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ABSTRACT
Background Plexins are large transmembrane 
receptors for the semaphorin family of signalling 
proteins. Semaphorin- plexin signalling controls cellular 
interactions that are critical during development as 
well as in adult life stages. Nine plexin genes have 
been identified in humans, but despite the apparent 
importance of plexins in development, only biallelic 
PLXND1 and PLXNA1 variants have so far been 
associated with Mendelian genetic disease.
Methods Eight individuals from six families presented 
with a recessively inherited variable clinical condition, 
with core features of amelogenesis imperfecta (AI) 
and sensorineural hearing loss (SNHL), with variable 
intellectual disability. Probands were investigated by 
exome or genome sequencing. Common variants and 
those unlikely to affect function were excluded. Variants 
consistent with autosomal recessive inheritance were 
prioritised. Variant segregation analysis was performed 
by Sanger sequencing. RNA expression analysis was 
conducted in C57Bl6 mice.
Results Rare biallelic pathogenic variants in plexin B2 
(PLXNB2), a large transmembrane semaphorin receptor 
protein, were found to segregate with disease in all 
six families. The variants identified include missense, 
nonsense, splicing changes and a multiexon deletion. 
Plxnb2 expression was detected in differentiating 
ameloblasts.
Conclusion We identify rare biallelic pathogenic 
variants in PLXNB2 as a cause of a new autosomal 
recessive, phenotypically diverse syndrome with AI 
and SNHL as core features. Intellectual disability, 
ocular disease, ear developmental abnormalities and 
lymphoedema were also present in multiple cases. The 
variable syndromic human phenotype overlaps with 
that seen in Plxnb2 knockout mice, and, together with 
the rarity of human PLXNB2 variants, may explain why 
pathogenic variants in PLXNB2 have not been reported 
previously.

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Plexins are large transmembrane proteins that 
act as receptors for the semaphorin family 
of signalling proteins. Semaphorin- plexin 
signalling controls cellular interactions that 
are critical during development as well as in 
adult life stages. Nine plexin genes have been 
identified in humans, but despite the apparent 
importance of plexins in development, only 
biallelic PLXND1 and PLXNA1 variants have so 
far been associated with Mendelian genetic 
disease.

WHAT THIS STUDY ADDS
 ⇒ We identify rare biallelic pathogenic variants 
in PLXNB2 as a cause of a new autosomal 
recessive, phenotypically diverse syndrome with 
amelogenesis imperfecta and sensorineural 
hearing loss as core features. Intellectual 
disability, ocular disease, ear developmental 
abnormalities and lymphoedema were 
also present in multiple cases. The variable 
syndromic human phenotype overlaps with that 
seen in Plxnb2 knockout mice, and, together 
with the rarity of human PLXNB2 variants, may 
explain why pathogenic variants in PLXNB2 
have not been reported previously.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Individuals presenting with amelogenesis 
imperfecta and sensorineural hearing loss 
should be screened for mutations in PLXNB2 
and tested for other features of the syndrome. 
PLXNB2 should be added to amelogenesis 
imperfecta, deafness and intellectual disability 
gene panels to improve mutation detection 
rates. Affected families should receive 
appropriate genetic counselling.
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INTRODUCTION
Development is a cascade of highly dynamic, time- critical, 
complex processes involving many signalling molecules and 
receptors that act to regulate cell proliferation, migration, adhe-
sion and differentiation. This results in the formation of complex 
tissues, which further organise to effect organogenesis. Plexins 
are large transmembrane proteins that act as receptors for the 
semaphorin family of signalling proteins. Semaphorin- plexin 
signalling controls cellular interactions that are critical during 
development as well as in adult life stages (reviewed by Perälä et 
al).1 Semaphorin signalling modulates changes to both actin and 
microtubule organisation and therefore to the overall cytoskel-
eton, cell morphology, cell adhesion and cell motility (reviewed 
in Alto and Terman2).

The plexin gene family was originally identified in humans, 
and members were grouped according to the domain struc-
ture of the encoded proteins.3 4 Nine genes have been identi-
fied in both humans and mice, with class A plexins consisting 
of four genes (A1–A4), class B of three (B1–B3), and class C 
(C1) and class D (D1) of one each.1 4 Plexin family members 
share a common structure, with extracellular and intracellular 
portions. The extracellular portions contain a sema domain that 
binds with semaphorin ligands to activate signalling, as well as 
two or three PSI (plexin, semaphorin and integrin) domains and 
two or three glycine- proline rich IPT (immunoglobulin, plexin 
and transcription factor) domains. The intracellular portions are 
highly conserved5 and contain two R- Ras GAP motifs and one 
set of Plexin Rho- GTPase Association Motifs.

Class B plexins have an additional intracellular C- terminal 
PSD95, DLG1 and ZO1 (PDZ) interaction domain6 and an 
extracellular cleavage site for proprotein convertases.1 Plexin B2 
(PLXNB2) participates in axonal guidance and cell migration.7 
It is expressed widely but it also demonstrates a specific tempo-
rospatial pattern of expression throughout development, and its 
expression is distinct from that of other plexins, suggesting non- 
redundancy.8 RNA transcripts are detectable in mice from early 
fetal stages to adulthood within the brain.9 In situ hybridisation 
in E14 mouse embryos revealed high expression within several 
regions of the central nervous system, including many regions of 
the brain and retina.8 Expression was also high in the developing 
tooth bud, oral epithelium and in cartilage, with lower expres-
sion also detected in the cochlea, lung, kidney, epidermis and 
intestine.8 The exact role of PLXNB2 in tooth development is 
currently unknown, but semaphorins and plexin B1 have been 
found to be important for innervation of tooth buds10 and for 
dental stem cell migration ex vivo.11

Plxnb2 knockout mice (Plxnb2-/-) vary in phenotype, 
depending on their genetic background. Plxnb2-/- mice 
produced on inbred backgrounds did not survive gestation.12 13 
The majority developed exencephaly, reflecting the impor-
tance of PLXNB2 activity for neural tube closure and poten-
tially also its influence on the actin cytoskeleton. Other defects 
noted included abnormal development of the dentate gyrus, 
defects in cerebellar foliation and lamination, retarded devel-
opment of the olfactory bulb and impaired neuronal prolif-
eration. In contrast, when the same pathogenic variant was 
introduced into outbred CD1 mice, neural tube closure defects 
were less common, and after four generations, around 30% of 
Plxnb2-/- mice were viable and fertile. Despite the knockout 
mice having no obvious behavioural or motor defects, their 
cerebella were smaller and major brain foliation defects were 
still present.12 Heterozygous Plxnb2+/- mice had no apparent 
abnormalities.

Human PLXNB2 variants (MIM*604293) and aberrant 
PLXNB2 expression have been associated with lung cancer,14 15 
acute myeloid leukaemia,16 amyotrophic lateral sclerosis,17 glio-
blastoma,18 autism spectrum disorders with regression,19 psori-
asis20 and first trimester euploid miscarriage.21 In contrast, 
despite the apparent importance of plexins in development, only 
biallelic PLXND1 (MIM*620282) and PLXNA1 (MIM*601055) 
variants have so far been associated with Mendelian genetic 
disease in humans. PLXND1 variants cause multiple types of 
congenital heart defects (MIM#620294).22 PLXNA1 variants 
cause Dworschak- Punetha neurodevelopmental syndrome 
which includes speech regression, autistic features and hyper-
activity, variable sensorineural hearing loss (SNHL), and ocular, 
brain, facial and skin abnormalities (MIM#619955).23 The same 
authors also suggested that pathogenic variants in other plexins 
may be embryonic lethal or may cause a range of phenotypes 
that have not yet been recognised as part of one syndrome.23

Here we describe six families with probands carrying rare bial-
lelic PLXNB2 variants. Affected individuals manifest a complex, 
variable syndromic phenotype, the core features of which appear 
to be SNHL and amelogenesis imperfecta (AI), with intellectual 
disability also present in most cases.

MATERIALS AND METHODS
Patients
Affected individuals and family members were recruited in 
accordance with the principles outlined by the Declaration 
of Helsinki, with local ethical approval. Clinical evaluation 
captured disease features as part of routine patient care. Genomic 
DNA was obtained from venous blood samples using a salt- based 
extraction protocol, or from saliva using Oragene DNA Sample 
Collection Kits (DNA Genotek, Ottawa, Ontario, Canada), as 
detailed in the manufacturer’s instructions.

Sequencing and analysis
Individuals were recruited and genomic DNA was subjected 
to SNP genotyping, exome or genome sequencing at different 
institutions. Sequencing and analysis methods for each family 
can be found in the online supplemental materials and methods. 
In summary, variants identified in next generation short- read 
sequencing data were filtered to exclude all changes other than 
missense, frameshift or stop variants, exonic insertion/deletions 
or variants located at splice consensus sites (up to 8 bp within 
introns or 3 bp within exons away from splice junctions). Synon-
ymous variants outside of the splice region were discarded. Vari-
ants in the Genome Aggregation Database (gnomAD) (v2.2.1)24 
were excluded if present at a global minor allele frequency of 1% 
or higher. Variants were also filtered based on the mode of inher-
itance. In families known to be consanguineous, homozygous 
variants were prioritised. Population- specific high- frequency 
variants and platform artefacts were excluded by removing vari-
ants also present in exomes of individuals of the same ethnicity 
without dental disease that had been sequenced using the same 
reagents and platform. Splicing prediction analysis was carried 
out using NetGene2 (v2.4.2)25 and Splice AI.26 CADD v1.6,27 
REVEL,28 Polyphen- 2 (HumVar model)29 and SIFT30 were used 
to assess each variant’s potential to be disease causing. CNVs 
were identified using ExomeDepth (v1.0.0).31 Variants were 
confirmed and segregation analysis was performed for all avail-
able family members by Sanger sequencing. Primer sequences 
used are shown in online supplemental table 1. Genomic coor-
dinates are based on the GRCh37 human reference genome, 
the reference gene sequence used for PLXNB2 is MANE 
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Select transcript NM_012401.4 (ENST00000359337.9) and 
protein variant nomenclature for PLXNB2 is based on RefSeq 
protein NP_036533.2 (ENSP00000352288.4). The corre-
sponding references used for CRYBB3 are MANE Select tran-
script NM_004076.5 (ENST00000215855.7) and for CRYBB3 
RefSeq protein NP_004067.1 (ENSP00000215855.2). All vari-
ants identified as part of this study were uploaded to ClinVar: 
SCV002822954–SCV002822961. In silico modelling of the 
effect of the variants on the PLXNB2 protein tertiary struc-
ture was completed using I- TASSER- MTD32 using the default 
parameters. The protein structures were visualised with UCSF 
Chimera.33

Mouse tissue preparation
All animals were maintained in accordance with the French 
Ministry of Agriculture guidelines for the use of laboratory 
animals under study (SC67- 218- 37- IGBMC and APAFIS 
3957- 2016020516359388v1) and in accordance with the 
National Institutes of Health guidelines provided in the Guide 
for the Care and Use of Laboratory Animals. All methods and 
experimental procedures were reviewed and approved by an 
institutional safety committee.

Mouse embryos/fetuses were collected at E14.5, E16.5, E19.5 
or on the day of birth and analysed as detailed in the online 
supplemental materials and methods.

RESULTS
Initially, we recruited two consanguineous families, one Turkish 
(Family 1) and one Omani (Family 2) (figure 1). In Family 1, 
two male double first cousins have bilateral SNHL, intellectual 
disability, AI and severe myopia (online supplemental figure 1). In 
addition to the shared phenotype, one (II:3) also has bilateral cata-
racts and the other (II:6) has unilateral renal agenesis and pyloric 
stenosis. Analysis of GeneChip Human Mapping 250K Nsp SNP 
data from affected individuals II:3 and II:6 showed two homo-
zygous regions encompassing chr7:34,080,354- 41,760,000 and 
chr22:49,714,781- 51,1756,26. Exome sequencing of II:3 and 
II:6 revealed a shared homozygous variant in PLXNB2 within 
the region on chromosome 22, c.2413A>T, p.(Ile805Phe) 
(table 1) which segregates with disease in the family (online 
supplemental figure 2). It affects the extracellular portion of the 
protein, specifically the first cell surface receptor IPT domain, 
and is predicted to be damaging by all pathogenicity predic-
tion software tested (online supplemental table 2). The residue 
affected is highly conserved (online supplemental figure 3) and 
the variant is absent from gnomAD. Individual II:3 was also 
found to carry variant c.388G>A, p.(Glu130Lys) in crystallin 
beta 3 (CRYBB3; MIM*123630) (online supplemental figure 4), 
which is likely to explain the bilateral cataracts observed in him 
(MIM#609741).34 Variants that passed population and patho-
genicity prediction filters but were not investigated further are 
detailed in online supplemental table 3 for each family.

In Family 2, two Omani brothers born of a first cousin union 
were found to have bilateral SNHL, intellectual disability and 
AI (table 1, figure 1 and online supplemental figure 5). Exome 
sequencing of one affected brother revealed a homozygous 
missense variant in PLXNB2, c.2248G>A, p.(Asp750Asn). This 
replaces a charged residue with an uncharged one, affecting 
a highly conserved residue in the extracellular portion of the 
protein (online supplemental figure 3). SIFT predicts the variant 
to be deleterious and it was not identified in gnomAD (online 
supplemental table 2).

Family 3 was identified independently via the UK Inherited 
Retinal Dystrophy Consortium. They are a white British family 
with an affected male child born with facial clefting, who also 
presented with nystagmus shortly after birth. In middle child-
hood, he was diagnosed with retinal dystrophy, high myopia, 
microcorneas and mild keratopathy. He also has mild bilateral 
SNHL for sounds ranging from 500 to 4000 Hz, and AI (table 1, 
figures 1 and 2 and online supplemental figure 6). Exome 
sequencing revealed biallelic compound heterozygous variants 
in PLXNB2, one a nonsense variant, c.750C>A, p.(Cys250*), 
and one synonymous variant altering the final base of the splice 
donor site of exon 19, predicted to affect splicing, c.3117G>A, 
p.(Thr1039=). Analysis with splice prediction tools Splice AI26 
and NetGene225 predicted loss of the donor site, suggesting 
that some of intron 19 may be retained in the mature transcript 
(online supplemental table 4, online supplemental figure 7). 
Neither variant was identified in gnomAD (online supplemental 
table 2). A second fetus, who presented with clefting, was elec-
tively aborted. Genotyping showed that the fetus was heterozy-
gous for the nonsense PLXNB2 variant only.

Next, we searched the UK 100,000 Genomes dataset35 for 
patients with biallelic variants in PLXNB2 and a similar pheno-
type. We identified one affected white British female (Family 4) 
with SNHL, AI, lower limb lymphoedema and cellulitis (table 1, 
figures 1 and 2, online supplemental figure 8). She carries bial-
lelic compound heterozygous frameshift variants c.2606delT, 
p.(Phe869Serfs*45) and c.3982_3986delCTTT, p.(Phe-
1328Hisfs*65) in PLXNB2 (online supplemental figure 9), both 
predicted to produce transcripts that are subject to nonsense 
mediated decay.36 Variant c.2606delT, p.(Phe869Serfs*45) has 
previously been identified in gnomAD as a heterozygous variant 
in one individual, suggesting an allele frequency of 4.024×10–6. 
Variant c.3982_3986delCTTT, p.(Phe1328Hisfs*65) was not 
present in gnomAD.

With increased understanding of the clinical presenta-
tion associated with biallelic PLXNB2 variants, we identified 
Family 5 through further collaboration. Two affected siblings 
of Pakistani origin, born of a consanguineous union (figure 1), 
presented with deafness, AI, intellectual disability and lower 
limb lymphoedema (figure 2, table 1, online supplemental 
figures 10 and 11). Exome sequencing of II:1 and subsequent 
ExomeDepth analysis revealed a homozygous deletion spanning 
exons 34 and 35 (Reads ratio 0.0291, Bayes factor 18.3; online 
supplemental table 2). The breakpoints predicted in the exome 
sequence (online supplemental figure 12), chr22:50,715,085 
and chr22:50,715,672, were confirmed by PCR, which also 
confirmed the deletion was present in II:2. This deletion is 
in- frame and is predicted to delete at least 38 amino acids (aa) 
(p.(Asp1733_Met1770del)) from the 1838aa protein, including 
all of exon 34 and part of exon 35. Splice prediction tool 
NetGene2 (v2.4.2) predicts that exon 35 will be skipped entirely 
(online supplemental table 5), resulting in an in- frame deletion 
of 47aa, p.(Asp1733_Arg1779del), suggesting that an abnormal 
PLXNB2 protein may be produced. The deleted region is part of 
the Rho- GAP catalytic domain critical to the protein’s function, 
but the deletion would leave the catalytic arginine residues at 
1395, 1396 and 1691 intact.

Using GeneMatcher,37 we identified one further patient with 
biallelic PLXNB2 variants and an overlapping disease phenotype. 
Family 6 is of Iraqi origin. One affected male was born of first 
cousin consanguineous parents (figure 1). In early childhood, 
he has severe developmental delay and autistic features, and his 
tooth enamel shows evidence of severe damage from a limited 
visual inspection (table 1, online supplemental figure 13). 
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Figure 1 Pedigrees, Sanger sequencing and schematic diagram of the PLXNB2 protein. (A) DNA was available for all labelled individuals on each 
pedigree. Arrows indicate the individuals whose DNA was exome or genome sequenced. Affected status is as reported by the families for individuals for 
which DNA was not available. Sanger sequencing traces showing the segregation of each variant with disease in each family, except for Family 5, for which 
this is shown in online supplemental figure 9. The schematic diagram shows (B) the PLXNB2 transcript (ENST00000359337.9, NM_012401.4; 6409 bp) and 
(C) the PLXNB2 protein (ENSP00000352288.4, NP_036533.2; 1838 amino acids), with the positions marked for the pathogenic variants identified in this 
study. IPT, immunoglobulin, plexin and transcription factor; PSI, plexin, semaphorin and integrin; TIG, transcription factor immunoglobin.
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However, it was not possible to carry out a detailed dental exam-
ination or to obtain dental radiographs. The presence of AI, as 
opposed to severe caries, could therefore not be confirmed, and 
testing for SNHL and eye disease was not possible. On exome 
sequencing, the affected individual was found to carry a homo-
zygous PLXNB2 variant c.4609G>A, p.(Gly1537Ser), which 
affects the highly conserved Rho- GAP domain that lies within the 
intracellular portion of PLXNB2 and changes the residue from a 
non- polar to a polar residue (table 1, online supplemental table 
2, online supplemental figure 3). The residue is conserved in all 
species examined and this variant was not present in gnomAD.

We next used I- TASSER- MTD to try to assess the effect 
of each of the variants on the overall predicted structure of 
PLXNB2 (online supplemental figure 14). In silico predic-
tions of WT PLXNB2 structure (panel A) and of these variants 
are likely to be of limited use due to the small percentage of 
PLXNB2 covered by known crystal structures and the lack of 
appropriate homologous protein structures on which to base 

the WT structure. The local structural changes for the missense 
variants (Asp750Asn, Ile805Phe and Gly1537Ser) are shown in 
panels B, C and D. There were minor changes in the solvent 
accessibility for Asp750Asn and Ile805Phe. For Ile805Phe, the 
mutant structure is characterised as undefined, in comparison to 
the WT strand structure. The model for the deletion Asp1733_
Arg1779del shows extensive structural differences to the WT 
protein.

To gain insight into Plxnb2 expression in mice, we performed 
in situ hybridisation using a digoxigenin- labelled antisense ribo-
probe generated from the same DNA template as previously used 
by the EURExpress consortium (www.eurexpress.org) (online 
supplemental figure 15). Mouse embryos were analysed at 
E14.5, E16.5 and E19.5. Plxnb2 expression was detected in the 
kidney and lung (figure 3A,B). Discrete expression was observed 
in the developing inner ear (cochlea: figure 3C). Expression was 
also detected in olfactory epithelium and retina (figure 3D,F) 
and in the small and large intestines (figure 3E).

Table 1 The variants in PLXNB2 identified in six families and the disease features observed

Patient (sex/
age range)

Zygosity and variants 
(NM_012401.4, 
NP_036533.2)

Phenotype

Auditory Dental
Developmental/
neurological Vision Other

Family 1 II:3
(M/12–18)

Homozygous c.2413A>T: 
p.(Ile805Phe); c.2413A>T: 
p.(Ile805Phe)

SNHL AI, conical permanent 
incisors

Global developmental 
delay, moderate 
intellectual disability

Myopia, horizontal 
nystagmus (congenital 
cataract due to CRYBB3 
variant)

Ear lobe skin blind- ended 
tracts

Family 1 II:6
(M/19–21)

Homozygous c.2413A>T: 
p.(Ile805Phe); c.2413A>T: 
p.(Ile805Phe)

SNHL; labyrinthine 
malformation

AI, conical permanent 
incisors

Global developmental 
delay, epilepsy, 
moderate intellectual 
disability

Severe myopia with 
scattered papillae, 
horizontal nystagmus, 
macular atrophy

Ear lobe skin blind- 
ended tracts, unilateral 
renal agenesis, pyloric 
stenosis, asthma, recurrent 
bronchitis, intrauterine 
growth retardation, finger 
pads, watch glass toenails, 
overweight

Family 2 IV:2 
(M/12–18)

Homozygous c.2248G>A: 
p.(Asp750Asn); c.2248G>A: 
p.(Asp750Asn)

SNHL AI Intellectual disability No obvious abnormality, 
not examined

Family 3 II:1
(M/6–11)

Compound heterozygous 
c.750C>A: p.(Cys250*); 
c.3117G>A: p.(Thr1039=)

SNHL (mild) 500–
4000 Hz

AI with hypoplasia Normal Developmental macular 
abnormality with pale 
fundus, attenuated blood 
vessels, high myopia, 
nystagmus, microcornea

Ear lobe skin blind- 
ended tracts, cleft palate, 
hypertelorism, keratopathy

Family 4 II:1
(F/19–21)

Compound 
heterozygous c.2606del: 
p.(Phe869Serfs*45); 
c.3982_3986del: 
p.(Phe1328His*65)

SNHL AI; missing upper 
permanent lateral 
incisors

Normal No obvious abnormality, 
not examined

Ear lobe skin blind- ended 
tracts, bilateral primary lower 
limb lymphoedema (onset 
aged 3),
nevus, cellulitis

Family 5
II:1
(F/50–59)

Homozygous c.5197- 
337_5310del: p.(Asp1733_
Arg1779del); c.5197- 
337_5310del: p.(Asp1733_
Arg1779del)

SNHL AI Mild/moderate 
intellectual disability

No obvious abnormality, 
not examined

Bilateral primary lower limb 
lymphoedema

Family 5
II:2
(M/50–59)

Homozygous c.5197- 
337_5310del: p.(Asp1733_
Met1770del); c.5197- 
337_5310del: p.(Asp1733_
Met1770del)

SNHL AI Intellectual disability No obvious abnormality, 
not examined

Unilateral lymphoedema of 
one foot

Family 6
III:1
(M/2–5)

Homozygous c.4609G>A: 
p.(Gly1537Ser); c.4609G>A: 
p.(Gly1537Ser)

Could not be 
assessed; no current 
indication of 
hearing loss

Clinical tooth failure 
(cause unclear); could 
not be assessed 
further

Profound intellectual 
disability, non- verbal, 
autistic features, 
hyperactive behaviour

Strabismus, no other 
obvious abnormality, 
could not be assessed

Mild generalised muscular 
hypotonia

Splicing prediction tools suggest that exon 35 is entirely skipped leading to p.(Asp1733_Arg1779del) instead of p.(Asp1733_Met1770del) as would be predicted from the 
proportion of the gene deleted. Age ranges are shown for individuals to maintain anonymity. Age of onset was from birth unless otherwise stated. Variants are based on genome 
build GRCh37 and PLXNB2 transcript ENST00000359337.9, NM_012401.4 and PLXNB2 protein ENSP00000352288.4, NP_036533.2.
AI, amelogenesis imperfecta; SNHL, sensorineural hearing loss.
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We also interrogated the GTEx portal38 (https://gtexportal. 
org/) to determine the expression of PLXNB2 in human 
tissues. This showed that there was relatively high expres-
sion of PLXNB2 in the cerebellum and cerebellar hemisphere 
compared with other regions of the brain. There was also high 
expression in the kidney, salivary gland, ovary, prostate, spleen 
and thyroid, among other tissues (online supplemental figure 
16).

Since all individuals studied had AI or were suspected to 
have AI, we investigated the expression of Plxnb2 in the mouse 
during various stages of tooth development (figure 3G,I,K 
lower molar and figure 3H,J,L lower incisor). Plxnb2 tran-
scripts were observed at E14.5 in the epithelial tissues of the 
developing teeth, at E16.5 in the epithelial and mesenchymal 
compartments of the incisor and in the epithelial part of the 
molar. At E19.5, labelling was observed in differentiating 
ameloblasts.

DISCUSSION
Here we describe biallelic pathogenic variants in PLXNB2 in six 
families of diverse ethnicity with individuals affected by a vari-
able syndromic phenotype. Four of these are consanguineous 
families with affected individuals homozygous for an extremely 
rare variant that has almost certainly been passed down both 
branches of the family, and one includes affected cousins, 
demonstrating significant cosegregation of the disease with bial-
lelic PLXNB2 variants. This syndrome has AI and SNHL as core 
symptoms, and intellectual disability, lower limb lymphoedema, 
ocular abnormalities and a variety of other conditions are also 
seen in some, but not all, cases. Given the varied and complex 
roles of PLXNB2 in development,1 it seems unsurprising that 
biallelic variants cause a syndromic disease phenotype. The 
variants all have pathogenicity scores indicating that they 
are predicted to be deleterious (online supplemental table 2). 
The case series we have accumulated, together with published 
evidence of an overlapping condition in Plxnb2 knockout mice, 
provides compelling evidence for biallelic variants in PLXNB2 as 
the cause of this recessively inherited condition.

All variants implicated are extremely rare, with all but one 
absent in gnomAD (v2.1.1), which contains approximately 
124 000 individuals with good quality sequence across PLXNB2. 
The rarity of these variants, together with the constraint metrics 
available in gnomAD (o/e=0.19, pLI=0.99),39 suggests that 
PLXNB2 loss- of- function variants are not well tolerated and 
affect viability. However, the identification of an individual who 
may entirely lack PLXNB2 (Family 4 II:1) seems to contradict 
this. This is consistent with observations in Plxnb2 knockout 
mice, where homozygosity for the knockout allele was lethal on 
one genetic background but viable on another.12 13 The PLXNB2 
variants identified herein include missense, frameshift and splice 
variants, a premature termination codon and a deletion span-
ning two exons, which are all observed to be protein- damaging 
variants.

One possible interpretation of these findings is that all the 
observed human variants have the effect of being functional 
knockouts, and that, as observed in mouse models, the viability of 
such embryos is determined by the genetic background. Genetic 
background might also explain the highly variable phenotypes 
observed in different cases, with only AI and SNHL as consistent 
features. Pathogenic variants in PLXNA1 cause an overlapping 
and similarly varying range of phenotypes to pathogenic variants 
in PLXNB2.23 The impact of genetic background on variation in 
disease phenotype, severity and survival has been noted for one 
Plxnb2-/- mouse model,12 which suggests that other cosegregating 
variants may affect disease range and severity. This may suggest 
that, in spite of the distinct patterns of plexin expression,8 other 
plexins can sometimes partially compensate for loss of PLXNB2 
or PLXNA1 to allow developmental processes vital to life to 
proceed. However, to prove such an effect would require the 
study of a large cohort of cases, and as yet no specific variants 
have been implicated in phenotype variation in either of these 
syndromes. Given that this cohort consists of only eight individ-
uals with six different biallelic genotypes, the power to detect 
any genotype- phenotype correlation in this study is very limited.

Alternatively, the PLXNB2 variants and/or genotypes in the 
families described herein may each have unique effects on 
PLXNB2 function. Variants could cause partial loss of func-
tion through hypomorphic alleles, with expression of the 
normal transcript reduced but not abolished,40 or may act as 
‘gain- of- function’ alleles, creating a protein with altered or 
enhanced function or inappropriate persistence within the cell. 

Figure 2 Clinical images that are illustrative of the shared and variable 
clinical features for affected individuals. (A) The anterior clinical photograph 
showing primary teeth, the posterior teeth have changes consistent with 
loss of enamel (arrowheads) due to fracturing, whereas the enamel of the 
anterior teeth is developmentally thin and optically abnormal (Family 3 
II:1). (B) Panoramic radiograph of the adult permanent dentition illustrates 
that the enamel is more radiodense than the supporting dentine, but with 
a variably reduced enamel volume and irregular occlusal cusp morphology 
(arrowhead) consistent with amelogenesis imperfecta (AI) characterised 
by enamel that is hypomineralised with variable hypoplasia (Family 4 
II:2). (C) Sensorineural hearing loss (SNHL) was typical, with provision of 
hearing aids in childhood (Family 4 II:2). Blind- end skin tracts involving the 
skin of the ears or adjacent tissues (arrowhead) were observed in at least 
3/6 families. (D) Lower limb lymphoedema was observed in two families 
(Families 4 and 5, with Family 4 illustrated). (E) Fundus autofluorescence 
images (Family 3 II:1) illustrate a developmental macular abnormality with 
pale fundus and attenuated blood vessels. The individual also has high 
myopia, nystagmus and microcornea.

https://gtexportal.org/
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Consistent with this hypothesis, the affected cousins in Family 1 
and affected siblings in Family 5, each having the same genotype, 
have remarkably similar phenotypes (table 1).

The missense variants identified in this study affect both the 
extracellular (p.(Ile805Phe) and p.(Asp750Asn)) and intracel-
lular portions of the protein (p.(Gly1537Ser)), with no particular 
region or domain specifically affected by the variants identified 
in this study. In order to assess the effects of the variants on 
protein structure, we attempted to model the changes using 
I- TASSER- MTD.32 However, due to the lack of homologous 
structures available for the majority of the PLXNB2 protein, 
including the regions affected by the variants, the accuracy of 
the modelling is likely to be low. The variants identified herein 
could be altering the binding of PLXNB2 to semaphorins via the 
sema domain, the subsequent homodimerisation of PLXNB2 on 
binding semaphorin, catalytic activity via the GAP domain and 
interaction with GTPases, or the ability to interact with other 
proteins and to effect other types of downstream signalling.41 
Further investigation will be required to better understand the 
effects of specific variants and the basis of variation on pheno-
type in the condition caused by PLXNB2 variants.

Heterozygous carriers of the variants identified in these fami-
lies appear in general to be unaffected by disease, although one 
fetus (Family 3 II:2) did have facial clefting and carried a hetero-
zygous nonsense PLXNB2 variant (c.750C>A, p.(Cys250*)). It is 
unknown whether this fetus would have developed other clinical 
features similar to their sibling. It is possible that another variant 
could be partially or entirely responsible for this particular 
phenotype rather than the PLXNB2 variant. In individuals with 
PLXNA1 pathogenic variants, disease has been observed with 
both biallelic and particular de novo heterozygous variants.23

The core phenotypes observed for the individuals carrying 
pathogenic PLXNB2 variants reflect negative impacts on the 
development or function of the cochlea and ameloblasts. 
This led us to consider whether other plexins are expressed 
in the cochlea and inner enamel epithelium at a similar time 
to PLXNB2, or whether PLXNB2 is expressed alone in these 
tissues, excluding the possibility of partial compensation by a 
closely related protein. Our investigation of the expression of 
Plxnb2 transcripts within the dental tissues of murine embryos 
gave similar results to the expression patterns previously detailed 
by Perälä et al.8 Their analysis of the expression of plexins in 
murine embryos using in situ hybridisation revealed that Plxnb2 
transcripts are present in the brain, retina, cochlea and tooth bud 
at E14.8 Plxnb2 is the only plexin to be expressed at this time-
point in all four tissues, although the expression of Plxnd1 was 
not examined in this study and the expression of other plexins, 
most notably Plxnb1, does overlap that of Plxnb2 in many 
tissues. Plxnb2, Plxna2 and Plxna3 transcripts are all expressed 
in the cochlea, although the relative levels of expression of each 
were not determined. Similarly, Plxnb1 and Plxnb2 transcripts 
were detected at relatively high levels at E14 in the oral epithe-
lium and tooth bud, but other plexins were also detected at 
lower levels of expression. Plxnb2 was shown to be expressed 
at relatively high levels in the inner enamel epithelium at E15, 
with expression sustained until at least E16. These findings 
suggest that PLXNA2, PLXNA3 and PLXNB1 are coexpressed 
in affected tissues at relevant timepoints, but are unlikely to be 
able to fully compensate for the loss of PLXNB2.

The variable phenotype and extremely low population 
frequency of the variants reported in this study may be the 
reasons why pathogenic variants in PLXNB2 have not previously 

Figure 3 Analysis of mouse Plxnb2 transcript distribution by in situ hybridisation. Selected sections illustrating Plxnb2 expression features in the 
developing skull bone, sensorial organs and viscera are shown in the left side panels (A–F), whereas right side panels focus on incisor (G, I and K) and molar 
(H, J and L) tooth development. Developmental stages and section planes are: E14.5 frontal (A, B, G and H), E16.5 sagittal (C, D, E, I and J); E19.5 sagittal 
(F, K and L) sections. Scale bars: 25 µm (J); 40 µm (H and I); 50 µm (C and K); 60 µm (F and H), 80 µm (A, D, E and L); 150 µm (B and G). Am, ameloblasts; 
Co, cochlea; DP, dental papilla; EL, epithelial loop; Gu, gubernaculum; IDE, inner dental epithelium; In, intestine; Ki, kidney; LI, lower incisor; Lu, lung; Od, 
odontoblasts; ODE, outer dental epithelium; OE, olfactory epithelium; Re, retina; SB, skull bone; SR, stellate reticulum.
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been reported as causing syndromic disease in humans. We 
suggest that the tooth enamel phenotype, AI, is a consistent, but 
potentially easily missed feature that flags this genetic diagnosis. 
AI is a heterogeneous group of genetic conditions characterised 
by a deficit in enamel quantity and/or quality affecting all teeth 
of both dentitions.42–44 It can present as an isolated disease or 
can be part of more complex and diverse syndromes affecting 
other tissues and organs. Once formed and following tooth erup-
tion, enamel has no capacity for cellular repair. Accordingly, AI 
provides a clear and persistent marker of abnormal development 
that is recognisable at an early age. However, due to the presence 
of neuronal deficits such as hearing loss and intellectual disability, 
AI might easily be overlooked or dismissed as dental caries due to 
suboptimal diet and/or poor dental hygiene. A differential diag-
nosis of AI as opposed to fluorosis or molar incisor hypomin-
eralisation is also a possible confounding issue. Diagnosis of AI 
may therefore require a specialist paediatric dental professional. 
The disconnection between dental and general healthcare also 
presents barriers to diagnosis and has been flagged as problem-
atic previously in the differential diagnosis of Usher and Heimler 
syndromes.45

The families presented have AI characterised by variable 
abnormalities of enamel volume (hypoplasia) and mineralisation 
(hypomineralised). This is consistent with the understanding of 
PLXNB2 function. Future laboratory investigation of enamel 
from affected individuals will give insight into the characteristics 
of the disruption to enamel rod morphology and mineralisation. 
It is unclear if the other dental morphological changes reported, 
including conical lateral incisors, missing lateral incisors, flat-
tened occlusal surfaces and mild taurodontism, are consequent 
to PLXNB2 functional disruption or are coincidence in these 
families. As further families are described, the core features of the 
dental phenotype will become clearer and will be an important 
clinical indicator to consider PLXNB2 further.

In conclusion, we identify biallelic pathogenic variants in 
PLXNB2 as a cause of a new autosomal recessively inherited, 
phenotypically diverse syndrome including AI and SNHL as 
core symptoms, with intellectual disability, ocular disease, ear 
developmental abnormalities and lymphoedema also present in 
multiple cases.
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