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HEARTSVG: a fast and accurate method for
identifying spatially variable genes in
large-scale spatial transcriptomics

Xin Yuan 1,2, Yanran Ma1, Ruitian Gao1, Shuya Cui 1,2, Yifan Wang1, Botao Fa3,
Shiyang Ma4, Ting Wei1, Shuangge Ma 2,5 & Zhangsheng Yu 1,2,4,6

Identifying spatially variable genes (SVGs) is crucial for understanding the
spatiotemporal characteristics of diseases and tissue structures, posing a
distinctive challenge in spatial transcriptomics research. We propose
HEARTSVG, a distribution-free, test-based method for fast and accurately
identifying spatially variable genes in large-scale spatial transcriptomic data.
Extensive simulations demonstrate that HEARTSVG outperforms state-of-the-
art methods with higher F1 scores (average F1 Score=0.948), improved com-
putational efficiency, scalability, and reduced false positives (FPs). Through
analysis of twelve real datasets from various spatial transcriptomic technolo-
gies, HEARTSVG identifies a greater number of biologically significant SVGs
(average AUC=0.792) than other comparativemethodswithout prespecifying
spatial patterns. Furthermore, by clustering SVGs, we uncover two distinct
tumor spatial domains characterized by unique spatial expression patterns,
spatial-temporal locations, and biological functions in human colorectal can-
cer data, unraveling the complexity of tumors.

Spatial transcriptomics enables the measurement of gene expression
and positional information in tissues1–6. The evolution of spatial tran-
scriptomics technologies advanced the reconstruction of tissue
structure and provided profound insights into developmental biology,
physiology, cancer, and other fields2,7,8. However, the complexity and
high dimensionality of spatial transcriptomics (ST) data pose new
challenges and requirements for analytical approaches8,9. One crucial
analytical challenge in spatial transcriptomics studies is the identifi-
cation of spatially variable genes (SVGs) whose expressions correlate
with spatial location7,10,11, also known as SE genes (genes with spatial
expression patterns)12. Identifying SVGs promotes characterizing spa-
tial patterns within tissues and predicting spatial domains7,10,13,14. Sev-
eral methods have been developed for detecting SVGs. Trendsceek15

models the data as marked point processes and tests the significant

dependency between spatial distributions and expression levels of
pairwise points. SpatialDE11 decomposes gene expression variability
into a spatial component and an independent noise term based on
Gaussian process regression and tests statistical significance by com-
paring the SpatialDEmodel to a nullmodelwithout the spatial variance
component. SPARK16, an extension of SpatialDE, uses the Gaussian
process regression as the underlying data model and ten different
spatial kernels to represent common spatial patterns inbiological data,
thereby improving statistical power. SPARK-X12 tests the dependence
of gene expressions and spatial locations based on the covariance test
framework. scGCO17 applies graph cuts in computer vision to address
SVG identification. It utilizes the hidden Markov random field to
identify candidate regions with spatial dependence for individual
genes and tests their dependence under the complete spatial
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randomness framework. Squidpy18 uses Moran’s I to determine SVG
and calculates the p-value based on standard normal approximation
from 100 random permutations.

Trendsceek, SpatialDE, and SPARK have limited applicability for
large-scale datasets due to their high computational complexity.
Trendsceek employs the permutation strategy to compute multiple
statistics of different paired points, which requires extensive compu-
tational work and is only scalable to small-scale datasets. The Gaussian
process framework hinders the detection of SVGs and model para-
meter convergence in SpatialDE and SPARK when analyzing high-
dimensional and sparse ST data. SPARK-X offers significantly faster
computational speed than the aforementioned methods, but its
effectiveness depends heavily on how well the constructed spatial
covariance matrix matches the true underlying spatial patterns. The
above four methods identify SVGs by searching for predefined rela-
tionships between expressions and locations. They have limited gen-
eralizability to a wide range of spatial patterns due to the arbitrary
nature of the true spatial pattern of SVGs and the resulting uncertainty
in the relationship between expression and coordinates. scGCO has
the capability to identify SVGs with unknown exact locations and
shapes, however, it suffers from false negatives due to the limited
accuracy of the graph cuts algorithm in identifying candidate regions
for SVGs, especially in sparse ST datasets. The accuracy of Squidpy
depends on the number of random permutations. Increasing the
number of random permutations enhances the reliability of the
results; however, it comes at the cost of increased time consumption,
making the process more time-intensive.

Hence, we propose HEARTSVG to overcome the limitations
without prior knowledge or specification of information about SVGs.
We take an opposite approach by identifying non-SVGs and using this
information to infer the presence of SVGs. Although the relationship
between gene expression and spatial position of an SVG is uncertain, it
is unequivocal that a non-SVG has “no relationship” between gene
expression and spatial position. HEARTSVG identifies non-SVGs by
testing the serial autocorrelations in the marginal expressions across
global space. By excluding non-SVGs, the remaining genes are con-
sidered as SVGs. As a test-based method without assuming underlying
spatial patterns, HEARTSVG detects SVGs with arbitrary spatial
expression shapes and is suitable for diverse types of large-scale ST
data. We conduct extensive simulations and apply HEARTSVGmethod
to twelve real ST datasets generated from different technologies
(including 10X Visium, Slide-seqV2, MERFISH, and HDST) to demon-
strate its accuracy, robustness, and computational efficiency.
HEARTSVG outperforms existing methods in simulations with higher
accuracy metrics, computational efficiency, and lower false positives
(FPs). When analyzing real ST data, HEARTSVG identifies biologically
meaningful SVGs with distinct spatial expression patterns across
diverse datasets obtained from different spatial transcriptomic tech-
nologies. HEARTSVG has the potential to scale to datasets comprising
millions of data points and offers a comprehensive range of meticu-
lously designed analytical tools for studying SVGs, enabling the unra-
veling of complex biological phenomena.

Results
Overview of HEARTSVG
HEARTSVG aims to identify SVGs that display spatial expression pat-
terns in spatial transcriptomics data. Each gene in the ST data is pre-
sented as a vector containing three elements: gene g= x, y, eð ÞT , where
x and y are defined as the row and column positions of the spot,
respectively, and e is the gene expression count of the gene at the
spatial coordinates ðx, yÞ. HEARTSVG is based on the intuitive concept
that the non-SVG does not display a spatial expression pattern, its
expression distribution is expected to be independent and random,
with marginal expression distributions along the x-axis (row) and
y-axis (column) also being independent and random. Conversely,

suppose the gene exhibits a spatial expression pattern, both its spatial
expression and marginal expression should have serial correlation
along the single direction (row or column) or both. Therefore, a non-
SVG demonstrates low autocorrelations, while an SVG has high auto-
correlations (Fig. 1, Derivations and more details are provided in the
“Methods” section and Supplementary).

HEARTSVG uses the semi-pooling process to transform the gene’s
two-dimensional spatial expression to one-dimensional marginal
expression serials along the single direction (row or column) (Fig. 1a,
Supplementary Fig. S9, more details are provided in the “Methods”
section and the Supplementary). This process aims to extract infor-
mation and reduce data noise and sparsity from gene spatial expres-
sion data. The Portmanteau test19,20 is then performed to test serial
autocorrelations of the gene’s marginal expression series. The non-
SVG’s marginal expressions show constant variance, zero auto-
correlation, and no trend or periodic fluctuations across locations
(More details are provided in the “Methods” section and the Supple-
mentary). Conversely, marginal expressions of SVGs have high auto-
correlations (Fig. 1b).We obtainedmultiple p-values by conducting the
Portmanteau test to evaluate four marginal expression series with
different semi-pooling parameters (More details in the Supplemen-
tary). We then combined all four p-values into a single p-value using
Stouffer’s method21,22. We applied Holm’s method to adjust the final
p-values of all genes, enabling the identification of statistically sig-
nificant SVGs at a genome-wide scale. The Portmanteau test is one-
sided, the Stouffer’s method is two-sided. In addition, HEARTSVG
provides an auto-clustering module for SVGs in the software, which is
complementary to SVG detection for further biological investigations.
The auto-clustering module (More details in Methods) comprises
functionalities for predicting spatial domains, conducting functional
studies, and visualization based on SVGs.

Simulation
We conducted extensive simulations to evaluate the performance of
HEARTSVG and compared it with five other methods: SpatialDE,
SPARK, SPARK-X, scGCO, and Squidpy. Simulation data were gener-
ated with 22 spatial expression patterns that varied in different
aspects, including spatial shape, percentages of the marked area, and
spatial position (More details are provided in Tab. S9 in the Supple-
mentary). The gene expression distribution in spatial transcriptomics
data is complex, and no single model fits all genes. To comprehen-
sively characterize the expression properties and ensure fair compar-
isons, we generated gene expression data using four distributions—
Poisson (Pois), Zero-Inflated Poisson (ZIP), Negative Binomial (NB),
and Zero-Inflated Negative Binomial (ZINB)—which represents differ-
ent data characteristics and are widely used across spatial tran-
scriptomics studies23. We used the F1 score to assess the performance
of HEARTSVG and the other methods in identifying SVGs. In noise-free
simulated data, HEARTSVG showed higher F1 scores (average F1 score
= 0.948) than the other methods across 22 different spatial patterns,
four different data generations, and varying numbers of cells (Fig. 2a,
Supplementary Fig. S62). The identification performance was influ-
encedby thepercentageof themarked areaof SVGs and thenumberof
cells/spots (Fig. 2b, Supplementary Fig. S1–S3, S62).When the number
of cells and the percentage of the SVG marked area were small,
HEARTSVG was able to identify more SVGs, while SPARK-X missed
some SVGs, Squidpy hadmore false positives, and SPARK, scGCO, and
SpatialDE performed poorly overall (Big Triangles vs. Small Triangles,
Big Circles vs. Small Circles, Big Squares vs. Small Squares, Supple-
mentary Fig. S62). For example, on the simulated data of Big Circles
and Small Circles patternswith 3000 cells, HEARTSVG achieved higher
F1 scores (average F1 score = 1.000, 0.992) than the other methods,
while SPARK-X achieved only 0.926 and0.710, Squidpy achieved 0.925
and 0.855, respectively, and SPARK, scGCO, and SpatialDE were close
to zero. SpatialDE and SPARK performed poorly on sparse spatial
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expression data, possibly because they used a Gaussian data-
generative model, which was inappropriate for ST data. Therefore,
SpatialDE and SPARK used normalization mechanisms to make the ST
data approximate a normal distribution. However, this normalization
process removed excessive heterogeneity, including the signals from
SVGs, and thus limited their ability to identify SVGs (Supplementary
Fig. S87–S88). scGCO failed to identify many SVGs in highly sparse
datasets because it could not detect the candidate regions for SVGs
accurately. Furthermore, HEARTSVGperformed stably acrossdifferent
spatial expression patterns of SVGs (Fig. S62).

To evaluate the robustness of HEARTSVG, we generated simu-
lated data with three different noise generation approaches: Gaussian
noise, the noise of “randomly exchanging expression values of selec-
ted nodes”, and mixture noise (More details are provided in the
Methods and Supplementary). We compared HEARTSVG with three
other methods: SPARK-X, scGCO, and Squidpy in noisy simulations. In
simulated data with Gaussian noise, HEARTSVG showed the best per-
formance (average F1 score = 0.849 at Gaussian noise strength of 0.3)
among the four methods and was the most robust to increasing
Gaussian noise strength. SPARK-X and Squidpy achieved the second-
best identification performance (Fig. 2b, Supplementary Fig. S63–S65).
For simulated data with the noise of “randomly exchanging expression
values of selected nodes”, we randomly selected some cells of the
SVG’s marked area and non-marked area and then exchanged their
expression values. All methods had a substantial decline in F1 score
when the percentage of randomly exchanged cells increased.
HEARTSVG still had the highest accuracy (average F1 score = 0.618 at
percentages of exchanging cells of 30%) and the lowest false positive
rates (average FPR <0.001 at percentages of exchanging cells of 30%)
among the methods (Fig. 2c, Supplementary Fig. S66–S86). For
simulations with mixture noise, HEARTSVG performed the highest F1

scores (average F1 score = 0.931) and TPRs of each gene set (average

TPR =0.901) than the other methods (Supplementary Fig. S39–S60).
To account for the uncertainty regarding the number of SVGs in real
data, we generated additional simulation datasets with varying per-
centages of SVGs. We specifically compared the performance of
HEARTSVG and SPARK-X, which showed better results in the previous
simulations. As the percentage of SVGs increased, the false positive
rates (FPR) of SPARK-X grew, while HEARTSVG maintained low FPRs
(Fig. 2d, Supplementary Fig. S4–S6). The F1 scores of HEARTSVG and
SPARK-X were similar, but SPARK-X exhibited large variations of F1

scores (Supplementary Fig. S4–S6). Data characteristics of different
distributions significantly affect the performance of various methods
in identifying SVGs. To assess the suitability of each method for dif-
ferent data characteristics, we conducted sensitivity analyses regard-
ing varying data characteristics (Supplementary Fig. S89–S97). Our
results indicate that scGCO is significantly affected by increased data
dispersion, while HEARTSVG, SPARK-X, and Squidpy remain robust
under such conditions. Increased data sparsity and lower overall
expression levels generally diminish the efficiency of SVG identifica-
tion. The low count of cells/spots consistently impairs all methods’
ability to identify SVGs. Additionally, comparing the average false
discovery proportion (FDP) across methods shows that HEARTSVG
effectively controls the false discovery rate (FDR) in given simulations
(Supplementary Fig. S98–S97).

Furthermore, HEARTSVG demonstrated good scalability
and computational performance (Fig. 2e). HEARTSVG, SPARK-X,
and scGCO can scale to datasets with onemillion cells. HEARTSVG and
SPARK-X outperformed other methods noticeably. For simulated data
with 1,000,000 cells and 10,000 genes, HEARTSVG demonstrated the
fastest performance and small memory usage(13.45mins and 416GB),
while SPARK-X required 16.43mins and 344GB. In contrast, scGCO
demanded 21.83 hours and 924.4 GB, and Squidpy necessitated 4.93
days and 367GB. We also evaluated the scalability using several real
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Fig. 1 | Schematic representation of the HEARTSVG. a HEARTSVG utilizes the
semi-pooling process to convert spatial gene expressions into marginal expres-
sions (r) and calculates autocorrelations (ρ) of marginal expressions. HEARTSVG
calculates the sum of the squared autocorrelations (Q̂m =T

Pm
l = 1ρ̂

2
l ) for each mar-

ginal expression series and obtains a p-value by testing Q̂m. All these p-values are
combined into a final p-value through the Stouffer combination

(zs =
P4

i= 1
ziffiffi
4

p ∼ Nð0, 1Þ, final p� value = 2ð1�Φ jzs j
� �

). HEARTSVG distinguishes
between SVGs and non-SVGs by the final p-value. b The autocorrelations (ρ) of
marginal expressions (r) for the SVG and non-SVG exhibit different level scales.
Representative autocorrelation estimator plots are plotted below the corre-
sponding marginal expression plots for the SVG and non-SVG. The color depth
represents the magnitude of autocorrelation.
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spatial transcriptomics datasets. On the mouse hypothalamus data,
comprising 1,027,848 cells and 161 genes, HEARTSVG required
1.43mins and 7.31 GB, scGCO needed a runtime of 112mins and
14.72 GB, SPARK-X took 0.62mins and 5.78GB, and Squidpy took
3.73mins, and 7.78GB (Supplementary Fig. S7). Moreover, we
attempted to compare the performance ofHEARTSVG, scGCO, SPARK-
X and Squidpy on simulated data with 2 million cells and 1000 genes.
HEARTSVG completed the computation in 4.5minutes and 82.70GB,
Squidpy took 188.5minutes and 343.7 GB, while SPARK-X and scGCO

failed to scale to the dataset with 2 million cells. On the other hand,
SPARK and SpatialDE were limited to sample sizes of 20,000 and
30,000 spots, respectively. SPARK necessitated over 3 hours for a
20,000-spot dataset, and SpatialDE took nearly 4 hours for a 30,000-
spot dataset (Fig. 2e).

Applications to ST datasets from different spatial technologies
Spatial transcriptomic technologies have various sequencingmethods
and yield different data characteristics. Therefore, in addition to
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HEARTSVG, SpatialDE, SPARK, SPARK-X, scGCO and Squidpy in simulation data
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Figure 2a, b, and c share a common legend. d False positive rate (FPR, y-axis)
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numbers of cells (x-axis). Source data are provided with this paper.
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large-scale simulations, we evaluated the accuracy, robustness, and
generality of HEARTSVG on several real ST datasets from different ST
technologies, comprising three next-generation sequencing (NGS)-
based spatial technologies (10X Visium5,24–26, Slide-seqV23 and HDST4),
and one imaging-based spatial technology (MERFISH6).

HEARTSVG identifies SVGs and predicts spatial domains
10X Visium is the most widely used commercial spatial tran-
scriptomics technology in cancer research. We applied HEARTSVG to
a human colorectal cancer (CRC) dataset24 generated using 10X Vis-
ium technology, involving 4174 spots and 15,427 genes. We per-
formed unsupervised clustering and cell type annotation on this
dataset, incorporating information from theWu et al. study24 and the
hematoxylin and eosin-stained (H&E) tissue image (Fig. 3a). This tis-
sue contains five main cell types: tumor cells, smooth muscle cells,
normal epithelium, lamina propria, and fibroblast, with the tumor
cells located in two distinct regions (Fig. 3a). HEARTSVG identified
8,020 SVGs, and SpatialDE, SPARK, SPARK-X scGCO, and Squidpy
identified 11,190, 12,198, 13,946, 1244 and 6849 SVGs, respectively, at
an adjusted p-value cutoff of 0.05. scGCO missed many SVGs with
clear spatial expression patterns comparing with other methods
(Supplementary Fig. S11). For instance, RPS20, RPS29, ARPC3, and
GAS5 exhibited clear and similar spatial expression patterns. scGCO
only identified RPS20, HEARTSVG and other three methods suc-
cessfully identified all four genes. The top 10 genes ranked by
HEARTSVG SPARK-X and Squidpy shown more pronounced spatial
expression patterns compared to SpatialDE SPARK, and scGCO
(Supplementary Fig. S12). SpatialDE’s top 10 selected SVGs displayed
minimal spatial patterns, while SPARK and scGCO outperformed
SpatialDE to some extent. Notably, SPARK-X demonstrated a pre-
ference for selecting SVGs with large stripe patterns, aligning with
previous simulation findings. The SVGs identified by HEARTSVG
exhibited significant biological relevance, as confirmed by pathway
enrichment analyzes conducted for each method. The enrichment
analysis results (Fig. 3b) showed that HEARTSVG displayed smaller
p-values and larger gene intersection sizes compared to the otherfive
methods across 19 tumor-related KEGG pathways, including Cancer:
Overview and Signal transduction. Using single-cell level common
gene modules linked with tumor microenvironments27,28 and con-
sensus molecular markers of colorectal cancer subtypes29,30 as
reference standards for true SVGs, HEARTSVG demonstrates the
highest AUCs (AUC = 0.843, 0.727, respectively), underscoring its
biological interpretability. The former gene list has been widely
applied in pan-cancer studies of tumor microenvironments31–36,
while the latter has found broad applications in CRC patient
classification37–43 and has been validated by various studies37,40.

For the identified SVGs, we utilized the auto-clustering module to
predict six primary spatial domains and performed enrichment ana-
lyses of the SVGs in each spatial domain (Fig. 3d–f, Supplementary Fig.
S13). Some spatial domains were correlated with specific cell types,
consistentwith the unsupervised spatial clustering results. The SVGs in
spatial domain 4 expressed highly in the muscle cell region and iden-
tifiedmany GO (Gene Ontology) terms and KEGGpathways associated
with smooth muscle cells (Fig. 3d–f). The representative genes of
spatial domain 4, DES44,45, MYL946, and ACTB47,48, were essential for the
functions of smooth muscle cells. The SVGs of spatial domains 1, 2, 3,
and 5 showed high-expression patterns in the tumor cell regions.
However, we identified some spatial domains beyond explained cell
types. The SVGs of spatial domains 1 and 2 showed high expression in
the left and right tumor cell regions, respectively (Fig. 3d). The spatial
domain 1 was enriched in immune-associated GO terms and KEGG
pathways (Fig. 3f, Supplementary Fig. S14). Several representative
SVGs in spatial domain 1, such as IGKC, IGHG4, and CD28, are asso-
ciated with immune infiltration49–51 (Fig. 3e). The spatial domain 2 were
enriched in theGO terms andKEGGpathways of cell differentiation52–54

(Fig. 3e, Supplementary Fig. S15), and included cell markers, such
as EPCAM, KRT8, and CLDN3, which are connected with epithelial
carcinogenesis, epithelial-mesenchymal transition (EMT) or cancer
enhancement. The spatial domain 3 corresponded to the location of
tumor cells. Some SVGs of the spatial domain 3, such as B2M55–58 and
FTL57–59 are important encoding antigen genes inmany cancers, as well
as FTH160–62 and FTL59,63,64, which are closely related to ironmetabolism
in cancer cells. The functional differences between the left and right
tumor cells could explain why the spatial expression pattern in the
right tumor cell region has clearer boundaries than the left tumor cell
region.

We appliedHEARTSVGon twoother colorectal cancer STdatasets
and corresponding liver metastasis ST datasets from the same cohort.
HEARTSVG had a higher AUC (average AUC=0.792) than other
methods (Fig. S13). In the six colorectal cancer and liver metastasis
spatial transcriptomic (ST) datasets, wedetected higher expressions of
numerous mitochondrial-encoded genes in the tumor cells compared
to the non-tumor region within the colorectal tumor samples. How-
ever, this phenomenon was not observed in the liver metastasis sam-
ples (Fig. S20). We supposed that tumor cells at the primary site of
colorectal cancer have higher oxidative phosphorylation (OXPHOS)
activity than metastatic liver cancer sites, in line with recent studies
showing OXPHOS upregulates in colorectal cancer65–68. Overall,
HEARTSVG successfully detected SVGs with visually distinct patterns.
The auto-clustering module effectively predicted spatial functional
domain based on the distinguished SVG patterns positioned in and
beyond the cell types.

HEARTSVG detects SVGs explained by cell types
Slide-seqV23 is a spatial transcriptomics technology that achieves
transcriptome-wide measurements at near-cellular resolution. We
applied HEARTSVG to mouse cerebellum data generated by Slide-
seqV2, consisting of 20,141 genes measured on 11,626 spots. The cer-
ebellumplays a crucial role in sensorimotor control69–71 and consists of
the cortex, white matter, and cerebellar nuclei72. The cerebellar cortex
comprises three cortical layers70 from the outside to the inside: the
molecular layer (ML), the Purkinje layer (PCL), and the granular layer
(GL). Purkinje cells are a unique kind of neuron in the cerebellar cortex
and constitute a slight, convoluted monolayer.

HEARTSVG, SpatialDE, SPARK, SPARK-X scGCO, and Squidpy
detected 710, 1,086, 421, 586, 68, and 1564 SVGs, respectively. We
supported the validity of SVGs detected byHEARTSVG in twopieces of
evidence. First, HEARTSVG identified marker genes of specified cell
types with spatially restricted expression patterns (Fig. 4a–d). For
example, Mbp (adjusted p-value = 0) in oligodendrocytes, Car8
(adjusted p-value = 0) in Purkinje cells, and Clbn1(adjusted p-value = 0)
in granule cells. Notably, HEARTSVG detected the marker genes of
Purkinje cells (Fig. 4a–c, Supplementary Fig. S20, and Supplementary
Table S3), Car8 (adjusted p-value = 0), Pcp2 (adjusted p-value = 0) and
Pcp4 (adjusted p-value = 0), whereas SPARK- failed to identify them.
scGCO failed to detect several SVGs with distinct spatial expression
patterns, including Calm1, Calm2, Itm2b, among others, which were
successfully identified by the other four methods (Supplementary
Fig. S20–S21, and Supplementary Table S3). Second, we performed
tissue specificity enrichment analysis for the SVGs identified by each
method. HEARTSVG, SpatialDE, SPARK, SPARK-X, scGCO, and Squidpy
enriched 40, 51, 97, 50, 26, and 56 tissue specificity pathways (Fig. 4d
and Supplementary Table S2). The enriched tissue-specific pathways
identified by HEARTSVG and scGCO were all related to the brain, with
high percentages (87.5%, 35 cerebellar pathways and 92.31%, 24 cere-
bellar pathways) of enriched tissue-specific pathways in the cere-
bellum, and the remaining pathways associated with the cerebral
cortex and hippocampus. Although SPARK identified the highest
number of pathways (97 pathways), over 40% of these pathways were
unrelated to the brain, including 36 skin-specific pathways (37.11%) and
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three rectum-specific pathways (3.09%). SpatialDE, SPARK-X and
Squidpy also identified some enriched pathways that were not asso-
ciated with the brain. SpatialDE identified one rectum pathway (1.96%
of the total pathways), SPARK-X identified three rectumpathways (6%)
and three skin pathways (6%), and Squidpy identified one endome-
trium pathway (1.79%). The heatmap (Fig. 4e) of SVGs detected by

HEARTSVG corresponding to the molecular, Purkinje and granule
layers of the cerebellum confirmed the biological interpretability of
the SVGs detected by the HEARTSVG. These findings demonstrated
that HEARTSVG is a reliable method for detecting SVGs exhibiting
arbitrary spatial patterns in structurally complex tissues, such as
the brain.
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Fig. 3 |HEARTSVG identifies tumor relatedSVGs andpredicts spatial functional
domains with distinct biological functions in the 10X Visium colorectal
cancerdata. aOriginal hematoxylin and eosin stained (H&E) tissue image (left) and
results of unsupervised spatial clustering (right). The red-circled areas in the HE
image represent the tumor regions. b The bubble plot illustrates the results of
KEGG pathway enrichment analysis for 19 tumor-related pathways (x-axis) across
different methods. Each bubble represents a pathway, and its size corresponds to
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HEARTSVG identifies marker genes with spatial patterns
We analyzed two datasets ofmouse preoptic hypothalamus generated
by multiplexed error-robust fluorescence in situ hybridization73

(MERFISH). MERFISH enabled spatially resolved RNA analysis of indi-
vidual cells with high accuracy and high detection efficiency5. The data

generated through MERFISH were moderately sparse, with more than
40% of the genes detected in more than half of the cells. The first
dataset involved 6,112 cells and 155 genes and consisted of eight cell
types (Fig. 5a). The second dataset consisted of 10 cell types (Fig. 5b)
involving 5,665 cells and 161 features (156 genes and five blank
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controls). HEARTSVG, SpatialDE, SPARK, SPARK-X, scGCO and
Squidpy identified 133, 154,149, 141, 65, and 145 genes in the first
MERFISH dataset and 128, 161,145, 132, 46, and 144 genes in the second
MERFISH dataset. The results of all methods were highly consistent
(Fig. 5c, Supplementary Fig. S22). However, SpatialDEmisclassified five
blank controls as SVGs with top gene ranks. HEARTSVG, SPARK,
SPARK-X and Squidpy reported one blank control as false positivewith
low ranks and no false positives reported by scGCO. However, scGCO
missed some SVGs with clear spatial expression patterns, such as Mbp
in the MERFISH data 2 (Fig. 5d), Nnat in in these two MERFISH data
(Supplementary Fig. S22).

In both datasets, HEARTSVG efficiently identified SVGs asso-
ciated with cell types spatially located in specific regions (Fig. 5c,
S20). For example, HEARTSVG detected Cd24a (adjusted
p-value = 0), Mlc1 (adjusted p-value = 0), and Nnat (adjusted
p-value = 0) as significantly associated SVGs in ependymal74,75,
Slc17a6 (adjusted p-value = 0)76–78, Cbln2 (adjusted p-value = 0),
Necab1 (adjusted p-value = 0), and Ntng1 (adjusted p-value = 0) in
excitatory neurons79,80. The oligodendrocyte (OD)74,75,81 markers,
including Mbp (adjusted p-value = 0), Ermn (adjusted p-value = 0),
Ndrg1, and Sgk1 (adjusted p-value = 0), were also accurately iden-
tified. We utilized the auto-clustering module to obtain multiple

spatial domains. The resulting spatial domains consistently mat-
ched their corresponding cell types (Fig. S22). For example, in the
first data, we predicted two spatial domains corresponding to Oli-
godendrocyte and Excitatory 3 neurons, respectively. Overall, the
auto-clustering module highlighted the usefulness of the software
HEARTSVG.

HEARTSVG has general applicability across various datasets
To evaluate the generality of HEARTSVG, we applied it to a more
comprehensive range of datasets, including mouse olfactory bulb
data generated by high-definition spatial transcriptomics (HDST)
and ST datasets of two different cancers using 10X Visium. The
HDST dataset4 was huge and sparse, consisting of 181,367 spots and
19,950 genes, with more than 98% of spots detecting less than 50
genes. Only HEARTSVG, SPARK-X, scGCO, and Squidpy could flaw-
lessly be operated on the HDST data and detected 447, 89, 0, and
248 SVGs, respectively. scGCO failed to identify any SVGs in this
sparse HDST dataset. HEARTSVG identified top-ranked SVGs
(Gm42418, mt-Rnr1, mt-Rnr2, Cmss1, Gphn) that showed pro-
nounced spatial expression patterns (Supplementary Fig. S23),
although visual-spatial expression patterns of genes were challen-
ging to observe in such sparse data.
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10X Visium is the most popular ST technology in cancer research.
Therefore, we applied our method to analyze additional ST data gen-
erated by 10X Visium, including a primary liver cancer (PLC) ST
dataset25, and a renal clear cell carcinoma with brain metastasis (RCC-
BM) ST dataset26, aiming to showcase the superior performance of
HEARTSVG. Consistent with previous applications, the tumor cells in
these datasets exhibited complexity and high heterogeneity, encom-
passing multiple tumor cell types with diverse functions within the
same tissue. HEARTSVG effectively identified tumor-related SVGs in
cancer ST data and predicted several spatial domains with different
functionalities. For example, the PLC ST data contained three distinct
tumor cell types. The identification of tumor-associated SVGs by
HEARTSVG, along with the prediction of their corresponding spatial
domains, revealed a potential synergistic function among these cell
types (Supplementary Fig. S24). In the RCC-BM ST data, we found two
spatial domains showing different high SVG expressions, corre-
sponding to tumor small nests and tumor medium/big nests26 (Sup-
plementary Fig. S25), respectively. The regions of tumor small nests
and tumor medium/big nests in this sample were adjacent. Some
immune-related genes, such as CD4482,83 and CD1482,84,85 are highly
expressed in the tumor small nest region. Moreover, we found that
many tumor-related genes showed higher expression in the “small
nests” of tumors than in the “large nests” (Supplementary Fig. S25),
which is consistent with the study of Sudmeier et al. 26. SVG detection
contributed to providing further insights into intertumoral and intra-
tumoral genetic heterogeneity and complex tumor microenviron-
ments (TME) and cancer mechanisms, which is critical to
understanding tumor progression and response to therapy.

Discussion
We proposed HEARTSVG, a distribution-free, test-based method,
for rapid and precise detection of SVGs in large-scale spatial
transcriptomic data. Different from existing SVG detection
methods11,12,15–17, HEARTSVG uses an alternative strategy that
employs the exclusion of non-SVG genes to infer the existence of
SVGs, allowing it to identify SVGs of any spatial expression pat-
terns with high accuracy, robustness, and generalizability across
various ST datasets from different spatial technologies. Benefiting
from the test framework and absence of underlying data-
generative models, HEARTSVG has superior computational effi-
ciency and scalability, highly suitable for large-scale spatial tran-
scriptomics data. Moreover, the HEARTSVG software offers
various functionalities for advanced analysis of SVGs, including
auto-clustering, enrichment analysis, and visualization tools.

Our study evaluated the performance of HEARTSVG on both
simulated and real ST data, demonstrating its accuracy, robust-
ness, and generality in various scenarios, including varying
numbers of cells, percentages of marked area of SVGs, spatial
patterns, and spatial transcriptomic sequencing technologies.
HEATSVG had the highest F1 scores in most simulation scenarios
and had good scalability and computational efficiency.
HEARTSVG, SPARK-X, scGCO and Squidpy were able to success-
fully run on a dataset of one million cells. However, HEARTSVG
and SPARK-X exhibited lower time consumption than scGCO and
Squidpy. scGCO achieves excellent FPR control, but its perfor-
mance is hampered by overlooking a substantial number of SVGs
in sparse simulated datasets, due to inaccuracies in candidate
region identification. Other studies have also revealed limitations
of scGCO in identification of SVGs86–90. In the simulated datasets
with increasing percentages of SVGs, SPARK-X had increasing
FPRs while HEARTSVG maintained low FPRs. Besides, HEARTSVG
can detect SVGs with diverse spatial patterns, while SPARK-X has
pattern preferences in recognizing SVGs and has difficulty
detecting some non-striped patterns and small percentages of
marked areas of SVGs.

We implement HEARTSVG on twelve datasets from four different
spatial transcriptome sequencing technologies (10X Visium, Slide-
seqV2, HDST, and MERFISH) across three different tissues (colorectal,
liver, and brain). HEARTSVG exhibited the highest AUC (average
AUC=0.792), demonstrating its accuracy and robustness across
datasetswith diverse data characteristics. The brain is a complex organ
with intricate structures and a wide variety of cell types in constrained
regions71,91–93. HEARTSVG can sensitively identify cell-typemarkers that
are restricted to specific brain regions. For example, HEARTSVG
identified the markers, Car8, Pcp2, and Pcp4 of the thin and curly
Purkinje cell layer, which SPARK-X failed to identify. Despite favorable
FPRs, scGCO’s inaccurate identification of candidate regions limits its
capacity to fully recognize SVGs with similar spatial expression pat-
terns. SpatialDE misidentified five blank control genes as SVGs with
small adjusted p-values in the MERFISH preoptic hypothalamus data.
We performed tissue-specific enrichment analysis of the SVGs identi-
fied by each method and illustrated the biological benefits of
HEARTSVG. The enriched tissue-specific pathways identified by
HEARTSVG and scGCOwere all related to the brain. In contrast, SPARK
identified more than 40% of enriched tissue-specific pathways that
were unrelated to the brain in the Slide-seqV2 cerebellum data. This
indicates that the reliability of the SVGs identified by SPARK was lim-
ited. SpatialDE (1.96%) and SPARK-X (14%) also had pathways unrelated
to the brain. Only HEARTSVG, SPARK-X and scGCO can identify SVGs
on the huge HDST dataset (180 K~ spots and 19,000~ genes) and
mouse hypothalamus MERFISH data (1 million cells and 161 genes),
demonstrating HEARTSVG’s excellent computing efficiency and
scalability.

In this study, we conducted analyses of ST datasets for three
different types of cancer (colorectal cancer, primary liver cancer,
and renal cell carcinoma brain metastasis), which were generated
using 10X Visium - a widely used commercial ST technology in
cancer research. The ST data of tumors contained few cell types
and their SVGs are primarily associated with tumor cells.
HEARTSVG performed well on different cancer ST datasets, and
pathway analysis results demonstrated its ability to identify many
tumor-related SVGs. HEARTSVG (8 significant pathways), SPARK-X
(8 significant pathways), scGCO (7 significant pathways), and
Squidpy (7 significant pathways) identified more cancer-related
KEGG pathways than SpatialDE (2 significant pathways) and SPARK
(2 significant pathways) in the 10X Visium colorectal cancer data.
Furthermore, the SVG auto-clustering module of the software
HEARTSVG facilitated the prediction of different tumor-associated
spatial domains with distinct spatial expression patterns. In the
colorectal cancer ST data, tumor cells were located in two non-
adjacent regions of the sample. We discovered that two tumor-
associated spatial domains had high expression patterns in only
one tumor cell region instead of both, as shown in Fig. 3. Enrich-
ment analysis revealed distinct biological processes and functions
associated with the two spatial domains. We observed similar
phenomena in the ST datasets of primary liver cancer and renal
clear cell carcinoma with brain metastasis. In the PLC ST data,
many SVGs were highly expressed in both tumor cell subtypes 1
and 3, constituting a common spatial functional domain. In the
RCC-BM ST dataset, we identified two adjacent spatial domains
based on different SVG clusters, corresponding to tumor small
nests and tumor medium/big nests, respectively. Spatial domain
prediction based on SVGs has revealed tumors’ intricate functional
diversity and synergistic interactions beyond cellular classifica-
tions, shedding new light on the biological complexity of tumor
tissues.

Overall, HEARTSVG is a powerful method for detecting spatially
variable genes with the ability to identify spatial expression patterns of
arbitrary shapes.Moreover, the inclusion of an auto-clusteringmodule
in the HEARTSVG software enhances the understanding of the
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biological process, demonstrating the versatility and potential of
HEARTSVG in spatial transcriptomics data analysis. However,
HEARTSVG has such limitations as relying solely on spatial coordi-
nates. In future studies combing gene expression with corresponding
H&E tissue images, incorporating information fromH&E tissue images
will provide a more comprehensive understanding of the cellular
mechanism in disease progression.

Methods
Identification of spatially variable genes
In spatial transcriptomics (ST) data, each gene can be represented
by a vector containing three elements: the gene g= x, y, eð ÞT ,
where x, y, and e correspond to the row coordinates, column
coordinates, and the expression counts of the gene on the spot at
the ðx, yÞ (Fig. S7). To simplify notation, we assume in the fol-
lowing proof that there is only one gene. HEARTSVG tested for
each gene, so the “only one gene” assumption does not affect the
derivation and conclusion. We determine whether g is an SVG by
testing whether the expression of the gene is randomly dis-
tributed in the ST data. In practice, we assume that the expression
counts of the non-SVG gene at a given location ðxi, yjÞ are inde-
pendent of expressions at nearby locations. Therefore, we
applied the Portmanteau test to test several autocorrelations of rt
that are simultaneously at zero to determine whether the gene is
an SVG. rt is the gene marginal expression series after the semi-
pooling step. The null and alternative hypotheses are:

H0 : ρ1 = , . . . , =ρm =0,HA : 9 k 2 1, . . . ,mf g,ρk≠0 ð1Þ

To simplify the symbolic representation, we rewrite the subscript
of the marginal expression series as r= r1,::, rt , . . . , rT

� �T , define the
autocovariance of order k as:

γk =Cov rt , rt�k

� �
=Cov rt , rt + k

� �
for all k ≥0 ð2Þ

and the k � th order autocorrelation (ACF) as

ρk =
γk
γ0

ð3Þ

If the gene is non-SVG without a spatial pattern in ST data, our
purpose is to test the null hypothesis: H0 : ρ1 = � � � =ρm =0. The test
statistic is defined asQm =T

Pm
l = 1ρ̂

2
l followedby chi-distributionwithm

degree of freedom, where γ̂k =
1

T�k

PT
t = 1 + kðrt � �rÞðrt�k � �rÞ, k =

0, . . . ,T � 1, �r is the mean of r, m= lnðTÞ, and introduce ρ̂k =
γ̂k
γ̂0
. The

p-value for testing the null hypothesis can be calculated by

p=P χ2 df =mð Þ>Qm jH0 is true
� � ð4Þ

We combined all individual p-values into a single p-value by
Stouffer’s method. Stouffer’s method is a classic p-value combination
method that tends to pick up consistent effects and is more robust in
the presence of rare outliers94. The Stouffer’s statistic is defined as

zstouf f er =
X4

i = 1

ziffiffiffi
4

p ∼ Nð0, 1Þ ð5Þ

where zi =Φ
�1ð1� piÞ, Φ�1ð�Þ is the inverse of the cumulative dis-

tribution function of a standard normal distribution. Hence, the
combined p-value of four p-values is calculated by pc = 1�ΦðzÞ. We
use the continuously adjusted combinedp-value todeterminewhether
a gene is an SVG. The final p-values of all genes were adjusted with the
Holm’s method. If the adjusted p-value of a gene is less than 0.05, it is
recognized as an SVG.

Auto-clustering module
The auto-clustering module utilizes the hierarchical clustering algo-
rithm and includes the following steps.

Step 1: Calculate the similarity between each pair of genes based
on spatial expression and generation of the distance matrix.

Step 2: Construct a clustering tree based on the distance matrix
using the complete linkage criterion. The resulting hierarchy of clus-
ters can be visualized as a dendrogram.

Step 3: Determination of the final clustering results by cutting the
dendrogram at a certain height or distance threshold. The cutting
height is chosen using the maximum breakpoint of all breakpoints
selected by the Yamamoto test95,96.

We predicted spatial domains based on each SVGcluster’s regions
and expression levels.

Simulation Design
We generated extensive simulation scenarios to evaluate the per-
formances of HEARTSVG and five other existing SVG methods.
Each scenario had 20 replications. For spatial expression pattern
settings, we set 22 different spatial expression patterns (More
details in Supplementary Table S1 and S5). We generated the spa-
tial locations of spots by the random-point-pattern Poisson pro-
cess (intensity parameter lambda in the noise of “Randomly
Exchanging Nodes” is 0.7, others are 0.5). The expression counts
are generated from the zero-inflated negative binomial (ZINB)
distribution, negative binomial (NB) distribution, Poisson dis-
tribution, and zero-inflated Poisson (ZIP) distribution (More
details of distribution parameters in Tab. S1). In noise-free simu-
lated data, we simulated 10,000 genes (1000 SVGs and 9000 non-
SVGs) and varied the number of spots from 1500, 3000, 5000,
10,000, 30,000, and 50,000 (Supplementary Fig. S1–S3 and S62).
Furthermore, we compared the false positive rates and F1 scores of
HEARTSVG and SPARK-X with the variation in the percentages of
SVGs. We varied the percentages of SVGs from 0%, 5%, 10%, 50%,
and 70%, and the number of spots from 3000, 5000, and 10,000.
Other simulation settings were similar to noise simulations of from
ZINB distribution.

Regarding the simulations with noises, we generated simulated
data with three different noise generation approaches: Gaussian
noise, the noise of “randomly exchanging expression values of
selected nodes” and mixture noise. We added six different levels of
Gaussian noise to simulated data with four different distributions
and 22 spatial patterns and created six noisy simulated data of each
spatial pattern (more details in Supplementary-Section 10.3). For
simulated data with noise of “randomly exchanging expression
values of selected nodes”, we followed the procedures described by
scGCO. We randomly selected varying percentages spots from the
marked and non-marked areas of the SVGs and swapped their
expression values. For simulated data with mixture noise, we gen-
erated 1000 simulated SVGs and randomly rearranged the gene
expressions to generate non-SVGs. Then, wemix their expression to
create non-SVGs, SVGs with noise, and non-SVGs with noise
(Fig. S38).

Like other SVG detection methods, we use the continuously
adjusted p-value to determine whether a gene is an SVG. If the
adjusted p-value of a gene is less than 0.05, it is identified as an
SVG. Based on this criterion, we converted continuously adjusted
p-values to binary results and calculated performance indices.
The F1 score is a measurement of accuracy that balances precision
and recall. The calculations of performance indices were as
follows.

TP: True positive.
FN: False negative.
FP: False positive.
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TN: Ture negative.

Precision=
TP

TP+FP

TPR=
TP

TP+FN

FPR=
FP

FP+TN

F1 score=
2 � Precision � Recall
Precision +Recall

Statistics & Reproducibility
In this study, no statistical method was used to predetermine sample
size. All data used in this study were collected from public resources
and used to demonstrate the performance of HEARTSVG. We per-
formed quality control of spatial transcriptomics data based on the
commonly used and pre-established criteria in this field. For real data,
low-quality genes detected in less than 1% of spots were excluded from
the analysis. The experiments were not randomized. Analyzes were
conducted exclusively on published data, as documented in their
original publications, precluding blinding by investigators during
reanalysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data analyzed in thismanuscript are available in their raw form from
the respective original authors. (1) The 10X Visium data of colorectal
cancer are available at the Single-Cell Colorectal Cancer Liver Metas-
tases (CRLM) Atlas [http://www.cancerdiversity.asia/scCRLM]; (2) The
Slide-seqV2 data are available at the Single Cell Portal [https://
singlecell.broadinstitute.org/single_cell/study/SCP815]; (3) The MER-
FISH datasets are available in the Dryad Digital Repository from
[https://doi.org/10.5061/dryad.8t8s248]; (4) Themouse olfactory bulb
data generated by high-definition spatial transcriptomics (HDST) are
available at the NCBI Gene Expression Omnibus (GEO) database
repository under accession code GSE130682; (5) The 10X Visium data
of primary liver cancer are available at the Genome Sequence Archive
(GSA) under accession code HRA000437; (6) The 10X Visium data of
renal clear cell cancer brain metastasis are available at the NCBI Gene
Expression Omnibus (GEO) database repository under accession code
GSE179572. Source data are provided in this paper.

Code availability
The HEARTSVG is implemented in R, and is available on GitHub
(https://github.com/cz0316/HEARTSVG) and Zenodo97.
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