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DeepPIG: deep neural network 
architecture with pairwise 
connected layers and stochastic 
gates using knockoff frameworks 
for feature selection
Euiyoung Oh 1 & Hyunju Lee 1,2*

Selecting relevant feature subsets is essential for machine learning applications. Among the feature 
selection techniques, the knockoff filter procedure proposes a unique framework that minimizes false 
discovery rates (FDR). However, employing a deep neural network architecture for a knockoff filter 
framework requires higher detection power. Using the knockoff filter framework, we present a Deep 
neural network with PaIrwise connected layers integrated with stochastic Gates (DeepPIG) for the 
feature selection model. DeepPIG exhibited better detection power in synthetic data than the baseline 
and recent models such as Deep feature selection using Paired-Input Nonlinear Knockoffs (DeepPINK), 
Stochastic Gates (STG), and SHapley Additive exPlanations (SHAP) while not violating the preselected 
FDR level, especially when the signal of the features were weak. The selected features determined by 
DeepPIG demonstrated superior classification performance compared with the baseline model in real-
world data analyses, including the prediction of certain cancer prognosis and classification tasks using 
microbiome and single-cell datasets. In conclusion, DeepPIG is a robust feature selection approach 
even when the signals of features are weak. Source code is available at https://​github.​com/​DMCB-​
GIST/​DeepP​IG.

Since the era of big data, revolutionary improvements have been made in various fields. A deep neural network 
(DNN) is a plausible approach for treating complex data. While DNNs offer remarkable predictive abilities in 
various tasks, their “black box” nature was most concerning to many experts who needed to understand data 
features used to make such decisions1,2. Furthermore, most datasets usually contain features irrelevant to the 
responses of interest, leading to suboptimal training or overfitting3,4. In this context, identifying the crucial 
features contributing to a specific response and reducing the feature dimensions are essential5.

Various feature selection and importance scoring methods have been proposed for statistics and machine 
learning6. Feature selection methods should ideally control the rate of selecting irrelevant features while main-
taining high power to identify relevant features. Traditional approaches, including the Benjamini and Hochberg 
procedures7–9, use p-values that reflect feature importance. While these methods are effective for simple models, 
they face challenges with complex models such as DNNs. In such cases, the generation of meaningful p-values 
that reflect feature importance becomes ambiguous10. Moreover, high-dimensional data incur high costs for 
computing the p-values.

The model-X knockoff framework for feature selection was proposed to bypass the usage of p-values without 
violating the false discovery rate (FDR) above a preselected level11. The knockoff framework starts by generating 
knockoff variables that mimic the arbitrary dependence structure among the original features without looking at 
the responses. Knockoff variables have been used as controls in feature selection by comparing the importance 
of the original features and their knockoff counterparts.

Recently, feature selection approaches using modified layer architectures from vanilla neural networks have 
been proposed, such as stochastic gates (STG)12. Although they achieved a high detection power in many applica-
tions, they often did not consider FDR control explicitly. In addition, most procedures for identifying significant 
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features depend on empirical thresholds, which make them less deterministic. Meanwhile, a DNN architecture 
suitable for knockoff frameworks, such as DeepPINK, was proposed13. DeepPINK introduces a pairwise con-
nected filter layer for the original and knockoff variables. However, it often fails to select a single feature when 
the signal of important features is dim.

In this study, we designed a novel architecture of DNN and a unique training scheme called pairwise con-
nected layers and stochastic gates (DeepPIG). We combined the core layer architecture of DeepPINK and STG 
to achieve higher detection power while preventing FDR violations. Furthermore, we developed distinctive 
training algorithms to compute feature importance using the original and corresponding knockoff variables. 
From the experimental results, we observed enhanced feature selection performance compared with baseline 
models using synthetic datasets. DeepPIG exhibited good sensitivity by finding significant features with higher 
power, especially when the signals of the true features were weak, while ensuring that the FDR was not violated. 
We also conducted the real data analysis, including cancer survival prediction tasks and the previously used 
microbiome and single-cell datasets in the baseline model study. The features selected by DeepPIG exhibited 
better classification performance and robustness than that of DeepPINK. Finally, we report the identified cancer 
prognostic genes, frequently identified as significant genes for classifying long-term survivors of kidney, liver, and 
pancreatic cancers. DeepPIG selected several prognostic genes at higher frequencies than the baseline model, 
highlighting its robustness. Taken together, DeepPIG provides robust feature selection by enhancing selection 
power and maintaining strict FDR control, making it applicable to various biological datasets.

Methods
Knockoff framework
The knockoff filter procedure was introduced as a variable selection method that controls the FDR11. The knockoff 
filter method is well known for providing accurate FDR control while bypassing p-values. The knockoff procedure 
has two main parts: constructing knockoff variables that imitate the original variables and defining the knockoff 
statistics that can be taken as feature importance scores. When generating knockoff variables, the responses of 
interest must not be associated. Formally, knockoff variables for a set of original random variables x = (x1, ...xd)

T 
are defined as a new set of random variables x̃ = (x̃1, ...x̃d)

T that satisfy the following properties:

(1)	 For any subset S ⊂
{
1, ...p

}
, (xT , x̃T )swap(S)

d
=(xT , x̃T ) , where (xT , x̃T )swap(S) is obtained by swapping the 

components xj and x̃j in (xT , x̃T ) for each j ∈ S and d= denotes equal in distribution;
(2)	 x̃ ⊥ y | x

Among the methods for constructing knockoff variables, one promising approach is to use DNN-based 
models such as DeepLINK14,15. DeepLINK takes advantage of an autoencoder with flexible nonlinear factor 
modeling power. Because the feature vectors generated from the autoencoder are nonlinear, one can generate 
knockoff variables without assuming a joint distribution of x, such as Gaussian.

Next, knockoff variables were used as controls for the original variables; therefore, original variables with 
a significantly stronger relationship with the response than their corresponding knockoffs were considered 
important features. For each feature index j = 1, ..., d , we defined Kj as the knockoff statistic to measure the 
importance of the j-th original feature. A large positive value of Kj provides evidence that the jth original feature 
is important, whereas small magnitudes around zero of Kj are expected to be null features. Formally, knockoff 
statistics Kj is a function of the augmented data matrix [X, X̃] and the response vector y with a function kj which 
satisfies the “sign-flip” property:

where S denotes any subset of {1, ..., d} . A threshold that does not violate the target FDR is required to select 
significant features using the constructed knockoff statistics. The set of important features is selected as 
Ŝ =

{
j : Kj ≥ t

}
 with t = T or t = T+ , where T is the knockoff threshold, and T+ is the knockoff+ threshold. 

For target FDR level q, the knockoff thresholds are defined as follows:

FDR control was achieved if knockoff statistics of the null features were symmetrically distributed.

Proposed model
Here, we designed a novel DNN architecture DeepPIG for constructing knockoff statistics to improve the detec-
tion power and maintain the FDR control property of knockoff filter methods. We integrated the architectures 
of STG and DeepPINK12,13. The original and knockoff variables were combined and fed into the feature selec-
tion unit, followed by the hidden layers (Fig 1a). The final output layer produced the response variable y, which 
is the target output of the network. A detailed view of the feature selection unit and the training strategy are 

(1)kj([X, X̃]swap(S), y) =

{
kj([X, X̃], y), j /∈ S

−kj([X, X̃], y), j ∈ S

(2)T =min

{
t > 0 :

∣∣{j : Kj ≤ −t
}∣∣

max
{∣∣j : Kj ≥ t

∣∣, 1
} ≤ q

}

(3)T+ =min

{
t > 0 :

1+
∣∣{j : Kj ≤ −t

}∣∣
max

{∣∣j : Kj ≥ t
∣∣, 1

} ≤ q

}
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illustrated in Fig. 1b. In the feature selection unit, the stochastic gates are attached to each variable and utilized in 
a linear combination. STG was employed to utilize the ℓ0-norm of features or determine the number of selected 
features during DNN training. Since exact ℓ0 regularization can be computationally expensive and intractable 
for high dimensions, the stochastic gate component was designed to relax the Bernoulli distribution for the ℓ0
-norm with a continuous probabilistic distribution. Stochastic gates were attached to each input feature, where 
the trainable parameter, µj , and the random noise, ǫj , regulate the probability of the jth gate being active; these 
are called relaxed Bernoulli variables and are given as follows:

where N denotes the normal distribution with fixed variance σ . The relaxed Bernoulli variables were clipped, 
mean-shifted, and random Gaussian. Given a loss L, the stochastic gate model is trained by minimizing the 
empirical risk:

where fθ is a model parameterized by θ , G is a random vector with D independent variables gj for j ∈ [D] , Y is a 
response vector and ⊙ denotes element-wise multiplication. STG considers features to be important if their gate 
probability values are high, such as 1. Although STG achieved noteworthy performance in finding important 
features in various experiments, it did not explicitly consider FDR control, which led to the selection of too many 
features and failure to control FDR in several experimental settings.

Next, we paired the original knockoff variable that successfully passed through the stochastic gate with its 
corresponding knockoff variable by the plug-in filter layer. The output of this layer is a linear combination of 
the weighted input variables:

Through this design, the filter weights connected to the original and knockoff features compete with each other 
during training. The filter weights corresponding to the original features were much larger if the original features 
were significant for the response vectors, thereby providing evidence for the selection of important features.

To train DeepPIG, we applied two strategies: (1) a pre-training effect by masking knockoff variables into null 
vectors in the early stage and (2) a training-stopping criterion using the paired t-test results of the knockoff sta-
tistics K. See Algorithm 1 for the pseudocode of the training scheme. In the first phase, we only fed the original 
features to the model, replacing the knockoff variables with vectors in which all the elements were set to zero. 
In addition, gating probabilities µ and µ̃ were frozen with the open state (Algorithm 1 lines 2–5). When the 
validation loss stabilized, the model weights were restored to a point corresponding to half of the epoch of the 
stopping point, and the second phase began (Algorithm 1 line 7). For example, if the validation loss stabilized at 
epoch 10, all model weights were restored to epoch 5. After resetting, the numeric values of the filter weights z, 
connected to the original variables, were copied to the filter weights z̃  which were connected to knockoff vari-
ables (Algorithm 1 line 8). Simultaneously, the gating probabilities of both variables ( µ and µ̃ ) were set to 0–1 
scaled absolute values of the filter weights of the original variables z. This procedure allows the model to roughly 
identify probable features.

Next, the training was continued with both the original and knockoff variables to drop insignificant features 
until the model encountered the stopping criterion. The stopping criterion considers the knockoff statistics, 
which we have revised as follows:

(4)gj = max(0,min(0,µj + ǫj)), ǫj ∼ N(0, σ 2)

(5)min
θ ,µ

ÊX,YEG[L(fθ (X ⊙ G,Y)+ ��G�0)],

(6)outputfilter = gkzkxk + g̃kz̃kx̃k

Figure 1.   The architecture of DeepPIG and training strategy. (a) DeepPIG utilized the feature selection layer 
incorporating original and knockoff variables to select important features related to responses. (b) Detailed view 
of feature selection unit and their training scheme.
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where Zj = µj(zjwj)
2, Z̃j = µ̃j(z̃jwj)

2 and w ∈ Rd are products of fully connected layer weights in the reshaped 
dimension. Because the importances of Zj and Z̃j are paired and assuming that the distribution of Zj is greater 
than that of its counterpart, we applied a paired t-test between Zj and Z̃j , where the alternative hypothesis is that 
the mean of the original importance Zj is greater than that of the knockoff importance Z̃j . Outliers within two 
standard deviations of the mean were excluded from this test (Algorithm 1 lines 14–17). This stopping strategy 
was intended for FDR control because it depends on the assumption that the original and knockoff importance 
scores of the null features are symmetrically distributed. As the training progressed, the knockoff importance Z̃j 
increased, and the difference between Zj decreased. The training was stopped when 1) the p-value of the paired 
t-test was no longer significant (p > 0.05) and 2) the validation loss stabilized (Algorithm 1 lines 18–20). Finally, 
feature selection was conducted with a knockoff filter procedure using knockoff statistics.

Algorithm 1.   Pseudocode for the DeepPIG training scheme

Results
Simulation studies
Synthetic data
Mirroring the simulation studies by DeepLINK, we designed the simulation experiment settings as follows: linear 
factor model and logistic factor model (Eqs. 8, 9).

Here, fi = (f 1i , f
2
i , f

3
i )

T is the latent factor vector, � and �j are the factor loading parameters of the desirable 
dimensions, cj ’s are constants, and ǫ denotes random noise. All the parameters were drawn independently from 
the standard normal distribution N(0, 1). The response vector y = (y1, ..., yn)

T is assumed to depend on xi via 
the following linear and nonlinear link functions (Eqs. 10, 11).

where the coefficient vector β = (β1, ...,βd)
T . The locations of the true features were randomly selected, and the 

corresponding βj was set to the amplitude of nonzero A, either positive or negative, with equal probability. The 
remaining features were considered to be null, and their corresponding βj was set to zero.

(7)Kj = Zj − Z̃j , j = 1, ..., d,

(8)xi =�fi + ǫi

(9)xij =
cj

1+ exp([1, fTi ]�j)
+ ǫij , j = 1, ..., d

(10)ylinear =xTβ

(11)ynonlinear = sin(xTβ) exp(xTβ)
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Here, we set the sample size n to 1000, feature dimension d to 500, and true feature size s to 10. The values of 
the amplitude A varied from three to 25. For all settings, we conducted experiments 100 times with the target 
FDR q as 0.2.

Simulation results
The model’s feature selection performances on the synthetic datasets were determined using metrics such as 
power and FDR. Power is defined as the expectation of the true discovery proportion (TDP).

where S denotes the subset of selected features and S0 denotes the subset of true features. Power can be interpreted 
as recall as well. In contrast, FDR is formally defined as the expectation of the false discovery proportion (FDP).

FDR can be interpreted as 1-precision.
DeepPIG showed better detection power than DeepLINK while controlling the FDR to less than 0.2 in vari-

ous settings, as illustrated in Fig. 2. When the link function was linear, the signal of the true features increased 
as the amplitude increased. By contrast, the signal and amplitude are no longer monotonic to the nonlinear 
link function, as shown in Fig. 2b, d. Notably, DeepPIG showed higher detection power even when the signal 
amplitudes were weak. Statistically, we conducted the paired t-test to compare the obtained powers by DeepPIG 
and DeepPINK when the amplitudes were three to eight combined. The p-values were 1.61 e−08, 1.12 e−14, 5.56 
e−08 and 0.695 for the settings described in Fig. 2a–d. For the last case, the p-value was 1.20e-08 when amplitudes 
were 20 to 25 combined. The full scales of the results are depicted in Fig. S1. Further, DeepPIG exhibited higher 
F1 scores than baseline models when signals were weak, as illustrated in Fig. S2. Based on these observations, it 
is expected that DeepPIG will be effective in identifying inconspicuous features. STG failed to control the FDR 
when the response vector was generated using a nonlinear link function, and the amplitudes were large.

We compared the performance of our model with other methods such as SHapley Additive exPlanations 
(SHAP)16, a representative method in the explainable AI area. We utilized the SHAP method on basic DNN 
models. Furthermore, we applied linear regression and recursive feature elimination (RFE) on Lasso regression 
for conventional feature selection approaches. We selected the top 10 features based on their shapley values 
or coefficients, respectively. We observed that these methods were effective in scenarios where the significant 
features were conspicuous but failed to control FDR when the signals were weak (Fig. 2 and Fig. S3). When the 
link function was linear, it was difficult to identify important features when the amplitudes were low because 
the amplitudes and signal were monotonic. SHAP, linear regression, and RFE showed relatively high FDRs when 
the amplitudes of the features were low. Conversely, when the link function was nonlinear, these methods also 
exhibited high FDRs for relatively high amplitudes, as the relationship between the amplitudes and signal was 
not monotonic.

We conducted additional experiments for hyperparameter analysis for the simulation study results. We experi-
mented with the restore epoch that was set to 30% and 90% in addition to 50% to demonstrate the effect of weight 
transfer timing. The later the weight transfer occurred, DeepPIG tended to select more features. DeepPIG failed 
to control FDR when the restore epoch was set too late, meaning the knockoff variables were not trained enough. 
We observed that the optimal performance was achieved when the restore epoch was set to 50% (Fig. S4a).

Next, various ranges of regularization coefficients were assessed to determine their effects on the model 
parameter. A higher regularization coefficient typically resulted in a controlled FDR with decreased power, 
leading to selection of fewer features (Fig. S4b). To verify the robustness of our findings, we conducted the 
experiments again using a synthetic dataset with a different system that had different random seeds and achieved 
equivalent results (Fig. S5).

(12)Power := E[TDP] with TDP :=
|S
⋂

S0|

|S0|

(13)FDR := E[FDP] with FDP :=
|S
⋂

Sc0|

max{|S|, 1}

Figure 2.   Simulation study results. (a–d) DeepPIG, DeepPINK, STG, and SHAP were applied to the synthetic 
dataset for feature selection. Empirical power and FDR of DeepPIG and DeepPINK were obtained using the 
knockoff+ threshold. Powers are illustrated as solid lines and FDRs as dashed lines. The preselected FDR target 
is 0.2, as shown in black dashed lines.
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Real data analysis
Transcriptomic markers of cancer prognosis
Predicting cancer prognosis is challenging in the field of cancer therapy. In this study, we used DeepPIG to 
identify cancer prognostic genes. Transcriptomic profiles and prognostic information of patients with kidney, 
liver, and pancreatic cancer were collected from The Cancer Genome Atlas (TCGA) and International Cancer 
Genome Consortium (ICGC) databases17–20. For each cancer type, we categorized the patients as long-term sur-
vivors (LTS) or short-term survivors (non-LTS) based on their survival duration and death event occurrences. 
Patients were labeled as LTS if their survival times were larger than a specific threshold regardless of their death 
event occurrence, whereas non-LTS were labeled if their survival times were less than the threshold and the event 
had occurred. The properties of each dataset are listed in Table 1.

The distance correlation was applied to all three datasets as a screening step before they were fed into the 
feature selection models21. The prediction performance is reportedly poor when these datasets are employed 
without screening steps, suggesting that the feature space must be reduced before training the models15. Using 
ICGC datasets for screening steps, prognostic genes were ranked by the distance correlation between the gene 
expression level and LTS status. TCGA datasets were filtered using screened genes and employed in feature 
selection models.

We applied DeepPIG and DeepPINK 100 times to select the features and compared the number of selected 
features. For DeepPIG, we set the minimum epoch for weight transfer to increase the sensitivity. For each rep-
etition, we randomly split each dataset into 80% training and 20% testing. To ensure fairness, each repetition 
used identical knockoff variables and a training-test split for DeepPIG and DeepPINK. Further, repetitions that 
could not select any features were denoted as “empty repetitions” and excluded from the 100 repetitions when 
deriving prediction performance. After selection, their prediction abilities were measured using independent 
vanilla DNNs, and the area under the curve (AUC) and classification errors were determined as the performance 
metrics. For further analysis, we used all the screened features and the same number of randomly selected features 
as those selected by DeepPIG for the same repetition. We also computed the precision, recall, and F1 scores and 
have reported them in Table S7.

We observed that DeepPIG outperformed DeepPINK in terms of the performance metrics and the number 
of selected features in all three datasets, as summarized in Table 1. Notably, DeepPIG has fewer empty repeti-
tions and greater robustness in feature selection. Despite searching for appropriate hyperparameters, such as 
the learning rate and regularization coefficients, DeepPINK showed empty repetitions with high chances. The 
top 10 most frequently selected genes and their selection ratios, i,e., the number of selection times when it was 
not an empty repetition, are reported in Table 2. DeepPIG showed higher selection ratios for top-ranked genes 
than DeepPINK, suggesting the robustness of DeepPIG during repetitions. The top 100 genes and their selection 
ratios are listed in Tables S1–S3.

Finally, we investigated the biological roles and associations of the top-ranked genes with cancers. COL11A1 
is essential for bone development and collagen fiber assembly and acts as a prognostic marker in many solid 
cancers, including renal carcinoma22–24. Hepatocyte growth factor (HGF) is a pleiotropic factor that is crucial 
for tubular repair, regeneration after acute renal injury, renal development, and the maintenance of normal adult 
kidney structure and function25,26. Increased PLOD2 expression is often found in advanced tumors and is cor-
related with a poor prognosis in patients with hepatocellular carcinoma27. It was reported that the overexpression 
of Stanniocalcin 2 (STC2) was correlated with tumor growth, invasion, metastasis, and prognosis associated 
with many types of cancers, including liver cancer28,29. C15orf48 is highly expressed in pancreatic cancer and is 
significantly associated with the prognosis of pancreatic adenocarcinoma30. Furthermore, the role of RRAD in 
the occurrence of ferroptosis in pancreatic cancer has been previously reported31.  

To further investigate the significance of the selected prognostic genes, we conducted a univariate Cox 
proportional hazards analysis on the corresponding TCGA cohorts, including all patients whose prognostic 

Table 1.   Long-term survivor classification results for cancer datasets.  a Dataset name, the number of 
long-term survivors (LTS) and short-term survivors (nonLTS), and survival time threshold in the month in 
parentheses.   b Empty repetitions were excluded.   c The same number of features as those of DeepPIG was 
randomly selected. 

Tissue Dataseta  
# of screened 
features

Mean # of selected 
features Empty repetitions Mean ± SD test AUC (mean ± SD test classification error)b 

Main Screening DeepPIG DeepPINK DeepPIG DeepPINK DeepPIG DeepPINK All screened 
features

Random 
featuresc  

Kidney
TCGA-KIRC, 
222 LTS (48), 
82 nonLTS 
(24)

RECA-EU, 43 
LTS (60) 18 
nonLTS (18)

400 9.00 1.92 0 / 100 56 / 100
0.651 ± 0.087 
(0.259 ± 
0.044)

0.587 ± 0.087 
(0.266 ± 
0.030)

0.596 ± 0.076 
(0.308 ± 
0.046)

0.600 ± 0.089 
(0.272 ± 0.032)

Liver
TCGA-LIHC, 
91 LTS (36), 
104 nonLTS 
(36)

LIRI-JP, 19 
LTS (48), 17 
nonLTS (12)

200 8.27 2.86 9 / 100 43 / 100
0.631 ± 0.094 
(0.404 ± 
0.080)

0.596 ± 0.109 
(0.419 ± 
0.085)

0.661 ± 0.084 
(0.374 ± 
0.076)

0.570 ± 0.104 
(0.455 ± 0.079)

Pancreas
TCGA-PAAD, 
66 LTS (18), 
66 nonLTS 
(18)

PAAD-CA, 19 
LTS (48), 43 
nonLTS (12)

100 5.54 1.26 16 / 100 73 / 100
0.573 ± 0.106 
(0.455 ± 
0.090)

0.537 ± 0.103 
(0.479 ± 
0.092)

0.628 ± 0.091 
(0.427 ± 
0.092)

0.563 ± 0.111 
(0.461 ± 0.091)
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information was available. We observed that the top-ranked genes frequently exhibited significant p-values, 
showing their association with survival in cancer patients, as summarized in Table 3 

Microbiome and single‑cell datasets
We compared the performances of DeepPIG and DeepPINK using the same datasets and procedures described 
in the DeepLINK study15. The datasets used were the human microbiome dataset from a colorectal cancer (CRC) 
study32,33, the human single-cell dataset from a glioblastoma study34, and the murine single-cell dataset from a 
lipopolysaccharide (LPS)-stimulated transcriptomic effect study35. Human microbiome datasets were utilized 
to identify important microbial species related to colorectal cancer by classifying 184 individuals (91 patients 
with colorectal cancer and 93 healthy controls). The human single-cell dataset contained 632 cells (580 tumor 
cells and 52 surrounding peripheries) from patients with glioblastoma, and these single-cell gene expression data 
were employed to investigate the differential gene expression between both cell types. The murine single-cell 
dataset was collected to investigate the effect of LPS-stimulated nuclear factor-κ B (NF- κ B) on gene expression. 
Classification of 580 cells (202 unstimulated cells and 368 LPS-stimulated cells) based on their condition revealed 
significantly differentially expressed genes under both conditions.

Similar to the previous section, we applied screening steps and applied DeepPIG and DeepPINK 100 times 
to select the features. As shown in Table 4, DeepPIG selected more features than DeepPINK and exhibited better 
test errors. The frequently selected features are listed in Tables S4–S6.

The frequently selected features are similar to those in the analysis in the DeepLINK study. However, some 
genes were selected more frequently by DeepPIG, suggesting its sensitive detection capability. For instance, for 
the human microbiome dataset analysis, Parvimonas micra was selected 94 times out of 100 repetitions by Deep-
PIG, whereas it was selected 52 times by DeepPINK. Several recent studies have reported the biological effects of  
P. micra on CRC. Parvimonas micra promotes the development of CRC and can be considered as a predictor of 
poor outcomes in patients with CRC​36,37. It also influences proliferation, wound healing, and inflammation in 
CRC cell lines38. For human single-cell dataset analysis, B2M and C1R were selected 47 and 42 times, respectively, 
using DeepPIG, compared to 6 and 3 times using DeepPINK. Some studies have reported that B2M has a sig-
nificant relationship with the tumor-immune microenvironment and plays a critical role in tumor progression, 

Table 2.   Top 10 frequently selected prognostic genes with selection ratio. (Ratio of times selected to non-
empty repetitions).

Kidney Liver Pancreas

Rank DeepPIG DeepPINK DeepPIG DeepPINK DeepPIG DeepPINK

1 COL11A1 0.88 IFI44 0.36 PLOD2 0.87 PLOD2 0.33 C15orf48 0.8 C15orf48 0.48

2 HGF 0.88 HGF 0.27 STC2 0.67 ADAM9 0.25 RRAD 0.7 RRAD 0.26

3 IFI44 0.78 COL11A1 0.23 TMX1 0.6 GCLM 0.23 PSMB8 0.52 PSMB8 0.26

4 LYPD6B 0.7 NTM 0.23 ADAM9 0.49 STC2 0.23 GPBAR1 0.45 USP22 0.19

5 KCNE5 0.67 KCNE5 0.18 PARD3 0.41 PIK3IP1 0.19 MAP1LC3B 0.43 RCOR1 0.19

6 BCAT1 0.63 NKAIN4 0.14 IFI6 0.34 MRPL3 0.16 PPP1R10 0.39 FAM19A5 0.19

7 PGC 0.5 LYPD6B 0.14 MERTK 0.31 ZWINT 0.16 TGFBR3 0.27 PPP1R10 0.19

8 C16orf89 0.38 PGC 0.14 GCLM 0.3 PARD3 0.14 UGT2B15 0.19 HIST1H2AC 0.15

9 HSPB7 0.25 BCAT1 0.11 IGFBP3 0.29 GTPBP4 0.12 SH3BP4 0.19 SOX9 0.15

10 APOD 0.24 IRS4 0.11 C5 0.26 MEX3D 0.12 UGT2B17 0.18 GPBAR1 0.11

Table 3.   Survival analysis of top 10 frequently selected prognostic genes. p-values under 0.05 are presented in 
bold.

Kidney Liver Pancreas

Gene Hazard ratio CoxPH p-value Gene Hazard ratio CoxPH p-value Gene Hazard ratio
CoxPH 
p-value

COL11A1 1.018 0.0001235 PLOD2 1.027 5.43E–06 C15orf48 1.019 0.000525

HGF 1.017 0.00024 STC2 1.025 0.0002739 RRAD 1.007 0.000857

IFI44 1.026 6.39E–12 TMX1 1.067 0.0056695 PSMB8 1.028 2.94E-05

LYPD6B 1.017 0.3040778 ADAM9 1.088 3.83E–05 GPBAR1 0.919 0.032268

KCNE5 1.016 0.0399017 PARD3 1.054 6.63E–05 MAP1LC3B 1.003 0.865728

BCAT1 1.067 3.66E–08 IFI6 1 0.6973015 PPP1R10 0.932 0.000291

PGC 1.019 0.0828003 MERTK 1.011 0.214183 TGFBR3 0.994 0.847321

C16orf89 0.997 0.6961147 GCLM 1.017 1.43E–05 UGT2B15 1.004 0.323858

HSPB7 0.994 0.7014953 IGFBP3 1.001 0.5672436 SH3BP4 1.016 0.289861

APOD 1.016 0.0052317 C5 0.996 0.0007997 UGT2B17 0.96 0.351064
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patient prognosis, and immunotherapy of gliomas39–41. Furthermore, the expression level of C1R was associated 
with immune cell infiltration and prognosis of glioblastoma42. 

Discussion
Various explainable AI (XAI) models such as SHAP16 are used for measuring feature importance and understand-
ing which feature contribute significantly to the output of the neural network models. Although the knockoff 
models and XAI techniques both employ the weights of parameters to compute the feature importance, their 
main aspects are somewhat different. XAI techniques are mainly applied to interpret the results of trained models 
that are considered “black box” models that users can not catch how the model comes to the specific results. On 
the contrary, the knockoff framework is designed to select significant features among a large number of features 
while keeping the FDR not violated.

One advantage of the knockoff framework over conventional feature selection approaches or SHAP is its abil-
ity to determine the threshold using knockoff variables. In other methods, it is necessary to specify the number 
of features to be selected. We examined the performance of existing methods with the top 10 features, as we were 
aware that 10 significant features existed within the synthetic datasets. The knockoff framework is useful for real 
dataset analysis, especially when it is unclear how many features should be selected.

The motivation for designing DeepPIG is that the knockoff filter method often fails to select a single feature in 
real data analysis. We focused on constructing a sensitive feature-selection model for low-amplitude signal cases. 
Cancer prognosis prediction is an example of this, as genes related to survival are uncommon. DeepPIG exhibited 
better detection power when the amplitude of the features was weak, as demonstrated by synthetic and real data.

Some components of the proposed training strategy were determined empirically. For example, in selecting 
the specific epoch for weight transfer, the late transfer failed in FDR control. If DeepPIG was “overcooked” with 
the original variable only, the knockoff variables had an insufficient influence on the model and could not over-
come the score differences between the original and knockoff variables. In this context, the “half point epoch” 
criterion was decided empirically based on the simulation study. Although an epoch earlier than half is accept-
able, we recommend staying within half of the epoch where the validation loss is stabilized.

Additionally, the 0.05 p-value of the paired t-test for the stopping criterion was adjusted. This is because the 
knockoff statistics within non-outlier regions do not necessarily indicate that they are actual null features. Since 
a p-value of 0.05 is considered the general criterion in statistical fields, we stuck with it as a criterion for our 
study. We utilized paired t-tests as a “gadget” to verify how the knockoff importance scores catch up with that 
of the original. An alternative method for determining the time for weight transfer and testing the symmetry of 
the original and knockoff scores should be explored in future studies.

Conclusion
In this study, we present DeepPIG, a DNN architecture, and a training scheme for feature selection. We integrated 
the key structures of DeepPINK and STG to improve detection power while keeping FDR under a preselected 
level. Using synthetic data, we achieved a higher power, especially when the amplitudes of the features were weak. 
We applied DeepPIG to renal carcinoma, hepatocellular carcinoma, and pancreatic carcinoma datasets to classify 
patients with cancer as LTS or non-LTS. DeepPIG robustly selects several prognostic genes at high frequencies. 
Furthermore, we compared DeepPIG with the baseline model DeepPINK using the human microbiome, human 
single-cell, and murine single-cell datasets, which were employed in the baseline model study. It was observed 
that DeepPIG selected a greater number of features and had superior prediction capacities. In conclusion, Deep-
PIG is a robust feature selection approach even when the signals of features are weak.

 Data availability
Simulation data, the human microbiome dataset from a colorectal cancer study, the human single-cell dataset 
from a glioblastoma study, the murine single-cell dataset from a lipopolysaccharide (LPS)-stimulated transcrip-
tomic effect study, and the cancer prognosis dataset are publicly available at https://​github.​com/​DMCB-​GIST/​
DeepP​IG.
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