recruitment of epigenetic regulators (Clemson et al. 
1996; Lee 2012). Another example is polyadenylated nuclear 
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RNA (PAN) lncRNA, which is a viral RNA that accumu-
lates and binds to its own promoter and robustly activates 
PAN lncRNA expression (Campbell and Izumiya 2020). 
Multiple studies have indicated that RNAs with processing 
defects, particularly in their splicing, accumulate in nuclear 
foci located near their site of transcription. For example, the 
mutant β-globin mRNA that has a defect in either splicing 
or 3′ formation has been reported to accumulate close to its 
site of transcription, even in the presence of transcription 
inhibitors, which under normal conditions cause the rapid 
release of wild-type human β-globin RNA from the vicinity 
of the gene (Custodio et al. 1999).

Co-transcriptional splicing of nascent RNA is a central 
mechanism for gene regulation in normal cells, while in 
some cancer cells, defective splicing machinery can shift 
splicing to occur post-transcriptionally (Bentley 2014). For 
example, a single missense mutation (Ser34Phe) in the zinc 
finger domain of the conserved splicing factor U2AF1 is 
common in different types of cancers, leading to the post-
transcriptional splicing of β-globin and FXR1 mRNAs (Cou-
lon et al. 2014). A major question in the splicing field is 
how tightly associated are the processes of transcription and 
splicing. The balance between co-transcriptional and post-
transcriptional splicing is regulated. Deep sequencing stud-
ies have shown that many RNAs undergo co-transcriptional 
splicing (Tilgner et al. 2012; Sanchez-Escabias et al. 2022). 
lncRNAs, however, have been reported to be less efficiently 
spliced than protein-coding genes, regardless of transcript 
activity (Mukherjee et al. 2017). One possible explana-
tion for this phenomenon is the lack of splicing enhancer 
sequences at lncRNA splice sites (Krchnakova et al. 2019). 
Typically, splice sites are abundant along the transcribed 
region, while the recognition of those sites is mediated by 
different serine- and arginine-rich (SR) proteins and hnRNPs 
(De Conti et al. 2013). In HeLa cells, splicing was found 
to be less efficient and could occur post-transcriptionally, 
and in some cases the lncRNAs remain unspliced (Tilgner 

et al. 2012; Schlackow et al. 2017). Also, intron excision in 
lncRNAs is slower than protein-coding genes, and in con-
trast, their exon skipping is higher (Mukherjee et al. 2017). 
This phenomenon can be partially explained by the existence 
of longer lncRNA introns relative to protein-coding genes 
(Krchnakova et al. 2019), or also by the finding that there 
is less RNA Pol II pausing at transcription start sites (TES) 
of lncRNAs versus protein-coding genes (Schlackow et al. 
2017).

A recently published study has demonstrated that highly 
expressed genes can undergo post-transcriptional splic-
ing close to the transcription site zone in addition to co-
transcriptional splicing which occurs during transcription 
(Cote et al. 2024). This study revealed that the mobility 
of the RNA is slower at the transcription site proximal 
zone than within the nucleoplasm, suggesting that the 
slow-moving zone is where transcripts are finally spliced. 
Using RNA FISH applied to the CCAT1 exon and intron 
sequences revealed CCAT1 unspliced transcripts that were 
located in the nucleoplasm of the cells. This was observed 
only in HeLa cells. The existence of unspliced transcripts 
was not specific to the CCAT1 short isoform but was found 
for all three isoforms (Supplementary Figure S3a, b). We 
measured the distance that CCAT1 unspliced transcripts 
traveled from the transcription site and found that most 
of the unspliced transcripts were localized near the site 
of transcription, suggesting that this transcript undergoes 
post-transcriptional splicing not long after release from the 
gene. As CCAT1 is highly transcribed, a high number of 
transcripts should undergo splicing, and perhaps the delay 
in the splicing events led to the abundance of transcripts 
at the gene locus and the release of unspliced transcripts 
from the gene, and therefore to splicing in the nucleo-
plasm. This assumption is consistent with the data show-
ing that lncRNA exhibits lower splicing rates than coding 
genes (Mukherjee et al. 2017). It is also possible that the 
accumulation of many unspliced CCAT1 transcripts on the 
gene locus form a structure that sequesters the RNAs from 
the splicing machinery. Only after release into the nucleo-
plasm can the spliceosome function on these transcripts. 
This scenario agrees with the observation of unspliced 
CCAT1 transcripts only in the region close to the gene. 
As mentioned, lncRNAs are less efficiently spliced since 
their exons contain fewer putative binding sites for SR 
proteins, and hence cannot generate the cooperative net-
work of positive signals that is needed for recruiting the 
spliceosome to splice sites. Therefore, their splicing would 
be more dependent on how optimal their splice sites were 
(Krchnakova et al. 2019). However, the removal of introns 
from enhancer lncRNAs did not change their enhancing 
activity, meaning that introns are not essential for the 
activating function of lncRNAs. We find that the major-
ity of CCAT1 transcripts are co-transcriptionally spliced, 

Fig. 6  Splicing inhibition reduces CCAT1 expression and leads to the 
appearance of unspliced transcripts in the cytoplasm. a Pladienolide 
B (PLB) treatment for 1 and 6 h decreased CCAT1 detection at the 
active genes. Unspliced transcripts were detected at the cytoplasm 
after 6  h. CCAT1 exon (pink), CCAT1 intron (green), anti-SRRM2 
for marking nuclear speckles (cyan). b The percentage of CCAT1 
gene foci per cell after treatment with PLB for 6 h. c RNA FISH of 
CCAT1 exon and intron regions in untreated and splicing-inhibited 
conditions. CCAT1 exon (red), CCAT1 intron (green). The top panel 
represents original and zoomed images at higher intensity (boxes). 
The middle panel shows analyzed images (Imaris). Red spots show 
CCAT1 exon and green spots show CCAT1 intron. The bottom row 
presents a schematic illustration. Scale bar, 4 μm. d The percentage 
of unspliced transcripts in the cytoplasm compared with nuclei in 
control and under splicing inhibition conditions. Data were analyzed 
with b independent-sample t-tests and d one-way ANOVA, followed 
by Tukey's post hoc analysis. *P < 0.05, **P < 0.01, ****P < 0.0001. 
A minimum of n = 50 cells were selected for statistical analysis

◂
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while the minority are post-transcriptionally spliced. This 
can result from inefficient splicing at the site of transcrip-
tion, caused by weak splicing factor interactions with the 
CCAT1 transcripts.

When the cells were treated with splicing inhibitors, 
there was a significant decrease in CCAT1 accumula-
tion at the transcription site, and surprisingly, unspliced 
transcripts were observed in the cytoplasm of some cells. 
This is a rare occurrence, since introns are non-coding 
sequences that do not reach the cytoplasm. Moreover, 
when splicing is inhibited, the unspliced transcripts are 
usually retained at the site of transcription or accumu-
late in nuclear speckles (Hasenson et al. 2022; Barutcu 
et al. 2022; Hall et al. 2006; Johnson et al. 2000; Mor 
et  al. 2016). These transcripts do not exit the nucleus 
since they are detected as aberrant transcripts. The fact 
that unspliced versions of CCAT1 could be found in the 
nucleoplasm under normal conditions, and even in the 
cytoplasm under conditions of splicing inhibition, sug-
gests that the unspliced versions are not defective but are 
recognized as legitimate variants and might serve roles 
that await discovery.

Although we do not know to what extent CCAT1-regu-
lated looping engages in crosstalk with other aspects of MYC 
regulation, this study represents yet another component of 
the complicated MYC region. Our results indicate that the 
unusual CCAT1 transcription site size at the gene locus is 
due to the accumulation of CCAT1 transcripts, and not to 
exceptionally high transcription levels. This may suggest 
that a function of CCAT1 transcripts on the gene locus is in 
the maintenance of the long-range chromatin interactions at 
the MYC locus. This shows that the accumulation of CCAT1 
at its site of transcription is poised to act as a modulator 
of gene expression in a locus-specific manner. Finally, as 
this region also expresses distinct lncRNAs in other types of 
human cancers, it will be of interest to learn whether other 
8q24 lncRNAs behave similarly to CCAT1.
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